Domain Space Transfer Extreme Learning Machine for Domain Adaptation

Extreme learning machine (ELM) has been applied in a wide range of classification and regression problems due to its high accuracy and efficiency. However, ELM can only deal with cases where training and testing data are from identical distribution, while in real world situations, this assumption is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 49; číslo 5; s. 1909 - 1922
Hlavní autori: Chen, Yiming, Song, Shiji, Li, Shuang, Yang, Le, Wu, Cheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Extreme learning machine (ELM) has been applied in a wide range of classification and regression problems due to its high accuracy and efficiency. However, ELM can only deal with cases where training and testing data are from identical distribution, while in real world situations, this assumption is often violated. As a result, ELM performs poorly in domain adaptation problems, in which the training data (source domain) and testing data (target domain) are differently distributed but somehow related. In this paper, an ELM-based space learning algorithm, domain space transfer ELM (DST-ELM), is developed to deal with unsupervised domain adaptation problems. To be specific, through DST-ELM, the source and target data are reconstructed in a domain invariant space with target data labels unavailable. Two goals are achieved simultaneously. One is that, the target data are input into an ELM-based feature space learning network, and the output is supposed to approximate the input such that the target domain structural knowledge and the intrinsic discriminative information can be preserved as much as possible. The other one is that, the source data are projected into the same space as the target data and the distribution distance between the two domains is minimized in the space. This unsupervised feature transformation network is followed by an adaptive ELM classifier which is trained from the transferred labeled source samples, and is used for target data label prediction. Moreover, the ELMs in the proposed method, including both the space learning ELM and the classifier, require just a small number of hidden nodes, thus maintaining low computation complexity. Extensive experiments on real-world image and text datasets are conducted and verify that our approach outperforms several existing domain adaptation methods in terms of accuracy while maintaining high efficiency.
AbstractList Extreme learning machine (ELM) has been applied in a wide range of classification and regression problems due to its high accuracy and efficiency. However, ELM can only deal with cases where training and testing data are from identical distribution, while in real world situations, this assumption is often violated. As a result, ELM performs poorly in domain adaptation problems, in which the training data (source domain) and testing data (target domain) are differently distributed but somehow related. In this paper, an ELM-based space learning algorithm, domain space transfer ELM (DST-ELM), is developed to deal with unsupervised domain adaptation problems. To be specific, through DST-ELM, the source and target data are reconstructed in a domain invariant space with target data labels unavailable. Two goals are achieved simultaneously. One is that, the target data are input into an ELM-based feature space learning network, and the output is supposed to approximate the input such that the target domain structural knowledge and the intrinsic discriminative information can be preserved as much as possible. The other one is that, the source data are projected into the same space as the target data and the distribution distance between the two domains is minimized in the space. This unsupervised feature transformation network is followed by an adaptive ELM classifier which is trained from the transferred labeled source samples, and is used for target data label prediction. Moreover, the ELMs in the proposed method, including both the space learning ELM and the classifier, require just a small number of hidden nodes, thus maintaining low computation complexity. Extensive experiments on real-world image and text datasets are conducted and verify that our approach outperforms several existing domain adaptation methods in terms of accuracy while maintaining high efficiency.
Extreme learning machine (ELM) has been applied in a wide range of classification and regression problems due to its high accuracy and efficiency. However, ELM can only deal with cases where training and testing data are from identical distribution, while in real world situations, this assumption is often violated. As a result, ELM performs poorly in domain adaptation problems, in which the training data (source domain) and testing data (target domain) are differently distributed but somehow related. In this paper, an ELM-based space learning algorithm, domain space transfer ELM (DST-ELM), is developed to deal with unsupervised domain adaptation problems. To be specific, through DST-ELM, the source and target data are reconstructed in a domain invariant space with target data labels unavailable. Two goals are achieved simultaneously. One is that, the target data are input into an ELM-based feature space learning network, and the output is supposed to approximate the input such that the target domain structural knowledge and the intrinsic discriminative information can be preserved as much as possible. The other one is that, the source data are projected into the same space as the target data and the distribution distance between the two domains is minimized in the space. This unsupervised feature transformation network is followed by an adaptive ELM classifier which is trained from the transferred labeled source samples, and is used for target data label prediction. Moreover, the ELMs in the proposed method, including both the space learning ELM and the classifier, require just a small number of hidden nodes, thus maintaining low computation complexity. Extensive experiments on real-world image and text datasets are conducted and verify that our approach outperforms several existing domain adaptation methods in terms of accuracy while maintaining high efficiency.Extreme learning machine (ELM) has been applied in a wide range of classification and regression problems due to its high accuracy and efficiency. However, ELM can only deal with cases where training and testing data are from identical distribution, while in real world situations, this assumption is often violated. As a result, ELM performs poorly in domain adaptation problems, in which the training data (source domain) and testing data (target domain) are differently distributed but somehow related. In this paper, an ELM-based space learning algorithm, domain space transfer ELM (DST-ELM), is developed to deal with unsupervised domain adaptation problems. To be specific, through DST-ELM, the source and target data are reconstructed in a domain invariant space with target data labels unavailable. Two goals are achieved simultaneously. One is that, the target data are input into an ELM-based feature space learning network, and the output is supposed to approximate the input such that the target domain structural knowledge and the intrinsic discriminative information can be preserved as much as possible. The other one is that, the source data are projected into the same space as the target data and the distribution distance between the two domains is minimized in the space. This unsupervised feature transformation network is followed by an adaptive ELM classifier which is trained from the transferred labeled source samples, and is used for target data label prediction. Moreover, the ELMs in the proposed method, including both the space learning ELM and the classifier, require just a small number of hidden nodes, thus maintaining low computation complexity. Extensive experiments on real-world image and text datasets are conducted and verify that our approach outperforms several existing domain adaptation methods in terms of accuracy while maintaining high efficiency.
Author Chen, Yiming
Song, Shiji
Yang, Le
Wu, Cheng
Li, Shuang
Author_xml – sequence: 1
  givenname: Yiming
  orcidid: 0000-0002-8894-2902
  surname: Chen
  fullname: Chen, Yiming
  email: chenyimi15@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Shiji
  orcidid: 0000-0001-7361-9283
  surname: Song
  fullname: Song, Shiji
  email: shijis@mail.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Shuang
  orcidid: 0000-0003-1910-7812
  surname: Li
  fullname: Li, Shuang
  email: l-s12@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Le
  orcidid: 0000-0001-8379-4915
  surname: Yang
  fullname: Yang, Le
  email: yangle15@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Cheng
  orcidid: 0000-0002-8611-2665
  surname: Wu
  fullname: Wu, Cheng
  email: wuc@tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993853$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOAzEQRS0E4pkPQEhoJRqahLG9D7uE8JSCKAgFlTVxxmCU9QZ7I8Hfs1ECRQrcjItzRjNzD9h2aAIxdsxhwDnoi_Hw9WoggKuBULzUim-xfcFL1ReiKrb__mW1x3opfUD3Ok5ptcv2hNZaqkLus-vrpkYfsuc5WsrGEUNyFLObrzZSTdmIMAYf3rJHtO8-UOaamK2VyynOW2x9E47YjsNZot66HrKX25vx8L4_erp7GF6O-lbmuu0L6QCdnoopgANyQhYoiXgusCAOTilQjmxlC-zWkRqwBCzEhCaIeWWFPGTnq77z2HwuKLWm9snSbIaBmkUyAkolc1FA0aFnG-hHs4ihm84IrlQJoBV01OmaWkxqmpp59DXGb_N7nw6oVoCNTUqRnLF-tXMb0c8MB7MMwyzDMMswzDqMzuQb5m_z_5yTleOJ6I9XUuYKtPwBEgeSdw
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s10489_024_05376_3
crossref_primary_10_1007_s11432_020_3080_3
crossref_primary_10_3390_app13010481
crossref_primary_10_1016_j_ymssp_2021_108648
crossref_primary_10_1109_ACCESS_2020_3047448
crossref_primary_10_1109_TNNLS_2022_3151646
crossref_primary_10_1007_s13042_021_01339_z
crossref_primary_10_1109_TEVC_2023_3259067
crossref_primary_10_1016_j_patcog_2024_110538
crossref_primary_10_1109_TIP_2023_3261758
crossref_primary_10_1016_j_ecoinf_2023_102206
crossref_primary_10_3390_s23136102
crossref_primary_10_1007_s12652_020_01682_z
crossref_primary_10_1109_TSMC_2022_3188500
crossref_primary_10_1007_s11042_021_11007_7
crossref_primary_10_1016_j_knosys_2019_105161
crossref_primary_10_1109_JSTARS_2020_3001198
crossref_primary_10_1109_TNNLS_2019_2935384
crossref_primary_10_1109_TIE_2021_3066938
crossref_primary_10_1109_TIP_2022_3215889
crossref_primary_10_1109_TETC_2022_3210568
crossref_primary_10_1016_j_knosys_2025_113297
crossref_primary_10_1016_j_knosys_2022_109937
crossref_primary_10_1109_TCYB_2020_3036393
crossref_primary_10_1109_TMM_2020_3007340
crossref_primary_10_1007_s11063_024_11677_y
crossref_primary_10_1016_j_engappai_2020_103643
crossref_primary_10_1007_s13042_023_01947_x
crossref_primary_10_1109_TCYB_2019_2909480
crossref_primary_10_1109_TFUZZ_2019_2958299
crossref_primary_10_1007_s10489_021_02852_y
crossref_primary_10_1109_TCYB_2023_3338266
crossref_primary_10_1109_TIE_2022_3170631
crossref_primary_10_1109_TIM_2024_3406779
crossref_primary_10_1007_s10462_025_11160_7
crossref_primary_10_1016_j_knosys_2022_110233
crossref_primary_10_1109_TCYB_2019_2921559
crossref_primary_10_1109_TMM_2025_3535346
crossref_primary_10_1016_j_ins_2021_11_061
crossref_primary_10_1109_TIM_2020_3011584
crossref_primary_10_1016_j_asoc_2020_106756
crossref_primary_10_1109_TCYB_2020_3040763
crossref_primary_10_1109_TCYB_2021_3107292
crossref_primary_10_1109_JSEN_2025_3571483
crossref_primary_10_1016_j_knosys_2019_105222
crossref_primary_10_1109_JSEN_2021_3081923
crossref_primary_10_1109_TII_2019_2899118
crossref_primary_10_1016_j_patcog_2022_108638
crossref_primary_10_1109_TNNLS_2020_2995483
crossref_primary_10_1007_s11063_022_10967_7
crossref_primary_10_1109_TMECH_2021_3124415
crossref_primary_10_1007_s11042_019_08474_4
crossref_primary_10_1109_TGRS_2024_3400959
crossref_primary_10_1016_j_measurement_2024_116074
crossref_primary_10_1109_TIE_2020_2988229
crossref_primary_10_1109_TPAMI_2022_3163338
crossref_primary_10_1016_j_knosys_2022_109678
crossref_primary_10_1109_TIM_2024_3374295
crossref_primary_10_1016_j_neunet_2020_01_009
crossref_primary_10_1109_JSEN_2023_3305314
crossref_primary_10_1109_TGRS_2021_3070050
crossref_primary_10_1007_s00521_020_04719_8
crossref_primary_10_1016_j_isatra_2022_03_008
crossref_primary_10_1109_TCYB_2022_3196308
crossref_primary_10_1109_TCYB_2021_3049609
crossref_primary_10_1007_s11063_019_10075_z
crossref_primary_10_1016_j_neucom_2024_128734
crossref_primary_10_1016_j_eswa_2023_121822
crossref_primary_10_3390_math10091422
crossref_primary_10_1007_s10489_021_02385_4
crossref_primary_10_1109_TCYB_2021_3065247
crossref_primary_10_1109_TIM_2022_3160543
crossref_primary_10_1109_TIM_2023_3253897
crossref_primary_10_1109_JSEN_2023_3280202
crossref_primary_10_1109_TCYB_2021_3051005
crossref_primary_10_1109_TCYB_2021_3052536
crossref_primary_10_1109_TCYB_2020_2974106
Cites_doi 10.1007/978-3-642-15561-1_16
10.1007/s13042-015-0351-8
10.1016/j.neucom.2016.05.113
10.1016/j.neunet.2014.10.001
10.1109/TIP.2016.2516952
10.1109/TCYB.2016.2523538
10.3115/1610075.1610094
10.1109/TNN.2008.2005494
10.1109/TIP.2016.2598679
10.1007/s11263-014-0696-6
10.1109/TEVC.2002.805038
10.1109/ACII.2013.90
10.1109/TNNLS.2015.2424995
10.1145/1961189.1961199
10.1109/JBHI.2015.2425041
10.1007/s13042-016-0565-4
10.1007/978-3-319-28397-5_20
10.1109/TKDE.2009.191
10.1109/TCYB.2014.2307349
10.1109/ICCV.2013.398
10.1109/TKDE.2014.2373376
10.1109/TFUZZ.2014.2371479
10.1007/s12293-016-0188-z
10.1109/TCYB.2015.2492468
10.1016/j.neucom.2015.01.096
10.1109/TNNLS.2016.2538282
10.1109/TCYB.2013.2272399
10.1109/TKDE.2009.126
10.1109/TNN.2010.2091281
10.1007/s13042-016-0569-0
10.1109/TCYB.2015.2502483
10.1016/j.neucom.2005.12.126
10.1109/TSMCB.2011.2168604
10.1109/TSMC.2015.2406855
10.1109/ICCV.2013.274
10.1109/CVPR.2011.5995347
10.1109/TNN.2006.875977
10.1109/CVPR.2014.183
10.1109/ICCV.2013.368
10.1109/TIM.2014.2367775
10.1007/s13042-016-0509-z
10.1016/j.neucom.2017.08.040
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2018.2816981
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Aerospace Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1922
ExternalDocumentID 29993853
10_1109_TCYB_2018_2816981
8334809
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41427806; 61273233
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program
  grantid: 2016YFB1200203
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-23f0af9d2d00f0ef235a3ee142a5e10f8808fec7c5a981390a60a52bebaa47c23
IEDL.DBID RIE
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460667400030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 15:32:21 EDT 2025
Mon Jun 30 04:43:15 EDT 2025
Thu Jan 02 23:02:01 EST 2025
Sat Nov 29 02:02:25 EST 2025
Tue Nov 18 22:23:59 EST 2025
Wed Aug 27 02:51:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-23f0af9d2d00f0ef235a3ee142a5e10f8808fec7c5a981390a60a52bebaa47c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8894-2902
0000-0001-8379-4915
0000-0003-1910-7812
0000-0001-7361-9283
0000-0002-8611-2665
PMID 29993853
PQID 2188600980
PQPubID 85422
PageCount 14
ParticipantIDs ieee_primary_8334809
proquest_journals_2188600980
crossref_citationtrail_10_1109_TCYB_2018_2816981
pubmed_primary_29993853
crossref_primary_10_1109_TCYB_2018_2816981
proquest_miscellaneous_2068342505
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
kasun (ref46) 2013; 28
ref55
ref11
ref17
ref18
donahue (ref57) 2014; 32
bergamo (ref10) 2010
ref51
ref50
saenko (ref52) 2010
ref45
ref47
ref42
ref41
ref43
huang (ref27) 2004; 2
ref8
ref7
jhuo (ref16) 2012
ref9
ref4
griffin (ref54) 2007
ref3
ref40
gong (ref53) 2012
ref35
ref37
ref36
zhang (ref34) 2016
gretton (ref48) 2007; 19
chen (ref44) 2015; 16
ref31
blitzer (ref5) 2007; 7
ref30
ref33
ref32
ref1
ref39
ref38
li (ref49) 0
ref24
ref26
ref25
ref20
ref22
cawley (ref2) 2010; 11
ref21
krizhevsky (ref23) 2012
ref28
ref29
duan (ref6) 2009
huang (ref19) 2007; 19
References_xml – start-page: 213
  year: 2010
  ident: ref52
  article-title: Adapting visual category models to new domains
  publication-title: Computer Vision-ECCV 2010
  doi: 10.1007/978-3-642-15561-1_16
– ident: ref47
  doi: 10.1007/s13042-015-0351-8
– ident: ref39
  doi: 10.1016/j.neucom.2016.05.113
– ident: ref29
  doi: 10.1016/j.neunet.2014.10.001
– ident: ref18
  doi: 10.1109/TIP.2016.2516952
– ident: ref42
  doi: 10.1109/TCYB.2016.2523538
– ident: ref4
  doi: 10.3115/1610075.1610094
– ident: ref9
  doi: 10.1109/TNN.2008.2005494
– ident: ref41
  doi: 10.1109/TIP.2016.2598679
– ident: ref17
  doi: 10.1007/s11263-014-0696-6
– ident: ref1
  doi: 10.1109/TEVC.2002.805038
– ident: ref45
  doi: 10.1109/ACII.2013.90
– ident: ref35
  doi: 10.1109/TNNLS.2015.2424995
– volume: 2
  start-page: 985
  year: 2004
  ident: ref27
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
  publication-title: Proc IEEE Int Joint Conf Neural Netw
– year: 0
  ident: ref49
  article-title: Cross-domain extreme learning machines for domain adaptation
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: ref56
  doi: 10.1145/1961189.1961199
– start-page: 1375
  year: 2009
  ident: ref6
  article-title: Domain transfer SVM for video concept detection
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref25
  doi: 10.1109/JBHI.2015.2425041
– ident: ref22
  doi: 10.1007/s13042-016-0565-4
– volume: 19
  start-page: 601
  year: 2007
  ident: ref19
  article-title: Correcting sample selection bias by unlabeled data
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 249
  year: 2016
  ident: ref34
  article-title: SVM and ELM: Who wins? Object recognition with deep convolutional features from ImageNet
  publication-title: Proceedings of ELM-2015 Volume 1
  doi: 10.1007/978-3-319-28397-5_20
– ident: ref7
  doi: 10.1109/TKDE.2009.191
– start-page: 181
  year: 2010
  ident: ref10
  article-title: Exploiting weakly-labeled Web images to improve object classification: A domain adaptation approach
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 11
  start-page: 2079
  year: 2010
  ident: ref2
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J Mach Learn Res
– ident: ref38
  doi: 10.1109/TCYB.2014.2307349
– ident: ref50
  doi: 10.1109/ICCV.2013.398
– ident: ref55
  doi: 10.1109/TKDE.2014.2373376
– ident: ref3
  doi: 10.1109/TFUZZ.2014.2371479
– ident: ref43
  doi: 10.1007/s12293-016-0188-z
– volume: 7
  start-page: 440
  year: 2007
  ident: ref5
  article-title: Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
  publication-title: Proc ACL
– ident: ref36
  doi: 10.1109/TCYB.2015.2492468
– ident: ref30
  doi: 10.1016/j.neucom.2015.01.096
– ident: ref20
  doi: 10.1109/TNNLS.2016.2538282
– volume: 28
  start-page: 31
  year: 2013
  ident: ref46
  article-title: Representational learning with ELMs for big data
  publication-title: IEEE Intell Syst
– ident: ref21
  doi: 10.1109/TCYB.2013.2272399
– ident: ref51
  doi: 10.1109/TKDE.2009.126
– ident: ref11
  doi: 10.1109/TNN.2010.2091281
– ident: ref26
  doi: 10.1007/s13042-016-0569-0
– start-page: 1097
  year: 2012
  ident: ref23
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref14
  doi: 10.1109/TCYB.2015.2502483
– ident: ref28
  doi: 10.1016/j.neucom.2005.12.126
– start-page: 2168
  year: 2012
  ident: ref16
  article-title: Robust visual domain adaptation with low-rank reconstruction
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref33
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref24
  doi: 10.1109/TSMC.2015.2406855
– ident: ref12
  doi: 10.1109/ICCV.2013.274
– start-page: 2066
  year: 2012
  ident: ref53
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref8
  doi: 10.1109/CVPR.2011.5995347
– ident: ref31
  doi: 10.1109/TNN.2006.875977
– volume: 19
  start-page: 513
  year: 2007
  ident: ref48
  article-title: A kernel method for the two-sample-problem
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 16
  start-page: 3849
  year: 2015
  ident: ref44
  article-title: Marginalizing stacked linear denoising autoencoders
  publication-title: J Mach Learn Res
– volume: 32
  start-page: 647
  year: 2014
  ident: ref57
  article-title: DeCAF: A deep convolutional activation feature for generic visual recognition
  publication-title: Proc ICML
– ident: ref13
  doi: 10.1109/CVPR.2014.183
– ident: ref15
  doi: 10.1109/ICCV.2013.368
– ident: ref40
  doi: 10.1109/TIM.2014.2367775
– ident: ref37
  doi: 10.1007/s13042-016-0509-z
– year: 2007
  ident: ref54
  article-title: Caltech-256 object category dataset
– ident: ref32
  doi: 10.1016/j.neucom.2017.08.040
SSID ssj0000816898
Score 2.5237172
Snippet Extreme learning machine (ELM) has been applied in a wide range of classification and regression problems due to its high accuracy and efficiency. However, ELM...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1909
SubjectTerms Adaptation
Adaptation models
Algorithms
Classifiers
Distributed databases
Domain adaptation
Domains
extreme learning machine (ELM)
Image reconstruction
Machine learning
maximum mean discrepancy (MMD)
Neural networks
space learning
Task analysis
Testing
Training
Title Domain Space Transfer Extreme Learning Machine for Domain Adaptation
URI https://ieeexplore.ieee.org/document/8334809
https://www.ncbi.nlm.nih.gov/pubmed/29993853
https://www.proquest.com/docview/2188600980
https://www.proquest.com/docview/2068342505
Volume 49
WOSCitedRecordID wos000460667400030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7S0EMubdKkjZs0qJBDW-KsLNmWdMyTXhoCTWF7Mlp5VAKNN-yj9OdnJGsNgSbQm8Aj2cw3Y400L4BD1VYolee5r73Ky1rzfOIqk3NfeG4r2wrnYrMJdXWlx2NzvQZHQy4MIsbgMzwOw-jLb6duGa7KRjqkjYZsvRdK1X2u1nCfEhtIxNa3ggY5WRUqOTELbkY3Zz9PQxyXPhZEZ3RoEEM_YiN1JR_tSLHFytPWZtx1Ll__3_duwqtkXbKTXhy2YA27N7CV9HfOPqUi05-34fx8emdvO_adzszI4o7lccYu_i7ChSFLZVd_sW8x2BIZ2bYsTTlp7X3vwN-BH5cXN2df89RRIXeyNItcSALAm1a0nHuOXsjKSsSiFLbCgntSZu3RKVdZ4pE03NYEmJjgxNpSOSHfwno37XAXmLJtYZXRztDSrXJ08EJHtOhCtqsrMuArrjYulRsPXS9-N_HYwU0TMGkCJk3CJIMvw5T7vtbGc8TbgeEDYeJ1Bvsr6JqkjfOGzBhdh8qpPIOPw2PSo-AcsR1Ol0TDay3LYBBm8K6HfFh7JSnv__3OPdigLzN9GOQ-rC9mS_wAL92fxe18dkDCOtYHUVgfAMiG4ds
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KK-hLa63W1VYj-KDittlkd5M89pOK7SF4Qn1actmJFOpeuQ_xz3eSzS0IKvgWyCQbZjKbSebjB_BatRVK5Xnua6_ystY8n7jK5NwXntvKtsK5CDahRiN9fW0-rcH7IRcGEWPwGR6EZvTlt1O3DE9lhzqkjYZsvY2AnJWytYYXlQghEcFvBTVysitUcmMW3ByOT74eh0gufSCIzugAEUO_YiN1JX87kyLIyt_tzXjunG_934ofwmayL9lRvyG2YQ27R7CdNHjO3qQy02934PR0-t3edOwz3ZqRxTPL44yd_VyEJ0OWCq9-Y1cx3BIZWbcsDTlq7V3vwn8MX87PxicXecJUyJ0szSIXkkTgTStazj1HL2RlJWJRClthwT2ps_bolKss8UgabmsSmZjgxNpSOSGfwHo37fApMGXbwiqjnaGpW-Xo6oWOaNGFfFdXZMBXXG1cKjgecC9um3jx4KYJMmmCTJokkwzeDUPu-mob_yLeCQwfCBOvM9hbia5J-jhvyJDRdaidyjN4NXSTJgX3iO1wuiQaXmtZBpMwg91e5MPcq53y7M_ffAn3L8ZXl83lh9HH5_CAVmn6oMg9WF_MlrgP99yPxc189iJu2V9j1uQ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Space+Transfer+Extreme+Learning+Machine+for+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Chen%2C+Yiming&rft.au=Song%2C+Shiji&rft.au=Li%2C+Shuang&rft.au=Yang%2C+Le&rft.date=2019-05-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=49&rft.issue=5&rft.spage=1909&rft_id=info:doi/10.1109%2FTCYB.2018.2816981&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon