A GPU Parallel Algorithm for Computing Morse-Smale Complexes

The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical points of a scalar function. It supports multi-scale topological analysis and visualization of feature-rich scientific data. Several parallel algorithms have been proposed towa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics Vol. 29; no. 9; pp. 3873 - 3887
Main Authors: Subhash, Varshini, Pandey, Karran, Natarajan, Vijay
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1077-2626, 1941-0506, 1941-0506
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical points of a scalar function. It supports multi-scale topological analysis and visualization of feature-rich scientific data. Several parallel algorithms have been proposed towards the fast computation of the 3D Morse-Smale complex. Its computation continues to pose significant algorithmic challenges. In particular, the non-trivial structure of the connections between the saddle critical points are not amenable to parallel computation. This paper describes a fine grained parallel algorithm for computing the Morse-Smale complex and a GPU implementation (g msc ). The algorithm first determines the saddle-saddle reachability via a transformation into a sequence of vector operations, and next computes the paths between saddles by transforming it into a sequence of matrix operations. Computational experiments show that the method achieves up to 8.6× speedup over pyms3d and 6× speedup over TTK, the current shared memory implementations. The paper also presents a comprehensive experimental analysis of different steps of the algorithm and reports on their contribution towards runtime performance. Finally, it introduces a CPU based data parallel algorithm for simplifying the Morse-Smale complex via iterative critical point pair cancellation.
AbstractList The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical points of a scalar function. It supports multi-scale topological analysis and visualization of feature-rich scientific data. Several parallel algorithms have been proposed towards the fast computation of the 3D Morse-Smale complex. Its computation continues to pose significant algorithmic challenges. In particular, the non-trivial structure of the connections between the saddle critical points are not amenable to parallel computation. This paper describes a fine grained parallel algorithm for computing the Morse-Smale complex and a GPU implementation (gmsc). The algorithm first determines the saddle-saddle reachability via a transformation into a sequence of vector operations, and next computes the paths between saddles by transforming it into a sequence of matrix operations. Computational experiments show that the method achieves up to 8.6× speedup over pyms3d and 6× speedup over TTK, the current shared memory implementations. The paper also presents a comprehensive experimental analysis of different steps of the algorithm and reports on their contribution towards runtime performance. Finally, it introduces a CPU based data parallel algorithm for simplifying the Morse-Smale complex via iterative critical point pair cancellation.The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical points of a scalar function. It supports multi-scale topological analysis and visualization of feature-rich scientific data. Several parallel algorithms have been proposed towards the fast computation of the 3D Morse-Smale complex. Its computation continues to pose significant algorithmic challenges. In particular, the non-trivial structure of the connections between the saddle critical points are not amenable to parallel computation. This paper describes a fine grained parallel algorithm for computing the Morse-Smale complex and a GPU implementation (gmsc). The algorithm first determines the saddle-saddle reachability via a transformation into a sequence of vector operations, and next computes the paths between saddles by transforming it into a sequence of matrix operations. Computational experiments show that the method achieves up to 8.6× speedup over pyms3d and 6× speedup over TTK, the current shared memory implementations. The paper also presents a comprehensive experimental analysis of different steps of the algorithm and reports on their contribution towards runtime performance. Finally, it introduces a CPU based data parallel algorithm for simplifying the Morse-Smale complex via iterative critical point pair cancellation.
The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical points of a scalar function. It supports multi-scale topological analysis and visualization of feature-rich scientific data. Several parallel algorithms have been proposed towards the fast computation of the 3D Morse-Smale complex. Its computation continues to pose significant algorithmic challenges. In particular, the non-trivial structure of the connections between the saddle critical points are not amenable to parallel computation. This paper describes a fine grained parallel algorithm for computing the Morse-Smale complex and a GPU implementation (g msc ). The algorithm first determines the saddle-saddle reachability via a transformation into a sequence of vector operations, and next computes the paths between saddles by transforming it into a sequence of matrix operations. Computational experiments show that the method achieves up to 8.6× speedup over pyms3d and 6× speedup over TTK, the current shared memory implementations. The paper also presents a comprehensive experimental analysis of different steps of the algorithm and reports on their contribution towards runtime performance. Finally, it introduces a CPU based data parallel algorithm for simplifying the Morse-Smale complex via iterative critical point pair cancellation.
The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical points of a scalar function. It supports multi-scale topological analysis and visualization of feature-rich scientific data. Several parallel algorithms have been proposed towards the fast computation of the 3D Morse-Smale complex. Its computation continues to pose significant algorithmic challenges. In particular, the non-trivial structure of the connections between the saddle critical points are not amenable to parallel computation. This paper describes a fine grained parallel algorithm for computing the Morse-Smale complex and a GPU implementation (gmsc). The algorithm first determines the saddle-saddle reachability via a transformation into a sequence of vector operations, and next computes the paths between saddles by transforming it into a sequence of matrix operations. Computational experiments show that the method achieves up to 8.6× speedup over pyms3d and 6× speedup over TTK, the current shared memory implementations. The paper also presents a comprehensive experimental analysis of different steps of the algorithm and reports on their contribution towards runtime performance. Finally, it introduces a CPU based data parallel algorithm for simplifying the Morse-Smale complex via iterative critical point pair cancellation.
Author Subhash, Varshini
Natarajan, Vijay
Pandey, Karran
Author_xml – sequence: 1
  givenname: Varshini
  orcidid: 0000-0003-1889-6821
  surname: Subhash
  fullname: Subhash, Varshini
  email: varshini96@gmail.com
  organization: Department of Computer Science and Automation, Indian Institute of Science, Bangalore, Karnataka, India
– sequence: 2
  givenname: Karran
  surname: Pandey
  fullname: Pandey, Karran
  email: karran13@gmail.com
  organization: Department of Computer Science and Automation, Indian Institute of Science, Bangalore, Karnataka, India
– sequence: 3
  givenname: Vijay
  orcidid: 0000-0002-7956-1470
  surname: Natarajan
  fullname: Natarajan, Vijay
  email: vijayn@iisc.ac.in
  organization: Department of Computer Science and Automation, Indian Institute of Science, Bangalore, Karnataka, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35552135$$D View this record in MEDLINE/PubMed
BookMark eNp9kE9LwzAYh4Mo6qYfQAQpePHSmT9NsoCXMXQKEwduXkPavtVK2sykBf32tm562MHTG8LzS37vM0D7tasBoTOCR4Rgdb18mc5GFFM6YkQmUqg9dExUQmLMsdjvzljKmAoqjtAghHeMSZKM1SE6YpxzShg_RjeTaLZYRQvjjbVgo4l9db5s3qqocD6aumrdNmX9Gj06HyB-royFn1sLnxBO0EFhbIDT7Ryi1d3tcnofz59mD9PJPM5YopqYcslNUmCR54XIuJQylQUZGznOCsEAQ04o6yZNMwwpZ13Lwpi-bMpyDJQN0dXm3bV3Hy2ERldlyMBaU4Nrg6ZCJFJJLliHXu6g7671dddO03G_fSKw6KiLLdWmFeR67cvK-C_966UDyAbIvAvBQ_GHEKx797p3r3v3euu-y8idTFY2pild3XhT2n-T55tkCQB_PykpmeKKfQM9844z
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3458808
crossref_primary_10_1111_cgf_14784
Cites_doi 10.1007/s00371-012-0726-8
10.1109/TVCG.2015.2452919
10.1109/TVCG.2019.2934620
10.1145/2145816.2145832
10.1145/567112.567114
10.1109/TPAMI.2014.2346172
10.1109/SFCS.2000.892133
10.1006/jcss.1995.1078
10.1109/TVCG.2008.110
10.1109/TVCG.2012.209
10.1109/TVCG.2020.3030353
10.1111/j.1467-8659.2012.03089.x
10.1109/TVCG.2006.57
10.1007/s10208-013-9145-0
10.1109/TVCG.2014.2346434
10.1109/TVCG.2014.2346403
10.1002/jcc.25181
10.1145/777842.777846
10.1109/IPDPS.2012.52
10.1109/TVCG.2011.284
10.1109/TVCG.2017.2743938
10.1007/s00454-003-2926-5
10.1109/TVCG.2018.2864848
10.1109/VIS47514.2020.00014
10.1111/cgf.12596
10.1016/j.gmod.2019.101023
10.1109/TPAMI.2011.95
10.1109/TVCG.2007.70603
10.1007/3-540-44676-1_3
10.1109/LDAV.2011.6092324
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2022.3174769
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 3887
ExternalDocumentID 35552135
10_1109_TVCG_2022_3174769
9773959
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Mindtree Chair research grant
– fundername: Swarnajayanti Fellowship
– fundername: Indian Institute of Science, Bangalore
  grantid: IoE Grant
– fundername: Department of Science and Technology
  grantid: DST/SJF/ETA-02/2015-16
  funderid: 10.13039/501100010218
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
5VS
AAYOK
AETIX
AGSQL
AI.
AIBXA
ALLEH
H~9
IFJZH
NPM
RIG
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-2575a4f06ddf6c5777b7f18a78cf63e0ed1233e02bc0eb53144faa0144b3d0e23
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001041912300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Thu Oct 02 10:11:46 EDT 2025
Sun Nov 09 06:16:06 EST 2025
Sun Apr 06 01:21:15 EDT 2025
Sat Nov 29 08:03:50 EST 2025
Tue Nov 18 20:49:21 EST 2025
Wed Aug 27 02:04:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-2575a4f06ddf6c5777b7f18a78cf63e0ed1233e02bc0eb53144faa0144b3d0e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1889-6821
0000-0002-7956-1470
PMID 35552135
PQID 2844894606
PQPubID 75741
PageCount 15
ParticipantIDs ieee_primary_9773959
proquest_miscellaneous_2664797563
crossref_primary_10_1109_TVCG_2022_3174769
pubmed_primary_35552135
crossref_citationtrail_10_1109_TVCG_2022_3174769
proquest_journals_2844894606
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
(ref4) 2020
ref15
ref37
forman (ref13) 2002; 48
ref14
ref36
ref31
ref30
ref11
ref10
ref32
(ref6) 2022
(ref2) 2020
ref17
ref39
ref16
ref38
ref19
shivashankar (ref35) 2017
ref18
(ref5) 2020
ref24
ref23
ref20
ref41
ref22
ref21
jaja (ref26) 1992
ref28
ref27
(ref3) 2020
ref29
ref8
ref7
(ref1) 2020
ref9
ref40
shivashankar (ref33) 2014
harris (ref25) 2007; 3
References_xml – start-page: 317
  year: 2017
  ident: ref35
  article-title: Efficient software for programmable visual analysis using Morse-Smale complexes
  publication-title: Topological Methods in Data Analysis and Visualization
– year: 2020
  ident: ref2
  article-title: cuSPARSE
– ident: ref16
  doi: 10.1007/s00371-012-0726-8
– ident: ref36
  doi: 10.1109/TVCG.2015.2452919
– ident: ref30
  doi: 10.1109/TVCG.2019.2934620
– ident: ref28
  doi: 10.1145/2145816.2145832
– year: 1992
  ident: ref26
  publication-title: An Introduction to Parallel Algorithms
– ident: ref41
  doi: 10.1145/567112.567114
– year: 2014
  ident: ref33
  article-title: Morse-smale complexes: Computation and applications
– ident: ref9
  doi: 10.1109/TPAMI.2014.2346172
– ident: ref12
  doi: 10.1109/SFCS.2000.892133
– ident: ref32
  doi: 10.1006/jcss.1995.1078
– ident: ref17
  doi: 10.1109/TVCG.2008.110
– ident: ref18
  doi: 10.1109/TVCG.2012.209
– ident: ref27
  doi: 10.1109/TVCG.2020.3030353
– ident: ref34
  doi: 10.1111/j.1467-8659.2012.03089.x
– volume: 48
  year: 2002
  ident: ref13
  article-title: A user's guide to discrete morse theory
  publication-title: Sém Lothar Combin
– ident: ref22
  doi: 10.1109/TVCG.2006.57
– ident: ref24
  doi: 10.1007/s10208-013-9145-0
– ident: ref21
  doi: 10.1109/TVCG.2014.2346434
– volume: 3
  start-page: 851
  year: 2007
  ident: ref25
  article-title: Parallel prefix sum (scan) with CUDA
  publication-title: GPU Gems
– ident: ref15
  doi: 10.1109/TVCG.2014.2346403
– ident: ref7
  doi: 10.1002/jcc.25181
– ident: ref10
  doi: 10.1145/777842.777846
– year: 2020
  ident: ref5
  article-title: Thrust
– ident: ref23
  doi: 10.1109/IPDPS.2012.52
– ident: ref37
  doi: 10.1109/TVCG.2011.284
– ident: ref39
  doi: 10.1109/TVCG.2017.2743938
– ident: ref11
  doi: 10.1007/s00454-003-2926-5
– ident: ref19
  doi: 10.1109/TVCG.2018.2864848
– year: 2020
  ident: ref1
  article-title: CUDA Zone
– ident: ref38
  doi: 10.1109/VIS47514.2020.00014
– ident: ref8
  doi: 10.1111/cgf.12596
– year: 2022
  ident: ref6
  article-title: gpustat
– ident: ref14
  doi: 10.1016/j.gmod.2019.101023
– ident: ref31
  doi: 10.1109/TPAMI.2011.95
– ident: ref20
  doi: 10.1109/TVCG.2007.70603
– ident: ref40
  doi: 10.1007/3-540-44676-1_3
– year: 2020
  ident: ref4
  article-title: Open scientific visualization datasets
– year: 2020
  ident: ref3
  article-title: MSComplex
– ident: ref29
  doi: 10.1109/LDAV.2011.6092324
SSID ssj0014489
Score 2.4098527
Snippet The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical points of a scalar function. It...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3873
SubjectTerms Algorithms
Computation
Critical point
GPU
Gradient flow
Graphics processing units
Indexes
Iterative algorithms
Iterative methods
Manifolds
morse-smale complex
Parallel algorithms
Parallel processing
Point pairs
Runtime
Saddles
Scalar field
shared memory parallel algorithm
Three-dimensional displays
Topology
Title A GPU Parallel Algorithm for Computing Morse-Smale Complexes
URI https://ieeexplore.ieee.org/document/9773959
https://www.ncbi.nlm.nih.gov/pubmed/35552135
https://www.proquest.com/docview/2844894606
https://www.proquest.com/docview/2664797563
Volume 29
WOSCitedRecordID wos001041912300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61VQ9wAEp5BEoVpJ4qQp3YsWOJS1XR9tJqpT60t8iOx1Bpu0HZ3ao_n7GTDRwAiVOsZPLQzFjfTMaeD-BAucZUXsrMqEJkhMeORlhmEplQLlcVchvJJtTlZTWd6skGfBr3wiBiXHyGn8Mw1vJd26zCr7IjilW4LvUmbCol-71aY8WA0gzdry9UWUFR-lDBzJk-ur49OaNMsCgoQaXoWYZOoQSzBFyR5O0XHEV-lb-HmhFyTp__38e-gGdDaJke976wAxs4fwlPf2s4uAtfjtOzyU06MV2gUCHZ2be2u1t-v08pdk17hgcSTC_aboHZ1T2hRzw7w0dcvIKb06_XJ-fZwJ-QNVzoZUazsTTCM-mcl02plLLK55VRVeMlR4aOYIuOhW0YWpqMQnhjgiotdwwL_hq25u0c30LqBValQcO1d4JLbWXhLeM2t7nJhc8TYGs11s3QXDxwXMzqmGQwXQcj1MEI9WCEBA7HW370nTX-JbwbNDwKDspNYG9tq3qYe4uaAJd8QVBmlsDH8TLNmlAKMXNsVyQjpVBalZIn8Ka38fjstWu8-_M738OTQDnfrzPbg61lt8IPsN08LO8W3T655rTaj675ExZF25Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQceJVHoECQOCHSOrFjxxKXqqItol2txBb1FtnxGCptNyi7i_j5jJ1s4ABInGIlk4dmxvpmMvZ8AK-Va0zlpcyMKkRGeOxohGUmkQnlclUht5FsQk0m1cWFnm7B23EvDCLGxWe4F4axlu_aZh1-le1TrMJ1qa_B9VKIgvW7tcaaASUaul9hqLKC4vShhpkzvT_7fHhMuWBRUIpK8bMMvUIJaAm6Is3bL0CKDCt_DzYj6Bzd_b_PvQd3huAyPei94T5s4eIB3P6t5eAOvDtIj6fn6dR0gUSFZOdf2u5y9fUqpeg17TkeSDA9a7slZp-uCD_i2Tn-wOVDOD96Pzs8yQYGhazhQq8ymo-lEZ5J57xsSqWUVT6vjKoaLzkydARcdCxsw9DSdBTCGxNUabljWPBHsL1oF_gEUi-wKg0arr0TXGorC28Zt7nNTS58ngDbqLFuhvbigeViXsc0g-k6GKEORqgHIyTwZrzlW99b41_CO0HDo-Cg3AR2N7aqh9m3rAlyyRcE5WYJvBov07wJxRCzwHZNMlIKpVUpeQKPexuPz964xtM_v_Ml3DyZnZ3Wpx8mH5_BrUBA368624XtVbfG53Cj-b66XHYvooP-BH9n3fU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GPU+Parallel+Algorithm+for+Computing+Morse-Smale+Complexes&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Subhash%2C+Varshini&rft.au=Pandey%2C+Karran&rft.au=Natarajan%2C+Vijay&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=29&rft.issue=9&rft.spage=3873&rft.epage=3887&rft_id=info:doi/10.1109%2FTVCG.2022.3174769&rft_id=info%3Apmid%2F35552135&rft.externalDocID=9773959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon