A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperatures
•Residual fracture properties of CACC were obtained at different temperatures.•Microsturctural changes of CACC were conducted.•Residual Mechanical property of CACC were obtained.•The fracture energy of CACC increased as the temperature rise to 400 °C.•Comparison between properties of CACC and other...
Gespeichert in:
| Veröffentlicht in: | Engineering fracture mechanics Jg. 261; S. 108221 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
15.02.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0013-7944, 1873-7315 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Residual fracture properties of CACC were obtained at different temperatures.•Microsturctural changes of CACC were conducted.•Residual Mechanical property of CACC were obtained.•The fracture energy of CACC increased as the temperature rise to 400 °C.•Comparison between properties of CACC and other type of concretes subjected to elevated temperatures were reported.
In this study, a comprehensive experimental program was developed to determine the microstructural, mechanical, and fracture features of calcium aluminate cement concrete (CACC) after exposure to high temperatures. The residual fracture parameters, including fracture toughness, fracture energy, and characteristic length, were obtained based on RILEM recommendations. In addition, XRD and SEM were used to evaluate microstructural changes after exposure to different temperatures. Mechanical properties such as the residual compressive, tensile, and flexural strengths, as well as the elastic modulus, were also assessed. The SEM images revealed that the voids among the particles increased due to increasing internal vapor pressure, indicating that the number of pores in the concrete structure increased. Furthermore, the results showed that after subjecting the specimens to high temperatures, the concrete became more ductile, which may be due to the increase in the number of pores after water evaporation. The residual fracture energy of CACC was observed to increase with increasing temperature. However, the residual fracture toughness and flexural strength decreased as temperatures increased. In addition, the results demonstrated that, above 400 °C, the weight loss in the concrete is mainly due to the evaporation of chemically bound water and decomposition of cement hydration compounds, which are chemical processes. |
|---|---|
| AbstractList | •Residual fracture properties of CACC were obtained at different temperatures.•Microsturctural changes of CACC were conducted.•Residual Mechanical property of CACC were obtained.•The fracture energy of CACC increased as the temperature rise to 400 °C.•Comparison between properties of CACC and other type of concretes subjected to elevated temperatures were reported.
In this study, a comprehensive experimental program was developed to determine the microstructural, mechanical, and fracture features of calcium aluminate cement concrete (CACC) after exposure to high temperatures. The residual fracture parameters, including fracture toughness, fracture energy, and characteristic length, were obtained based on RILEM recommendations. In addition, XRD and SEM were used to evaluate microstructural changes after exposure to different temperatures. Mechanical properties such as the residual compressive, tensile, and flexural strengths, as well as the elastic modulus, were also assessed. The SEM images revealed that the voids among the particles increased due to increasing internal vapor pressure, indicating that the number of pores in the concrete structure increased. Furthermore, the results showed that after subjecting the specimens to high temperatures, the concrete became more ductile, which may be due to the increase in the number of pores after water evaporation. The residual fracture energy of CACC was observed to increase with increasing temperature. However, the residual fracture toughness and flexural strength decreased as temperatures increased. In addition, the results demonstrated that, above 400 °C, the weight loss in the concrete is mainly due to the evaporation of chemically bound water and decomposition of cement hydration compounds, which are chemical processes. In this study, a comprehensive experimental program was developed to determine the microstructural, mechanical, and fracture features of calcium aluminate cement concrete (CACC) after exposure to high temperatures. The residual fracture parameters, including fracture toughness, fracture energy, and characteristic length, were obtained based on RILEM recommendations. In addition, XRD and SEM were used to evaluate microstructural changes after exposure to different temperatures. Mechanical properties such as the residual compressive, tensile, and flexural strengths, as well as the elastic modulus, were also assessed. The SEM images revealed that the voids among the particles increased due to increasing internal vapor pressure, indicating that the number of pores in the concrete structure increased. Furthermore, the results showed that after subjecting the specimens to high temperatures, the concrete became more ductile, which may be due to the increase in the number of pores after water evaporation. The residual fracture energy of CACC was observed to increase with increasing temperature. However, the residual fracture toughness and flexural strength decreased as temperatures increased. In addition, the results demonstrated that, above 400 °C, the weight loss in the concrete is mainly due to the evaporation of chemically bound water and decomposition of cement hydration compounds, which are chemical processes. |
| ArticleNumber | 108221 |
| Author | Abolhasani, Amirmohamad Shakouri, Mahmoud Samali, Bijan Banihashemi, Saeed Dehestani, Mehdi |
| Author_xml | – sequence: 1 givenname: Amirmohamad orcidid: 0000-0003-4848-0050 surname: Abolhasani fullname: Abolhasani, Amirmohamad email: amirmabolhasani@nit.ac.ir organization: Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran – sequence: 2 givenname: Mahmoud surname: Shakouri fullname: Shakouri, Mahmoud email: mahmoud.shakouri@colostate.edu organization: Department of Construction Management, Colorado State University, Fort Collins, CO 80523, USA – sequence: 3 givenname: Mehdi orcidid: 0000-0001-9609-4512 surname: Dehestani fullname: Dehestani, Mehdi email: dehestani@nit.ac.ir organization: Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran – sequence: 4 givenname: Bijan surname: Samali fullname: Samali, Bijan email: b.samali@uws.edu.au organization: Centre for Infrastructure Engineering, School of Engineering, Western Sydney University, NSW, Australia – sequence: 5 givenname: Saeed orcidid: 0000-0002-7438-1235 surname: Banihashemi fullname: Banihashemi, Saeed email: saeed.banihashemi@canberra.edu.au organization: Department of Building and Construction Management, University of Canberra, Canberra, Australia |
| BookMark | eNqNkd1q3DAQhUVIoZu076CQ2-5GP17_XJWwNEkh0Jv2WmjHo7UWW3IleUkeKW8ZuS409CpXkg4z3xnNuSDnzjsk5IqzDWe8vDlu0B1M0DAgdBvBBM96LQQ_IyteV3JdSb49JyvGeL43RfGRXMR4ZIxVZc1W5OWWgh_GgB26aE9I8aT7SSfrHfWGzuQ0BaTJT4fOYYxf_mnoMByes9Dj0xR0T2MKeZrUUe1aOlgIPivTUpxhoHuw00CzwWCdTkgBB3QpT-AgYH7j0-gjttmNdvbQ0YTDiEHPgPiJfDC6j_j573lJft19-7l7WD_-uP--u31cgyyatBayqlupmUEwjFdQ7I0RWjZ71jSs0qZo95LputVgtlwWQmxLtt2bUhpRFxKMvCTXC3cM_veEMamjn4LLlkqUsql4LSuRq5qlav5kDGjUGOygw7PiTM3JqKN6k4yak1FLMrn363-9YNOflaegbf8uwm4hYF7EyWJQESw6wNYGhKRab99BeQUBCbna |
| CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2022_128875 crossref_primary_10_1016_j_conbuildmat_2023_131803 crossref_primary_10_1016_j_ijrmms_2022_105265 crossref_primary_10_61186_JCER_7_1_62 crossref_primary_10_1016_j_conbuildmat_2023_133909 crossref_primary_10_1016_j_engfracmech_2023_109596 crossref_primary_10_1016_j_jobe_2024_109067 crossref_primary_10_1007_s12008_023_01596_y crossref_primary_10_1016_j_conbuildmat_2025_143277 crossref_primary_10_1016_j_jobe_2025_112015 crossref_primary_10_1016_j_conbuildmat_2024_136515 crossref_primary_10_1002_suco_202201026 crossref_primary_10_1016_j_istruc_2025_109928 crossref_primary_10_1016_j_jeurceramsoc_2024_02_035 crossref_primary_10_1016_j_rineng_2025_106375 crossref_primary_10_1061_JMCEE7_MTENG_18459 crossref_primary_10_3390_su14021012 crossref_primary_10_1016_j_conbuildmat_2024_135697 crossref_primary_10_1007_s10694_024_01557_1 crossref_primary_10_1007_s40996_024_01581_9 crossref_primary_10_1016_j_jallcom_2024_177544 crossref_primary_10_1016_j_tafmec_2025_104896 crossref_primary_10_1155_2023_8005622 crossref_primary_10_1016_j_conbuildmat_2022_126845 crossref_primary_10_1016_j_jobe_2022_105637 crossref_primary_10_1680_jadcr_21_00053 crossref_primary_10_1016_j_scp_2025_102026 crossref_primary_10_1016_j_rineng_2024_101821 crossref_primary_10_1016_j_ceramint_2025_07_084 crossref_primary_10_1016_j_conbuildmat_2022_128548 crossref_primary_10_1016_j_jobe_2024_110980 crossref_primary_10_1016_j_ceramint_2022_12_220 crossref_primary_10_1617_s11527_024_02497_6 crossref_primary_10_1007_s41024_024_00558_5 crossref_primary_10_1016_j_jeurceramsoc_2024_117047 crossref_primary_10_3390_buildings12060729 crossref_primary_10_1016_j_cemconcomp_2024_105643 crossref_primary_10_1016_j_cscm_2022_e01608 crossref_primary_10_1016_j_asej_2025_103680 crossref_primary_10_3390_ma17122916 crossref_primary_10_1016_j_cscm_2022_e01105 crossref_primary_10_1016_j_conbuildmat_2023_131280 |
| Cites_doi | 10.1007/BF00375272 10.3390/ma14143855 10.1016/j.conbuildmat.2012.09.071 10.1016/j.firesaf.2005.11.001 10.1016/0008-8846(76)90007-7 10.1201/9781482288872 10.1016/S0008-8846(97)00100-2 10.1016/j.cemconres.2013.04.003 10.1016/j.engfracmech.2020.107446 10.12989/acc.2014.2.2.145 10.1016/j.cemconres.2009.08.001 10.1016/j.proeng.2011.07.105 10.1080/17436753.2021.1889755 10.1016/j.tafmec.2005.11.007 10.1016/j.conbuildmat.2015.07.023 10.1617/s11527-012-9823-4 10.1061/(ASCE)MT.1943-5533.0002491 10.1016/S0008-8846(99)00103-9 10.1016/j.firesaf.2011.07.010 10.1016/j.cemconres.2009.09.005 10.1007/BF02480828 10.1061/(ASCE)0899-1561(2003)15:2(101) 10.1007/BF02472416 10.1680/macr.2008.00084 10.1007/BF02486347 10.1007/BF02480689 10.1680/macr.2006.58.5.277 10.1016/j.cemconres.2004.05.023 10.1016/j.tafmec.2020.102690 10.1680/macr.2000.52.2.123 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Feb 15, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Feb 15, 2022 |
| DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
| DOI | 10.1016/j.engfracmech.2021.108221 |
| DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7315 |
| ExternalDocumentID | 10_1016_j_engfracmech_2021_108221 S0013794421006226 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW VH1 WUQ ZY4 ~HD 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
| ID | FETCH-LOGICAL-c349t-2378d3a0fecf017c4bff2a39b09907af4db30a8dacf5134225605bf63f2843cf3 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782610800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-7944 |
| IngestDate | Sun Nov 09 08:09:16 EST 2025 Tue Nov 18 21:01:22 EST 2025 Sat Nov 29 07:30:21 EST 2025 Fri Feb 23 02:43:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Calcium aluminate cement Brittleness Microstructure High temperatures Fracture energy Fracture toughness |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-2378d3a0fecf017c4bff2a39b09907af4db30a8dacf5134225605bf63f2843cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4848-0050 0000-0001-9609-4512 0000-0002-7438-1235 |
| PQID | 2639718372 |
| PQPubID | 2045482 |
| ParticipantIDs | proquest_journals_2639718372 crossref_primary_10_1016_j_engfracmech_2021_108221 crossref_citationtrail_10_1016_j_engfracmech_2021_108221 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2021_108221 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-15 |
| PublicationDateYYYYMMDD | 2022-02-15 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Engineering fracture mechanics |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Hillerborg, Modéer, Petersson (b0155) 1976; 6 Abolhasani, Nazarpour, Dehestani (b0055) 2020 Sakr, EL-Hakim (b0195) 2005; 35 Saemann, Washa (b0005) 1957; 54 Baker (b0025) 1996; 29 Ríos, Cifuentes, Leiva, García, Alba (b0255) 2018; 30 ASTM C. Standard specification for concrete aggregates. Philadelphia, PA Am. Soc. Test. Mater.; 2003. Kodur, Sultan (b0215) 2003; 15 Bazant, Prat (b0035) 1988; 85 Phan, Carino (b0165) 2002; 99 Fares, Noumowe, Remond (b0200) 2009; 39 Nielsen, Biéanić (b0040) 2003; 36 Rilem TC. 187-SOC,” Exp. Determ. Stress. Open. curve Concr. Tens. Final Rep.; 2007. George C. Industrial Aluminous Cements. In Barnes P, editor, Structure and performance of cements, S. 415 ff. Applied Science Publishers; 1983. Watanabe, Bangi, Horiguchi (b0235) 2013; 51 Prokopski (b0080) 1995; 30 Jueshi, Hui (b0135) 1997; 27 Khaliq W. Performance characterization of high performance concretes under fire conditions, vol. 73(no. 09); 2012. Kowalski (b0265) 2010; 3 Yu, Yu, Lu (b0250) 2012; 45 Dias, Khoury, Sullivan (b0010) 1990; 87 Mehta, Monteiro (b0170) 2006 ACI 446.1 R-91. Fracture Mechanics of Concrete: Concepts, Models and Determination of Material Properties. Reported. Astm (b0160) 2002; 4 Khaliq, Khan (b0075) 2015; 94 Zhang, Ye, Koenders (b0120) 2013; 38 Scrivener, Cabiron, Letourneux (b0185) 1999; 29 Zhang, Bicanic, Pearce, Balabanic (b0230) 2000; 52 Zhang, Bicanic (b0245) 2006; 58 Committee (b0125) 2004 Zhang, Ju (b0045) 2005; 35 ASTM C. 143: Standard test method for slump of hydraulic cement concrete. ASTM Int.; 2003. Rilem (b0030) 1985; 18 Xiao, Xie, Zhang (b0190) 2006; 41 Tang, Lo (b0225) 2009; 61 Zhang, Ye (b0115) 2011; 14 Abolhasani, Aslani, Samali, Ghaffar, Fallahnejad, Banihashemi (b0060) 2021; 120 Abolhasani, Samali, Aslani (b0070) 2021; 14 ASTM A. “C496/C496M-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2004.”; 2011. Prokopski (b0100) 1995; 30 Li, Guo (b0210) 1993; 14 Elices, Guinea, Planas (b0145) 1997; 30 Hillerborg (b0140) 1985; 18 Zhang (b0015) 2011; 46 Ukrainczyk, Matusinović (b0020) 2010; 40 Bazzant, Planas (b0130) 1998 Zhang, Cullen, Kilpatrick (b0240) 2014; 2 Menou, Mounajed, Boussa, Pineaud, Carre (b0050) 2006; 45 Jefferis SA, Mangabhai RJ. Effect of temperature rise on properties of high alumina cement grout. In Calcium Aluminate Cements. Chapman and Hall London; 1990, p. 363. BS EN. Testing hardened concrete. Method of determination of compressive strength of concrete cubes. BS EN 12390 Part, vol. 3; 2000. Astm (b0110) 2010; 100 Pk M, Monteiro PJM. Concrete: Structure, Properties and Materials. Englewood Cliffs: Prentice-Hall; 1993. Abolhasani, Nazarpour, Dehestani (b0065) 2021; 242 10.1016/j.engfracmech.2021.108221_b0150 Prokopski (10.1016/j.engfracmech.2021.108221_b0100) 1995; 30 Astm (10.1016/j.engfracmech.2021.108221_b0160) 2002; 4 Abolhasani (10.1016/j.engfracmech.2021.108221_b0055) 2020 Ríos (10.1016/j.engfracmech.2021.108221_b0255) 2018; 30 Rilem (10.1016/j.engfracmech.2021.108221_b0030) 1985; 18 Xiao (10.1016/j.engfracmech.2021.108221_b0190) 2006; 41 Kowalski (10.1016/j.engfracmech.2021.108221_b0265) 2010; 3 Dias (10.1016/j.engfracmech.2021.108221_b0010) 1990; 87 Zhang (10.1016/j.engfracmech.2021.108221_b0115) 2011; 14 Abolhasani (10.1016/j.engfracmech.2021.108221_b0070) 2021; 14 Prokopski (10.1016/j.engfracmech.2021.108221_b0080) 1995; 30 Elices (10.1016/j.engfracmech.2021.108221_b0145) 1997; 30 Yu (10.1016/j.engfracmech.2021.108221_b0250) 2012; 45 Fares (10.1016/j.engfracmech.2021.108221_b0200) 2009; 39 10.1016/j.engfracmech.2021.108221_b0260 10.1016/j.engfracmech.2021.108221_b0180 Kodur (10.1016/j.engfracmech.2021.108221_b0215) 2003; 15 10.1016/j.engfracmech.2021.108221_b0220 Khaliq (10.1016/j.engfracmech.2021.108221_b0075) 2015; 94 Li (10.1016/j.engfracmech.2021.108221_b0210) 1993; 14 10.1016/j.engfracmech.2021.108221_b0105 Committee (10.1016/j.engfracmech.2021.108221_b0125) 2004 Zhang (10.1016/j.engfracmech.2021.108221_b0015) 2011; 46 Hillerborg (10.1016/j.engfracmech.2021.108221_b0155) 1976; 6 Saemann (10.1016/j.engfracmech.2021.108221_b0005) 1957; 54 Bazzant (10.1016/j.engfracmech.2021.108221_b0130) 1998 Abolhasani (10.1016/j.engfracmech.2021.108221_b0060) 2021; 120 10.1016/j.engfracmech.2021.108221_b0095 Mehta (10.1016/j.engfracmech.2021.108221_b0170) 2006 10.1016/j.engfracmech.2021.108221_b0175 Zhang (10.1016/j.engfracmech.2021.108221_b0045) 2005; 35 Watanabe (10.1016/j.engfracmech.2021.108221_b0235) 2013; 51 Baker (10.1016/j.engfracmech.2021.108221_b0025) 1996; 29 Astm (10.1016/j.engfracmech.2021.108221_b0110) 2010; 100 Zhang (10.1016/j.engfracmech.2021.108221_b0230) 2000; 52 Ukrainczyk (10.1016/j.engfracmech.2021.108221_b0020) 2010; 40 Menou (10.1016/j.engfracmech.2021.108221_b0050) 2006; 45 Hillerborg (10.1016/j.engfracmech.2021.108221_b0140) 1985; 18 10.1016/j.engfracmech.2021.108221_b0085 Zhang (10.1016/j.engfracmech.2021.108221_b0120) 2013; 38 Nielsen (10.1016/j.engfracmech.2021.108221_b0040) 2003; 36 Abolhasani (10.1016/j.engfracmech.2021.108221_b0065) 2021; 242 Jueshi (10.1016/j.engfracmech.2021.108221_b0135) 1997; 27 10.1016/j.engfracmech.2021.108221_b0205 Phan (10.1016/j.engfracmech.2021.108221_b0165) 2002; 99 Bazant (10.1016/j.engfracmech.2021.108221_b0035) 1988; 85 Zhang (10.1016/j.engfracmech.2021.108221_b0245) 2006; 58 Scrivener (10.1016/j.engfracmech.2021.108221_b0185) 1999; 29 Sakr (10.1016/j.engfracmech.2021.108221_b0195) 2005; 35 Tang (10.1016/j.engfracmech.2021.108221_b0225) 2009; 61 Zhang (10.1016/j.engfracmech.2021.108221_b0240) 2014; 2 10.1016/j.engfracmech.2021.108221_b0090 |
| References_xml | – volume: 29 start-page: 383 year: 1996 end-page: 388 ident: b0025 article-title: The effect of exposure to elevated temperatures on the fracture energy of plain concrete publication-title: Mater Struct – volume: 29 start-page: 1215 year: 1999 end-page: 1223 ident: b0185 article-title: High-performance concretes from calcium aluminate cements publication-title: Cem Concr Res – volume: 38 start-page: 1040 year: 2013 end-page: 1050 ident: b0120 article-title: Investigation of the structure of heated Portland cement paste by using various techniques publication-title: Constr Build Mater – volume: 61 start-page: 323 year: 2009 end-page: 330 ident: b0225 article-title: Mechanical and fracture properties of normal-and high-strength concretes with fly ash after exposure to high temperatures publication-title: Mag Concr Res – volume: 2 start-page: 145 year: 2014 ident: b0240 article-title: Fracture toughness of high performance concrete subjected Residual fracture properties of normal-and high-strength concrete subject to elevated temperaturesto elevated temperatures Part 1 The effects of heating temperatures and testing conditions (hot and publication-title: Adv Concr Constr – volume: 39 start-page: 1230 year: 2009 end-page: 1238 ident: b0200 article-title: Self-consolidating concrete subjected to high temperature: mechanical and physicochemical properties publication-title: Cem Concr Res – volume: 87 start-page: 160 year: 1990 end-page: 166 ident: b0010 article-title: Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F) publication-title: Mater J – start-page: 41 year: 2006 end-page: 80 ident: b0170 article-title: Microstructure and properties of hardened concrete publication-title: Concr Microstruct Prop Mater – volume: 30 start-page: 1609 year: 1995 end-page: 1612 ident: b0080 article-title: Fracture toughness of concretes at high temperature publication-title: J Mater Sci – reference: BS EN. Testing hardened concrete. Method of determination of compressive strength of concrete cubes. BS EN 12390 Part, vol. 3; 2000. – volume: 46 start-page: 543 year: 2011 end-page: 549 ident: b0015 article-title: Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures publication-title: Fire Saf J – volume: 36 start-page: 515 year: 2003 end-page: 521 ident: b0040 article-title: Residual fracture energy of high-performance and normal concrete subject to high temperatures publication-title: Mater Struct – volume: 94 start-page: 475 year: 2015 end-page: 487 ident: b0075 article-title: High temperature material properties of calcium aluminate cement concrete publication-title: Constr Build Mater – volume: 14 start-page: 8 year: 1993 end-page: 16 ident: b0210 article-title: Experimental research on the strength and deformation properties of concrete exposed to high temperature publication-title: J Build Struct – volume: 4 start-page: 469 year: 2002 ident: b0160 article-title: Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression publication-title: Annu B ASTM Stand – reference: ACI 446.1 R-91. Fracture Mechanics of Concrete: Concepts, Models and Determination of Material Properties. Reported. – volume: 14 start-page: 830 year: 2011 end-page: 836 ident: b0115 article-title: Microstructure analysis of heated portland cement paste publication-title: Procedia Eng – year: 1998 ident: b0130 article-title: Fracture and size effect in concrete and other quasibrittle materials – volume: 3 start-page: 111 year: 2010 end-page: 114 ident: b0265 article-title: Thermal aspects of temperature transformations in silica sand publication-title: Arch Foundry Engng – volume: 18 start-page: 407 year: 1985 end-page: 413 ident: b0140 article-title: Results of three comparative test series for determining the fracture energy GF of concrete publication-title: Mater Struct – volume: 120 start-page: 104 year: 2021 end-page: 116 ident: b0060 article-title: Silicate impurities incorporation in calcium aluminate cement concrete: mechanical and microstructural assessment publication-title: Adv Appl Ceram – volume: 242 start-page: 107446 year: 2021 ident: b0065 article-title: Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete publication-title: Engng Fract Mech – reference: ASTM C. 143: Standard test method for slump of hydraulic cement concrete. ASTM Int.; 2003. – volume: 41 start-page: 91 year: 2006 end-page: 98 ident: b0190 article-title: Residual compressive behaviour of pre-heated high-performance concrete with blast–furnace–slag publication-title: Fire Saf J – volume: 30 start-page: 4018271 year: 2018 ident: b0255 article-title: Behavior of high-strength polypropylene fiber-reinforced self-compacting concrete exposed to high temperatures publication-title: J Mater Civ Eng – volume: 52 start-page: 123 year: 2000 end-page: 136 ident: b0230 article-title: Residual fracture properties of normal-and high-strength concrete subject to elevated temperatures publication-title: Mag Concr Res – volume: 30 start-page: 1609 year: 1995 end-page: 1612 ident: b0100 article-title: Frac***fghghgtoncretes at high temperature publication-title: J Mater Sci – volume: 54 start-page: 385 year: 1957 end-page: 395 ident: b0005 article-title: Variation of mortar and concrete properties with temperature publication-title: J Proc – volume: 14 start-page: 3855 year: 2021 ident: b0070 article-title: Physicochemical, mineralogical, and mechanical properties of calcium aluminate cement concrete exposed to elevated temperatures publication-title: Materials (Basel) – reference: ASTM C. Standard specification for concrete aggregates. Philadelphia, PA Am. Soc. Test. Mater.; 2003. – volume: 51 start-page: 6 year: 2013 end-page: 13 ident: b0235 article-title: The effect of testing conditions (hot and residual) on fracture toughness of fiber reinforced high-strength concrete subjected to high temperatures publication-title: Cem Concr Res – reference: ASTM A. “C496/C496M-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2004.”; 2011. – volume: 99 start-page: 54 year: 2002 end-page: 66 ident: b0165 article-title: Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures publication-title: ACI Mater J – reference: Khaliq W. Performance characterization of high performance concretes under fire conditions, vol. 73(no. 09); 2012. – volume: 85 start-page: 262 year: 1988 end-page: 271 ident: b0035 article-title: Effect of temperature and humidity on fracture energy of concrete publication-title: ACI Mater J – reference: Jefferis SA, Mangabhai RJ. Effect of temperature rise on properties of high alumina cement grout. In Calcium Aluminate Cements. Chapman and Hall London; 1990, p. 363. – reference: Pk M, Monteiro PJM. Concrete: Structure, Properties and Materials. Englewood Cliffs: Prentice-Hall; 1993. – volume: 58 start-page: 277 year: 2006 end-page: 288 ident: b0245 article-title: Fracture energy of high-performance concrete at high temperatures up to 450° C: the effects of heating temperatures and testing conditions (hot and cold) publication-title: Mag Concr Res – reference: George C. Industrial Aluminous Cements. In Barnes P, editor, Structure and performance of cements, S. 415 ff. Applied Science Publishers; 1983. – volume: 45 start-page: 64 year: 2006 end-page: 71 ident: b0050 article-title: Residual fracture energy of cement paste, mortar and concrete subject to high temperature publication-title: Theor Appl Fract Mech – volume: 100 start-page: 12959 year: 2010 end-page: 19428 ident: b0110 article-title: Standard test method for flexural strength of concrete (using simple beam with third-point loading) publication-title: Am Soc Test Mater – start-page: 139 year: 2004 end-page: 144 ident: b0125 article-title: Recommendation of RILEM TC 129-MHT:‘Test methods for mechanical properties of concrete at high temperatures’ publication-title: Mater Struct – volume: 45 start-page: 1155 year: 2012 end-page: 1165 ident: b0250 article-title: Residual fracture properties of concrete subjected to elevated temperatures publication-title: Mater Struct – volume: 18 start-page: 285 year: 1985 end-page: 290 ident: b0030 article-title: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams publication-title: Mater Struct – reference: Rilem TC. 187-SOC,” Exp. Determ. Stress. Open. curve Concr. Tens. Final Rep.; 2007. – volume: 35 start-page: 590 year: 2005 end-page: 596 ident: b0195 article-title: Effect of high temperature or fire on heavy weight concrete properties publication-title: Cem Concr Res – start-page: 102690 year: 2020 ident: b0055 article-title: The fracture behavior and microstructure of calcium aluminate cement concrete with various water-cement ratios publication-title: Theor Appl Fract Mech – volume: 40 start-page: 128 year: 2010 end-page: 136 ident: b0020 article-title: Thermal properties of hydrating calcium aluminate cement pastes publication-title: Cem Concr Res – volume: 15 start-page: 101 year: 2003 end-page: 107 ident: b0215 article-title: Effect of temperature on thermal properties of high-strength concrete publication-title: J Mater Civ Eng – volume: 35 start-page: 8 year: 2005 end-page: 14 ident: b0045 article-title: Effects of hybrid fiber on HPC properties under hightemperature publication-title: Ind Constr – volume: 6 start-page: 773 year: 1976 end-page: 781 ident: b0155 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cem Concr Res – volume: 27 start-page: 1031 year: 1997 end-page: 1036 ident: b0135 article-title: Size effect on fracture energy of concrete determined by three-point bending publication-title: Cem Concr Res – volume: 30 start-page: 375 year: 1997 end-page: 376 ident: b0145 article-title: On the measurement of concrete fracture energy using three-point bend tests publication-title: Mater Struct – volume: 30 start-page: 1609 issue: 6 year: 1995 ident: 10.1016/j.engfracmech.2021.108221_b0100 article-title: Frac***fghghgtoncretes at high temperature publication-title: J Mater Sci doi: 10.1007/BF00375272 – start-page: 139 year: 2004 ident: 10.1016/j.engfracmech.2021.108221_b0125 article-title: Recommendation of RILEM TC 129-MHT:‘Test methods for mechanical properties of concrete at high temperatures’ publication-title: Mater Struct – volume: 14 start-page: 3855 issue: 14 year: 2021 ident: 10.1016/j.engfracmech.2021.108221_b0070 article-title: Physicochemical, mineralogical, and mechanical properties of calcium aluminate cement concrete exposed to elevated temperatures publication-title: Materials (Basel) doi: 10.3390/ma14143855 – volume: 38 start-page: 1040 year: 2013 ident: 10.1016/j.engfracmech.2021.108221_b0120 article-title: Investigation of the structure of heated Portland cement paste by using various techniques publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2012.09.071 – year: 1998 ident: 10.1016/j.engfracmech.2021.108221_b0130 – volume: 41 start-page: 91 issue: 2 year: 2006 ident: 10.1016/j.engfracmech.2021.108221_b0190 article-title: Residual compressive behaviour of pre-heated high-performance concrete with blast–furnace–slag publication-title: Fire Saf J doi: 10.1016/j.firesaf.2005.11.001 – volume: 6 start-page: 773 issue: 6 year: 1976 ident: 10.1016/j.engfracmech.2021.108221_b0155 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cem Concr Res doi: 10.1016/0008-8846(76)90007-7 – start-page: 41 year: 2006 ident: 10.1016/j.engfracmech.2021.108221_b0170 article-title: Microstructure and properties of hardened concrete publication-title: Concr Microstruct Prop Mater – ident: 10.1016/j.engfracmech.2021.108221_b0180 doi: 10.1201/9781482288872 – volume: 27 start-page: 1031 issue: 7 year: 1997 ident: 10.1016/j.engfracmech.2021.108221_b0135 article-title: Size effect on fracture energy of concrete determined by three-point bending publication-title: Cem Concr Res doi: 10.1016/S0008-8846(97)00100-2 – ident: 10.1016/j.engfracmech.2021.108221_b0150 – volume: 3 start-page: 111 year: 2010 ident: 10.1016/j.engfracmech.2021.108221_b0265 article-title: Thermal aspects of temperature transformations in silica sand publication-title: Arch Foundry Engng – volume: 51 start-page: 6 year: 2013 ident: 10.1016/j.engfracmech.2021.108221_b0235 article-title: The effect of testing conditions (hot and residual) on fracture toughness of fiber reinforced high-strength concrete subjected to high temperatures publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2013.04.003 – volume: 242 start-page: 107446 year: 2021 ident: 10.1016/j.engfracmech.2021.108221_b0065 article-title: Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete publication-title: Engng Fract Mech doi: 10.1016/j.engfracmech.2020.107446 – volume: 54 start-page: 385 issue: 11 year: 1957 ident: 10.1016/j.engfracmech.2021.108221_b0005 article-title: Variation of mortar and concrete properties with temperature publication-title: J Proc – volume: 2 start-page: 145 issue: 2 year: 2014 ident: 10.1016/j.engfracmech.2021.108221_b0240 article-title: Fracture toughness of high performance concrete subjected Residual fracture properties of normal-and high-strength concrete subject to elevated temperaturesto elevated temperatures Part 1 The effects of heating temperatures and testing conditions (hot and publication-title: Adv Concr Constr doi: 10.12989/acc.2014.2.2.145 – volume: 4 start-page: 469 year: 2002 ident: 10.1016/j.engfracmech.2021.108221_b0160 article-title: Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression publication-title: Annu B ASTM Stand – volume: 18 start-page: 285 issue: 106 year: 1985 ident: 10.1016/j.engfracmech.2021.108221_b0030 article-title: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams publication-title: Mater Struct – volume: 39 start-page: 1230 issue: 12 year: 2009 ident: 10.1016/j.engfracmech.2021.108221_b0200 article-title: Self-consolidating concrete subjected to high temperature: mechanical and physicochemical properties publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2009.08.001 – volume: 85 start-page: 262 issue: 4 year: 1988 ident: 10.1016/j.engfracmech.2021.108221_b0035 article-title: Effect of temperature and humidity on fracture energy of concrete publication-title: ACI Mater J – volume: 14 start-page: 830 year: 2011 ident: 10.1016/j.engfracmech.2021.108221_b0115 article-title: Microstructure analysis of heated portland cement paste publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.07.105 – ident: 10.1016/j.engfracmech.2021.108221_b0175 – volume: 14 start-page: 8 issue: 1 year: 1993 ident: 10.1016/j.engfracmech.2021.108221_b0210 article-title: Experimental research on the strength and deformation properties of concrete exposed to high temperature publication-title: J Build Struct – volume: 120 start-page: 104 issue: 2 year: 2021 ident: 10.1016/j.engfracmech.2021.108221_b0060 article-title: Silicate impurities incorporation in calcium aluminate cement concrete: mechanical and microstructural assessment publication-title: Adv Appl Ceram doi: 10.1080/17436753.2021.1889755 – ident: 10.1016/j.engfracmech.2021.108221_b0090 – ident: 10.1016/j.engfracmech.2021.108221_b0205 – ident: 10.1016/j.engfracmech.2021.108221_b0260 – volume: 87 start-page: 160 issue: 2 year: 1990 ident: 10.1016/j.engfracmech.2021.108221_b0010 article-title: Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F) publication-title: Mater J – volume: 45 start-page: 64 issue: 1 year: 2006 ident: 10.1016/j.engfracmech.2021.108221_b0050 article-title: Residual fracture energy of cement paste, mortar and concrete subject to high temperature publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2005.11.007 – volume: 94 start-page: 475 year: 2015 ident: 10.1016/j.engfracmech.2021.108221_b0075 article-title: High temperature material properties of calcium aluminate cement concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.07.023 – volume: 45 start-page: 1155 issue: 8 year: 2012 ident: 10.1016/j.engfracmech.2021.108221_b0250 article-title: Residual fracture properties of concrete subjected to elevated temperatures publication-title: Mater Struct doi: 10.1617/s11527-012-9823-4 – volume: 35 start-page: 8 year: 2005 ident: 10.1016/j.engfracmech.2021.108221_b0045 article-title: Effects of hybrid fiber on HPC properties under hightemperature publication-title: Ind Constr – volume: 30 start-page: 4018271 issue: 11 year: 2018 ident: 10.1016/j.engfracmech.2021.108221_b0255 article-title: Behavior of high-strength polypropylene fiber-reinforced self-compacting concrete exposed to high temperatures publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)MT.1943-5533.0002491 – volume: 29 start-page: 1215 issue: 8 year: 1999 ident: 10.1016/j.engfracmech.2021.108221_b0185 article-title: High-performance concretes from calcium aluminate cements publication-title: Cem Concr Res doi: 10.1016/S0008-8846(99)00103-9 – volume: 46 start-page: 543 issue: 8 year: 2011 ident: 10.1016/j.engfracmech.2021.108221_b0015 article-title: Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures publication-title: Fire Saf J doi: 10.1016/j.firesaf.2011.07.010 – volume: 40 start-page: 128 issue: 1 year: 2010 ident: 10.1016/j.engfracmech.2021.108221_b0020 article-title: Thermal properties of hydrating calcium aluminate cement pastes publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2009.09.005 – volume: 36 start-page: 515 issue: 8 year: 2003 ident: 10.1016/j.engfracmech.2021.108221_b0040 article-title: Residual fracture energy of high-performance and normal concrete subject to high temperatures publication-title: Mater Struct doi: 10.1007/BF02480828 – ident: 10.1016/j.engfracmech.2021.108221_b0095 – ident: 10.1016/j.engfracmech.2021.108221_b0105 – volume: 15 start-page: 101 issue: 2 year: 2003 ident: 10.1016/j.engfracmech.2021.108221_b0215 article-title: Effect of temperature on thermal properties of high-strength concrete publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2003)15:2(101) – volume: 18 start-page: 407 issue: 5 year: 1985 ident: 10.1016/j.engfracmech.2021.108221_b0140 article-title: Results of three comparative test series for determining the fracture energy GF of concrete publication-title: Mater Struct doi: 10.1007/BF02472416 – volume: 61 start-page: 323 issue: 5 year: 2009 ident: 10.1016/j.engfracmech.2021.108221_b0225 article-title: Mechanical and fracture properties of normal-and high-strength concretes with fly ash after exposure to high temperatures publication-title: Mag Concr Res doi: 10.1680/macr.2008.00084 – volume: 29 start-page: 383 issue: 6 year: 1996 ident: 10.1016/j.engfracmech.2021.108221_b0025 article-title: The effect of exposure to elevated temperatures on the fracture energy of plain concrete publication-title: Mater Struct doi: 10.1007/BF02486347 – volume: 99 start-page: 54 issue: 1 year: 2002 ident: 10.1016/j.engfracmech.2021.108221_b0165 article-title: Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures publication-title: ACI Mater J – volume: 30 start-page: 1609 issue: 6 year: 1995 ident: 10.1016/j.engfracmech.2021.108221_b0080 article-title: Fracture toughness of concretes at high temperature publication-title: J Mater Sci doi: 10.1007/BF00375272 – ident: 10.1016/j.engfracmech.2021.108221_b0220 – volume: 30 start-page: 375 issue: 6 year: 1997 ident: 10.1016/j.engfracmech.2021.108221_b0145 article-title: On the measurement of concrete fracture energy using three-point bend tests publication-title: Mater Struct doi: 10.1007/BF02480689 – volume: 58 start-page: 277 issue: 5 year: 2006 ident: 10.1016/j.engfracmech.2021.108221_b0245 article-title: Fracture energy of high-performance concrete at high temperatures up to 450° C: the effects of heating temperatures and testing conditions (hot and cold) publication-title: Mag Concr Res doi: 10.1680/macr.2006.58.5.277 – ident: 10.1016/j.engfracmech.2021.108221_b0085 – volume: 35 start-page: 590 issue: 3 year: 2005 ident: 10.1016/j.engfracmech.2021.108221_b0195 article-title: Effect of high temperature or fire on heavy weight concrete properties publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.05.023 – start-page: 102690 year: 2020 ident: 10.1016/j.engfracmech.2021.108221_b0055 article-title: The fracture behavior and microstructure of calcium aluminate cement concrete with various water-cement ratios publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2020.102690 – volume: 52 start-page: 123 issue: 2 year: 2000 ident: 10.1016/j.engfracmech.2021.108221_b0230 article-title: Residual fracture properties of normal-and high-strength concrete subject to elevated temperatures publication-title: Mag Concr Res doi: 10.1680/macr.2000.52.2.123 – volume: 100 start-page: 12959 year: 2010 ident: 10.1016/j.engfracmech.2021.108221_b0110 article-title: Standard test method for flexural strength of concrete (using simple beam with third-point loading) publication-title: Am Soc Test Mater |
| SSID | ssj0007680 |
| Score | 2.5299118 |
| Snippet | •Residual fracture properties of CACC were obtained at different temperatures.•Microsturctural changes of CACC were conducted.•Residual Mechanical property of... In this study, a comprehensive experimental program was developed to determine the microstructural, mechanical, and fracture features of calcium aluminate... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108221 |
| SubjectTerms | Aluminous cements Brittleness Calcium aluminate Calcium aluminate cement Cement hydration Chemical compounds Chemical reactions Concrete structures Evaluation Evaporation Flexural strength Fracture energy Fracture toughness High temperature High temperatures Mechanical properties Microstructure Modulus of elasticity Residual energy Vapor pressure Weight loss |
| Title | A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperatures |
| URI | https://dx.doi.org/10.1016/j.engfracmech.2021.108221 https://www.proquest.com/docview/2639718372 |
| Volume | 261 |
| WOSCitedRecordID | wos000782610800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-7315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007680 issn: 0013-7944 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELbKLkJwQPyKhQUZiVvJqondJpa4BFgESKyQWKTeIsexSUqTVG1Z9ZV4Kl6FmdhJ2kUrFSEuUTut7SbzdfzZnh9CXhiVAm2YpF4E7NvjGfe9SIy552fpRIgMk0OapthEeHYWTafi82Dwq42FuZiHVRVtNmLxX1UNMlA2hs7-hbq7TkEAr0HpcAW1w3UvxceNm_hS5841vc_njcTQYFQUHhqssTwP2jl8yJ1UN6GAjWiuN01KDowmqb65CLgS_fdszln8Ovqky7kq0MMZrFxRAXMdqmbHEf3ZgZHCe71Z1CvgtcByMTnyELNhuVTOq52DgT41Yv-DSo2hyVsu-XFaz3O5sqWohnFZLMs6l6XMur2iXH7HkwUbiZSX9Y_uo7caq4O5pp90nhVdI-jBBoq_LmbuD-P2QmAZjZVZxv0GXRuk03tENUbfZx6YHbtvoa2dj0KQMdfWTQSBTQv_x6Ri9zdmJ_Cw8e7xxk9gdB_9MwMb330pZ_eXJl0rDAkL6tEEGO41chiEYwFm9zD-cDr92JEFWO2N2iIb2OAGed67IF4x4FUU6hKZaBjS-R1y2y1taGwheZcMdHWP3NrS6n3yM6Y74KQ9OGltaKt12oHzZS-z0ASBAyZtgUkBmHQXmNiZAybtgEktMGkLTOqACaNRBCbdBuYD8vXd6fmb954rFuIpxsXaC1gYZUyOjFYGZhnFU2MCyUSKJ7-hNDxL2UhGmVRm7DMeINUfp2bCDBA0pgx7SA6qutKPCB1pLrAsg5-qgItUCsZTzmToq0lmfKGOSNQ-_0S5TPpY0GWetC6Ts2RLdQmqLrGqOyJB13Rh08ns0-hVq-TE8WLLdxNA6D7Nj1tgJM5OrZIAD_RhOg-Dx__W-xNys_8nHpMDULR-Sq6ri3WxWj5zcP8NbNb6TA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+evaluation+of+fracture+toughness%2C+fracture+energy%2C+flexural+strength+and+microstructure+of+calcium+aluminate+cement+concrete+exposed+to+high+temperatures&rft.jtitle=Engineering+fracture+mechanics&rft.au=Abolhasani%2C+Amirmohamad&rft.au=Shakouri%2C+Mahmoud&rft.au=Dehestani%2C+Mehdi&rft.au=Samali%2C+Bijan&rft.date=2022-02-15&rft.pub=Elsevier+Ltd&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=261&rft_id=info:doi/10.1016%2Fj.engfracmech.2021.108221&rft.externalDocID=S0013794421006226 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |