A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperatures

•Residual fracture properties of CACC were obtained at different temperatures.•Microsturctural changes of CACC were conducted.•Residual Mechanical property of CACC were obtained.•The fracture energy of CACC increased as the temperature rise to 400 °C.•Comparison between properties of CACC and other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics Jg. 261; S. 108221
Hauptverfasser: Abolhasani, Amirmohamad, Shakouri, Mahmoud, Dehestani, Mehdi, Samali, Bijan, Banihashemi, Saeed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 15.02.2022
Elsevier BV
Schlagworte:
ISSN:0013-7944, 1873-7315
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Residual fracture properties of CACC were obtained at different temperatures.•Microsturctural changes of CACC were conducted.•Residual Mechanical property of CACC were obtained.•The fracture energy of CACC increased as the temperature rise to 400 °C.•Comparison between properties of CACC and other type of concretes subjected to elevated temperatures were reported. In this study, a comprehensive experimental program was developed to determine the microstructural, mechanical, and fracture features of calcium aluminate cement concrete (CACC) after exposure to high temperatures. The residual fracture parameters, including fracture toughness, fracture energy, and characteristic length, were obtained based on RILEM recommendations. In addition, XRD and SEM were used to evaluate microstructural changes after exposure to different temperatures. Mechanical properties such as the residual compressive, tensile, and flexural strengths, as well as the elastic modulus, were also assessed. The SEM images revealed that the voids among the particles increased due to increasing internal vapor pressure, indicating that the number of pores in the concrete structure increased. Furthermore, the results showed that after subjecting the specimens to high temperatures, the concrete became more ductile, which may be due to the increase in the number of pores after water evaporation. The residual fracture energy of CACC was observed to increase with increasing temperature. However, the residual fracture toughness and flexural strength decreased as temperatures increased. In addition, the results demonstrated that, above 400 °C, the weight loss in the concrete is mainly due to the evaporation of chemically bound water and decomposition of cement hydration compounds, which are chemical processes.
AbstractList •Residual fracture properties of CACC were obtained at different temperatures.•Microsturctural changes of CACC were conducted.•Residual Mechanical property of CACC were obtained.•The fracture energy of CACC increased as the temperature rise to 400 °C.•Comparison between properties of CACC and other type of concretes subjected to elevated temperatures were reported. In this study, a comprehensive experimental program was developed to determine the microstructural, mechanical, and fracture features of calcium aluminate cement concrete (CACC) after exposure to high temperatures. The residual fracture parameters, including fracture toughness, fracture energy, and characteristic length, were obtained based on RILEM recommendations. In addition, XRD and SEM were used to evaluate microstructural changes after exposure to different temperatures. Mechanical properties such as the residual compressive, tensile, and flexural strengths, as well as the elastic modulus, were also assessed. The SEM images revealed that the voids among the particles increased due to increasing internal vapor pressure, indicating that the number of pores in the concrete structure increased. Furthermore, the results showed that after subjecting the specimens to high temperatures, the concrete became more ductile, which may be due to the increase in the number of pores after water evaporation. The residual fracture energy of CACC was observed to increase with increasing temperature. However, the residual fracture toughness and flexural strength decreased as temperatures increased. In addition, the results demonstrated that, above 400 °C, the weight loss in the concrete is mainly due to the evaporation of chemically bound water and decomposition of cement hydration compounds, which are chemical processes.
In this study, a comprehensive experimental program was developed to determine the microstructural, mechanical, and fracture features of calcium aluminate cement concrete (CACC) after exposure to high temperatures. The residual fracture parameters, including fracture toughness, fracture energy, and characteristic length, were obtained based on RILEM recommendations. In addition, XRD and SEM were used to evaluate microstructural changes after exposure to different temperatures. Mechanical properties such as the residual compressive, tensile, and flexural strengths, as well as the elastic modulus, were also assessed. The SEM images revealed that the voids among the particles increased due to increasing internal vapor pressure, indicating that the number of pores in the concrete structure increased. Furthermore, the results showed that after subjecting the specimens to high temperatures, the concrete became more ductile, which may be due to the increase in the number of pores after water evaporation. The residual fracture energy of CACC was observed to increase with increasing temperature. However, the residual fracture toughness and flexural strength decreased as temperatures increased. In addition, the results demonstrated that, above 400 °C, the weight loss in the concrete is mainly due to the evaporation of chemically bound water and decomposition of cement hydration compounds, which are chemical processes.
ArticleNumber 108221
Author Abolhasani, Amirmohamad
Shakouri, Mahmoud
Samali, Bijan
Banihashemi, Saeed
Dehestani, Mehdi
Author_xml – sequence: 1
  givenname: Amirmohamad
  orcidid: 0000-0003-4848-0050
  surname: Abolhasani
  fullname: Abolhasani, Amirmohamad
  email: amirmabolhasani@nit.ac.ir
  organization: Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
– sequence: 2
  givenname: Mahmoud
  surname: Shakouri
  fullname: Shakouri, Mahmoud
  email: mahmoud.shakouri@colostate.edu
  organization: Department of Construction Management, Colorado State University, Fort Collins, CO 80523, USA
– sequence: 3
  givenname: Mehdi
  orcidid: 0000-0001-9609-4512
  surname: Dehestani
  fullname: Dehestani, Mehdi
  email: dehestani@nit.ac.ir
  organization: Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
– sequence: 4
  givenname: Bijan
  surname: Samali
  fullname: Samali, Bijan
  email: b.samali@uws.edu.au
  organization: Centre for Infrastructure Engineering, School of Engineering, Western Sydney University, NSW, Australia
– sequence: 5
  givenname: Saeed
  orcidid: 0000-0002-7438-1235
  surname: Banihashemi
  fullname: Banihashemi, Saeed
  email: saeed.banihashemi@canberra.edu.au
  organization: Department of Building and Construction Management, University of Canberra, Canberra, Australia
BookMark eNqNkd1q3DAQhUVIoZu076CQ2-5GP17_XJWwNEkh0Jv2WmjHo7UWW3IleUkeKW8ZuS409CpXkg4z3xnNuSDnzjsk5IqzDWe8vDlu0B1M0DAgdBvBBM96LQQ_IyteV3JdSb49JyvGeL43RfGRXMR4ZIxVZc1W5OWWgh_GgB26aE9I8aT7SSfrHfWGzuQ0BaTJT4fOYYxf_mnoMByes9Dj0xR0T2MKeZrUUe1aOlgIPivTUpxhoHuw00CzwWCdTkgBB3QpT-AgYH7j0-gjttmNdvbQ0YTDiEHPgPiJfDC6j_j573lJft19-7l7WD_-uP--u31cgyyatBayqlupmUEwjFdQ7I0RWjZ71jSs0qZo95LputVgtlwWQmxLtt2bUhpRFxKMvCTXC3cM_veEMamjn4LLlkqUsql4LSuRq5qlav5kDGjUGOygw7PiTM3JqKN6k4yak1FLMrn363-9YNOflaegbf8uwm4hYF7EyWJQESw6wNYGhKRab99BeQUBCbna
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2022_128875
crossref_primary_10_1016_j_conbuildmat_2023_131803
crossref_primary_10_1016_j_ijrmms_2022_105265
crossref_primary_10_61186_JCER_7_1_62
crossref_primary_10_1016_j_conbuildmat_2023_133909
crossref_primary_10_1016_j_engfracmech_2023_109596
crossref_primary_10_1016_j_jobe_2024_109067
crossref_primary_10_1007_s12008_023_01596_y
crossref_primary_10_1016_j_conbuildmat_2025_143277
crossref_primary_10_1016_j_jobe_2025_112015
crossref_primary_10_1016_j_conbuildmat_2024_136515
crossref_primary_10_1002_suco_202201026
crossref_primary_10_1016_j_istruc_2025_109928
crossref_primary_10_1016_j_jeurceramsoc_2024_02_035
crossref_primary_10_1016_j_rineng_2025_106375
crossref_primary_10_1061_JMCEE7_MTENG_18459
crossref_primary_10_3390_su14021012
crossref_primary_10_1016_j_conbuildmat_2024_135697
crossref_primary_10_1007_s10694_024_01557_1
crossref_primary_10_1007_s40996_024_01581_9
crossref_primary_10_1016_j_jallcom_2024_177544
crossref_primary_10_1016_j_tafmec_2025_104896
crossref_primary_10_1155_2023_8005622
crossref_primary_10_1016_j_conbuildmat_2022_126845
crossref_primary_10_1016_j_jobe_2022_105637
crossref_primary_10_1680_jadcr_21_00053
crossref_primary_10_1016_j_scp_2025_102026
crossref_primary_10_1016_j_rineng_2024_101821
crossref_primary_10_1016_j_ceramint_2025_07_084
crossref_primary_10_1016_j_conbuildmat_2022_128548
crossref_primary_10_1016_j_jobe_2024_110980
crossref_primary_10_1016_j_ceramint_2022_12_220
crossref_primary_10_1617_s11527_024_02497_6
crossref_primary_10_1007_s41024_024_00558_5
crossref_primary_10_1016_j_jeurceramsoc_2024_117047
crossref_primary_10_3390_buildings12060729
crossref_primary_10_1016_j_cemconcomp_2024_105643
crossref_primary_10_1016_j_cscm_2022_e01608
crossref_primary_10_1016_j_asej_2025_103680
crossref_primary_10_3390_ma17122916
crossref_primary_10_1016_j_cscm_2022_e01105
crossref_primary_10_1016_j_conbuildmat_2023_131280
Cites_doi 10.1007/BF00375272
10.3390/ma14143855
10.1016/j.conbuildmat.2012.09.071
10.1016/j.firesaf.2005.11.001
10.1016/0008-8846(76)90007-7
10.1201/9781482288872
10.1016/S0008-8846(97)00100-2
10.1016/j.cemconres.2013.04.003
10.1016/j.engfracmech.2020.107446
10.12989/acc.2014.2.2.145
10.1016/j.cemconres.2009.08.001
10.1016/j.proeng.2011.07.105
10.1080/17436753.2021.1889755
10.1016/j.tafmec.2005.11.007
10.1016/j.conbuildmat.2015.07.023
10.1617/s11527-012-9823-4
10.1061/(ASCE)MT.1943-5533.0002491
10.1016/S0008-8846(99)00103-9
10.1016/j.firesaf.2011.07.010
10.1016/j.cemconres.2009.09.005
10.1007/BF02480828
10.1061/(ASCE)0899-1561(2003)15:2(101)
10.1007/BF02472416
10.1680/macr.2008.00084
10.1007/BF02486347
10.1007/BF02480689
10.1680/macr.2006.58.5.277
10.1016/j.cemconres.2004.05.023
10.1016/j.tafmec.2020.102690
10.1680/macr.2000.52.2.123
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Feb 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 15, 2022
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.engfracmech.2021.108221
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7315
ExternalDocumentID 10_1016_j_engfracmech_2021_108221
S0013794421006226
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c349t-2378d3a0fecf017c4bff2a39b09907af4db30a8dacf5134225605bf63f2843cf3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782610800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-7944
IngestDate Sun Nov 09 08:09:16 EST 2025
Tue Nov 18 21:01:22 EST 2025
Sat Nov 29 07:30:21 EST 2025
Fri Feb 23 02:43:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Calcium aluminate cement
Brittleness
Microstructure
High temperatures
Fracture energy
Fracture toughness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-2378d3a0fecf017c4bff2a39b09907af4db30a8dacf5134225605bf63f2843cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4848-0050
0000-0001-9609-4512
0000-0002-7438-1235
PQID 2639718372
PQPubID 2045482
ParticipantIDs proquest_journals_2639718372
crossref_primary_10_1016_j_engfracmech_2021_108221
crossref_citationtrail_10_1016_j_engfracmech_2021_108221
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2021_108221
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Engineering fracture mechanics
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hillerborg, Modéer, Petersson (b0155) 1976; 6
Abolhasani, Nazarpour, Dehestani (b0055) 2020
Sakr, EL-Hakim (b0195) 2005; 35
Saemann, Washa (b0005) 1957; 54
Baker (b0025) 1996; 29
Ríos, Cifuentes, Leiva, García, Alba (b0255) 2018; 30
ASTM C. Standard specification for concrete aggregates. Philadelphia, PA Am. Soc. Test. Mater.; 2003.
Kodur, Sultan (b0215) 2003; 15
Bazant, Prat (b0035) 1988; 85
Phan, Carino (b0165) 2002; 99
Fares, Noumowe, Remond (b0200) 2009; 39
Nielsen, Biéanić (b0040) 2003; 36
Rilem TC. 187-SOC,” Exp. Determ. Stress. Open. curve Concr. Tens. Final Rep.; 2007.
George C. Industrial Aluminous Cements. In Barnes P, editor, Structure and performance of cements, S. 415 ff. Applied Science Publishers; 1983.
Watanabe, Bangi, Horiguchi (b0235) 2013; 51
Prokopski (b0080) 1995; 30
Jueshi, Hui (b0135) 1997; 27
Khaliq W. Performance characterization of high performance concretes under fire conditions, vol. 73(no. 09); 2012.
Kowalski (b0265) 2010; 3
Yu, Yu, Lu (b0250) 2012; 45
Dias, Khoury, Sullivan (b0010) 1990; 87
Mehta, Monteiro (b0170) 2006
ACI 446.1 R-91. Fracture Mechanics of Concrete: Concepts, Models and Determination of Material Properties. Reported.
Astm (b0160) 2002; 4
Khaliq, Khan (b0075) 2015; 94
Zhang, Ye, Koenders (b0120) 2013; 38
Scrivener, Cabiron, Letourneux (b0185) 1999; 29
Zhang, Bicanic, Pearce, Balabanic (b0230) 2000; 52
Zhang, Bicanic (b0245) 2006; 58
Committee (b0125) 2004
Zhang, Ju (b0045) 2005; 35
ASTM C. 143: Standard test method for slump of hydraulic cement concrete. ASTM Int.; 2003.
Rilem (b0030) 1985; 18
Xiao, Xie, Zhang (b0190) 2006; 41
Tang, Lo (b0225) 2009; 61
Zhang, Ye (b0115) 2011; 14
Abolhasani, Aslani, Samali, Ghaffar, Fallahnejad, Banihashemi (b0060) 2021; 120
Abolhasani, Samali, Aslani (b0070) 2021; 14
ASTM A. “C496/C496M-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2004.”; 2011.
Prokopski (b0100) 1995; 30
Li, Guo (b0210) 1993; 14
Elices, Guinea, Planas (b0145) 1997; 30
Hillerborg (b0140) 1985; 18
Zhang (b0015) 2011; 46
Ukrainczyk, Matusinović (b0020) 2010; 40
Bazzant, Planas (b0130) 1998
Zhang, Cullen, Kilpatrick (b0240) 2014; 2
Menou, Mounajed, Boussa, Pineaud, Carre (b0050) 2006; 45
Jefferis SA, Mangabhai RJ. Effect of temperature rise on properties of high alumina cement grout. In Calcium Aluminate Cements. Chapman and Hall London; 1990, p. 363.
BS EN. Testing hardened concrete. Method of determination of compressive strength of concrete cubes. BS EN 12390 Part, vol. 3; 2000.
Astm (b0110) 2010; 100
Pk M, Monteiro PJM. Concrete: Structure, Properties and Materials. Englewood Cliffs: Prentice-Hall; 1993.
Abolhasani, Nazarpour, Dehestani (b0065) 2021; 242
10.1016/j.engfracmech.2021.108221_b0150
Prokopski (10.1016/j.engfracmech.2021.108221_b0100) 1995; 30
Astm (10.1016/j.engfracmech.2021.108221_b0160) 2002; 4
Abolhasani (10.1016/j.engfracmech.2021.108221_b0055) 2020
Ríos (10.1016/j.engfracmech.2021.108221_b0255) 2018; 30
Rilem (10.1016/j.engfracmech.2021.108221_b0030) 1985; 18
Xiao (10.1016/j.engfracmech.2021.108221_b0190) 2006; 41
Kowalski (10.1016/j.engfracmech.2021.108221_b0265) 2010; 3
Dias (10.1016/j.engfracmech.2021.108221_b0010) 1990; 87
Zhang (10.1016/j.engfracmech.2021.108221_b0115) 2011; 14
Abolhasani (10.1016/j.engfracmech.2021.108221_b0070) 2021; 14
Prokopski (10.1016/j.engfracmech.2021.108221_b0080) 1995; 30
Elices (10.1016/j.engfracmech.2021.108221_b0145) 1997; 30
Yu (10.1016/j.engfracmech.2021.108221_b0250) 2012; 45
Fares (10.1016/j.engfracmech.2021.108221_b0200) 2009; 39
10.1016/j.engfracmech.2021.108221_b0260
10.1016/j.engfracmech.2021.108221_b0180
Kodur (10.1016/j.engfracmech.2021.108221_b0215) 2003; 15
10.1016/j.engfracmech.2021.108221_b0220
Khaliq (10.1016/j.engfracmech.2021.108221_b0075) 2015; 94
Li (10.1016/j.engfracmech.2021.108221_b0210) 1993; 14
10.1016/j.engfracmech.2021.108221_b0105
Committee (10.1016/j.engfracmech.2021.108221_b0125) 2004
Zhang (10.1016/j.engfracmech.2021.108221_b0015) 2011; 46
Hillerborg (10.1016/j.engfracmech.2021.108221_b0155) 1976; 6
Saemann (10.1016/j.engfracmech.2021.108221_b0005) 1957; 54
Bazzant (10.1016/j.engfracmech.2021.108221_b0130) 1998
Abolhasani (10.1016/j.engfracmech.2021.108221_b0060) 2021; 120
10.1016/j.engfracmech.2021.108221_b0095
Mehta (10.1016/j.engfracmech.2021.108221_b0170) 2006
10.1016/j.engfracmech.2021.108221_b0175
Zhang (10.1016/j.engfracmech.2021.108221_b0045) 2005; 35
Watanabe (10.1016/j.engfracmech.2021.108221_b0235) 2013; 51
Baker (10.1016/j.engfracmech.2021.108221_b0025) 1996; 29
Astm (10.1016/j.engfracmech.2021.108221_b0110) 2010; 100
Zhang (10.1016/j.engfracmech.2021.108221_b0230) 2000; 52
Ukrainczyk (10.1016/j.engfracmech.2021.108221_b0020) 2010; 40
Menou (10.1016/j.engfracmech.2021.108221_b0050) 2006; 45
Hillerborg (10.1016/j.engfracmech.2021.108221_b0140) 1985; 18
10.1016/j.engfracmech.2021.108221_b0085
Zhang (10.1016/j.engfracmech.2021.108221_b0120) 2013; 38
Nielsen (10.1016/j.engfracmech.2021.108221_b0040) 2003; 36
Abolhasani (10.1016/j.engfracmech.2021.108221_b0065) 2021; 242
Jueshi (10.1016/j.engfracmech.2021.108221_b0135) 1997; 27
10.1016/j.engfracmech.2021.108221_b0205
Phan (10.1016/j.engfracmech.2021.108221_b0165) 2002; 99
Bazant (10.1016/j.engfracmech.2021.108221_b0035) 1988; 85
Zhang (10.1016/j.engfracmech.2021.108221_b0245) 2006; 58
Scrivener (10.1016/j.engfracmech.2021.108221_b0185) 1999; 29
Sakr (10.1016/j.engfracmech.2021.108221_b0195) 2005; 35
Tang (10.1016/j.engfracmech.2021.108221_b0225) 2009; 61
Zhang (10.1016/j.engfracmech.2021.108221_b0240) 2014; 2
10.1016/j.engfracmech.2021.108221_b0090
References_xml – volume: 29
  start-page: 383
  year: 1996
  end-page: 388
  ident: b0025
  article-title: The effect of exposure to elevated temperatures on the fracture energy of plain concrete
  publication-title: Mater Struct
– volume: 29
  start-page: 1215
  year: 1999
  end-page: 1223
  ident: b0185
  article-title: High-performance concretes from calcium aluminate cements
  publication-title: Cem Concr Res
– volume: 38
  start-page: 1040
  year: 2013
  end-page: 1050
  ident: b0120
  article-title: Investigation of the structure of heated Portland cement paste by using various techniques
  publication-title: Constr Build Mater
– volume: 61
  start-page: 323
  year: 2009
  end-page: 330
  ident: b0225
  article-title: Mechanical and fracture properties of normal-and high-strength concretes with fly ash after exposure to high temperatures
  publication-title: Mag Concr Res
– volume: 2
  start-page: 145
  year: 2014
  ident: b0240
  article-title: Fracture toughness of high performance concrete subjected Residual fracture properties of normal-and high-strength concrete subject to elevated temperaturesto elevated temperatures Part 1 The effects of heating temperatures and testing conditions (hot and
  publication-title: Adv Concr Constr
– volume: 39
  start-page: 1230
  year: 2009
  end-page: 1238
  ident: b0200
  article-title: Self-consolidating concrete subjected to high temperature: mechanical and physicochemical properties
  publication-title: Cem Concr Res
– volume: 87
  start-page: 160
  year: 1990
  end-page: 166
  ident: b0010
  article-title: Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F)
  publication-title: Mater J
– start-page: 41
  year: 2006
  end-page: 80
  ident: b0170
  article-title: Microstructure and properties of hardened concrete
  publication-title: Concr Microstruct Prop Mater
– volume: 30
  start-page: 1609
  year: 1995
  end-page: 1612
  ident: b0080
  article-title: Fracture toughness of concretes at high temperature
  publication-title: J Mater Sci
– reference: BS EN. Testing hardened concrete. Method of determination of compressive strength of concrete cubes. BS EN 12390 Part, vol. 3; 2000.
– volume: 46
  start-page: 543
  year: 2011
  end-page: 549
  ident: b0015
  article-title: Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures
  publication-title: Fire Saf J
– volume: 36
  start-page: 515
  year: 2003
  end-page: 521
  ident: b0040
  article-title: Residual fracture energy of high-performance and normal concrete subject to high temperatures
  publication-title: Mater Struct
– volume: 94
  start-page: 475
  year: 2015
  end-page: 487
  ident: b0075
  article-title: High temperature material properties of calcium aluminate cement concrete
  publication-title: Constr Build Mater
– volume: 14
  start-page: 8
  year: 1993
  end-page: 16
  ident: b0210
  article-title: Experimental research on the strength and deformation properties of concrete exposed to high temperature
  publication-title: J Build Struct
– volume: 4
  start-page: 469
  year: 2002
  ident: b0160
  article-title: Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression
  publication-title: Annu B ASTM Stand
– reference: ACI 446.1 R-91. Fracture Mechanics of Concrete: Concepts, Models and Determination of Material Properties. Reported.
– volume: 14
  start-page: 830
  year: 2011
  end-page: 836
  ident: b0115
  article-title: Microstructure analysis of heated portland cement paste
  publication-title: Procedia Eng
– year: 1998
  ident: b0130
  article-title: Fracture and size effect in concrete and other quasibrittle materials
– volume: 3
  start-page: 111
  year: 2010
  end-page: 114
  ident: b0265
  article-title: Thermal aspects of temperature transformations in silica sand
  publication-title: Arch Foundry Engng
– volume: 18
  start-page: 407
  year: 1985
  end-page: 413
  ident: b0140
  article-title: Results of three comparative test series for determining the fracture energy GF of concrete
  publication-title: Mater Struct
– volume: 120
  start-page: 104
  year: 2021
  end-page: 116
  ident: b0060
  article-title: Silicate impurities incorporation in calcium aluminate cement concrete: mechanical and microstructural assessment
  publication-title: Adv Appl Ceram
– volume: 242
  start-page: 107446
  year: 2021
  ident: b0065
  article-title: Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete
  publication-title: Engng Fract Mech
– reference: ASTM C. 143: Standard test method for slump of hydraulic cement concrete. ASTM Int.; 2003.
– volume: 41
  start-page: 91
  year: 2006
  end-page: 98
  ident: b0190
  article-title: Residual compressive behaviour of pre-heated high-performance concrete with blast–furnace–slag
  publication-title: Fire Saf J
– volume: 30
  start-page: 4018271
  year: 2018
  ident: b0255
  article-title: Behavior of high-strength polypropylene fiber-reinforced self-compacting concrete exposed to high temperatures
  publication-title: J Mater Civ Eng
– volume: 52
  start-page: 123
  year: 2000
  end-page: 136
  ident: b0230
  article-title: Residual fracture properties of normal-and high-strength concrete subject to elevated temperatures
  publication-title: Mag Concr Res
– volume: 30
  start-page: 1609
  year: 1995
  end-page: 1612
  ident: b0100
  article-title: Frac***fghghgtoncretes at high temperature
  publication-title: J Mater Sci
– volume: 54
  start-page: 385
  year: 1957
  end-page: 395
  ident: b0005
  article-title: Variation of mortar and concrete properties with temperature
  publication-title: J Proc
– volume: 14
  start-page: 3855
  year: 2021
  ident: b0070
  article-title: Physicochemical, mineralogical, and mechanical properties of calcium aluminate cement concrete exposed to elevated temperatures
  publication-title: Materials (Basel)
– reference: ASTM C. Standard specification for concrete aggregates. Philadelphia, PA Am. Soc. Test. Mater.; 2003.
– volume: 51
  start-page: 6
  year: 2013
  end-page: 13
  ident: b0235
  article-title: The effect of testing conditions (hot and residual) on fracture toughness of fiber reinforced high-strength concrete subjected to high temperatures
  publication-title: Cem Concr Res
– reference: ASTM A. “C496/C496M-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2004.”; 2011.
– volume: 99
  start-page: 54
  year: 2002
  end-page: 66
  ident: b0165
  article-title: Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures
  publication-title: ACI Mater J
– reference: Khaliq W. Performance characterization of high performance concretes under fire conditions, vol. 73(no. 09); 2012.
– volume: 85
  start-page: 262
  year: 1988
  end-page: 271
  ident: b0035
  article-title: Effect of temperature and humidity on fracture energy of concrete
  publication-title: ACI Mater J
– reference: Jefferis SA, Mangabhai RJ. Effect of temperature rise on properties of high alumina cement grout. In Calcium Aluminate Cements. Chapman and Hall London; 1990, p. 363.
– reference: Pk M, Monteiro PJM. Concrete: Structure, Properties and Materials. Englewood Cliffs: Prentice-Hall; 1993.
– volume: 58
  start-page: 277
  year: 2006
  end-page: 288
  ident: b0245
  article-title: Fracture energy of high-performance concrete at high temperatures up to 450° C: the effects of heating temperatures and testing conditions (hot and cold)
  publication-title: Mag Concr Res
– reference: George C. Industrial Aluminous Cements. In Barnes P, editor, Structure and performance of cements, S. 415 ff. Applied Science Publishers; 1983.
– volume: 45
  start-page: 64
  year: 2006
  end-page: 71
  ident: b0050
  article-title: Residual fracture energy of cement paste, mortar and concrete subject to high temperature
  publication-title: Theor Appl Fract Mech
– volume: 100
  start-page: 12959
  year: 2010
  end-page: 19428
  ident: b0110
  article-title: Standard test method for flexural strength of concrete (using simple beam with third-point loading)
  publication-title: Am Soc Test Mater
– start-page: 139
  year: 2004
  end-page: 144
  ident: b0125
  article-title: Recommendation of RILEM TC 129-MHT:‘Test methods for mechanical properties of concrete at high temperatures’
  publication-title: Mater Struct
– volume: 45
  start-page: 1155
  year: 2012
  end-page: 1165
  ident: b0250
  article-title: Residual fracture properties of concrete subjected to elevated temperatures
  publication-title: Mater Struct
– volume: 18
  start-page: 285
  year: 1985
  end-page: 290
  ident: b0030
  article-title: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams
  publication-title: Mater Struct
– reference: Rilem TC. 187-SOC,” Exp. Determ. Stress. Open. curve Concr. Tens. Final Rep.; 2007.
– volume: 35
  start-page: 590
  year: 2005
  end-page: 596
  ident: b0195
  article-title: Effect of high temperature or fire on heavy weight concrete properties
  publication-title: Cem Concr Res
– start-page: 102690
  year: 2020
  ident: b0055
  article-title: The fracture behavior and microstructure of calcium aluminate cement concrete with various water-cement ratios
  publication-title: Theor Appl Fract Mech
– volume: 40
  start-page: 128
  year: 2010
  end-page: 136
  ident: b0020
  article-title: Thermal properties of hydrating calcium aluminate cement pastes
  publication-title: Cem Concr Res
– volume: 15
  start-page: 101
  year: 2003
  end-page: 107
  ident: b0215
  article-title: Effect of temperature on thermal properties of high-strength concrete
  publication-title: J Mater Civ Eng
– volume: 35
  start-page: 8
  year: 2005
  end-page: 14
  ident: b0045
  article-title: Effects of hybrid fiber on HPC properties under hightemperature
  publication-title: Ind Constr
– volume: 6
  start-page: 773
  year: 1976
  end-page: 781
  ident: b0155
  article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
  publication-title: Cem Concr Res
– volume: 27
  start-page: 1031
  year: 1997
  end-page: 1036
  ident: b0135
  article-title: Size effect on fracture energy of concrete determined by three-point bending
  publication-title: Cem Concr Res
– volume: 30
  start-page: 375
  year: 1997
  end-page: 376
  ident: b0145
  article-title: On the measurement of concrete fracture energy using three-point bend tests
  publication-title: Mater Struct
– volume: 30
  start-page: 1609
  issue: 6
  year: 1995
  ident: 10.1016/j.engfracmech.2021.108221_b0100
  article-title: Frac***fghghgtoncretes at high temperature
  publication-title: J Mater Sci
  doi: 10.1007/BF00375272
– start-page: 139
  year: 2004
  ident: 10.1016/j.engfracmech.2021.108221_b0125
  article-title: Recommendation of RILEM TC 129-MHT:‘Test methods for mechanical properties of concrete at high temperatures’
  publication-title: Mater Struct
– volume: 14
  start-page: 3855
  issue: 14
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108221_b0070
  article-title: Physicochemical, mineralogical, and mechanical properties of calcium aluminate cement concrete exposed to elevated temperatures
  publication-title: Materials (Basel)
  doi: 10.3390/ma14143855
– volume: 38
  start-page: 1040
  year: 2013
  ident: 10.1016/j.engfracmech.2021.108221_b0120
  article-title: Investigation of the structure of heated Portland cement paste by using various techniques
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2012.09.071
– year: 1998
  ident: 10.1016/j.engfracmech.2021.108221_b0130
– volume: 41
  start-page: 91
  issue: 2
  year: 2006
  ident: 10.1016/j.engfracmech.2021.108221_b0190
  article-title: Residual compressive behaviour of pre-heated high-performance concrete with blast–furnace–slag
  publication-title: Fire Saf J
  doi: 10.1016/j.firesaf.2005.11.001
– volume: 6
  start-page: 773
  issue: 6
  year: 1976
  ident: 10.1016/j.engfracmech.2021.108221_b0155
  article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
  publication-title: Cem Concr Res
  doi: 10.1016/0008-8846(76)90007-7
– start-page: 41
  year: 2006
  ident: 10.1016/j.engfracmech.2021.108221_b0170
  article-title: Microstructure and properties of hardened concrete
  publication-title: Concr Microstruct Prop Mater
– ident: 10.1016/j.engfracmech.2021.108221_b0180
  doi: 10.1201/9781482288872
– volume: 27
  start-page: 1031
  issue: 7
  year: 1997
  ident: 10.1016/j.engfracmech.2021.108221_b0135
  article-title: Size effect on fracture energy of concrete determined by three-point bending
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(97)00100-2
– ident: 10.1016/j.engfracmech.2021.108221_b0150
– volume: 3
  start-page: 111
  year: 2010
  ident: 10.1016/j.engfracmech.2021.108221_b0265
  article-title: Thermal aspects of temperature transformations in silica sand
  publication-title: Arch Foundry Engng
– volume: 51
  start-page: 6
  year: 2013
  ident: 10.1016/j.engfracmech.2021.108221_b0235
  article-title: The effect of testing conditions (hot and residual) on fracture toughness of fiber reinforced high-strength concrete subjected to high temperatures
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2013.04.003
– volume: 242
  start-page: 107446
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108221_b0065
  article-title: Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2020.107446
– volume: 54
  start-page: 385
  issue: 11
  year: 1957
  ident: 10.1016/j.engfracmech.2021.108221_b0005
  article-title: Variation of mortar and concrete properties with temperature
  publication-title: J Proc
– volume: 2
  start-page: 145
  issue: 2
  year: 2014
  ident: 10.1016/j.engfracmech.2021.108221_b0240
  article-title: Fracture toughness of high performance concrete subjected Residual fracture properties of normal-and high-strength concrete subject to elevated temperaturesto elevated temperatures Part 1 The effects of heating temperatures and testing conditions (hot and
  publication-title: Adv Concr Constr
  doi: 10.12989/acc.2014.2.2.145
– volume: 4
  start-page: 469
  year: 2002
  ident: 10.1016/j.engfracmech.2021.108221_b0160
  article-title: Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression
  publication-title: Annu B ASTM Stand
– volume: 18
  start-page: 285
  issue: 106
  year: 1985
  ident: 10.1016/j.engfracmech.2021.108221_b0030
  article-title: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams
  publication-title: Mater Struct
– volume: 39
  start-page: 1230
  issue: 12
  year: 2009
  ident: 10.1016/j.engfracmech.2021.108221_b0200
  article-title: Self-consolidating concrete subjected to high temperature: mechanical and physicochemical properties
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2009.08.001
– volume: 85
  start-page: 262
  issue: 4
  year: 1988
  ident: 10.1016/j.engfracmech.2021.108221_b0035
  article-title: Effect of temperature and humidity on fracture energy of concrete
  publication-title: ACI Mater J
– volume: 14
  start-page: 830
  year: 2011
  ident: 10.1016/j.engfracmech.2021.108221_b0115
  article-title: Microstructure analysis of heated portland cement paste
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.07.105
– ident: 10.1016/j.engfracmech.2021.108221_b0175
– volume: 14
  start-page: 8
  issue: 1
  year: 1993
  ident: 10.1016/j.engfracmech.2021.108221_b0210
  article-title: Experimental research on the strength and deformation properties of concrete exposed to high temperature
  publication-title: J Build Struct
– volume: 120
  start-page: 104
  issue: 2
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108221_b0060
  article-title: Silicate impurities incorporation in calcium aluminate cement concrete: mechanical and microstructural assessment
  publication-title: Adv Appl Ceram
  doi: 10.1080/17436753.2021.1889755
– ident: 10.1016/j.engfracmech.2021.108221_b0090
– ident: 10.1016/j.engfracmech.2021.108221_b0205
– ident: 10.1016/j.engfracmech.2021.108221_b0260
– volume: 87
  start-page: 160
  issue: 2
  year: 1990
  ident: 10.1016/j.engfracmech.2021.108221_b0010
  article-title: Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F)
  publication-title: Mater J
– volume: 45
  start-page: 64
  issue: 1
  year: 2006
  ident: 10.1016/j.engfracmech.2021.108221_b0050
  article-title: Residual fracture energy of cement paste, mortar and concrete subject to high temperature
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2005.11.007
– volume: 94
  start-page: 475
  year: 2015
  ident: 10.1016/j.engfracmech.2021.108221_b0075
  article-title: High temperature material properties of calcium aluminate cement concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.07.023
– volume: 45
  start-page: 1155
  issue: 8
  year: 2012
  ident: 10.1016/j.engfracmech.2021.108221_b0250
  article-title: Residual fracture properties of concrete subjected to elevated temperatures
  publication-title: Mater Struct
  doi: 10.1617/s11527-012-9823-4
– volume: 35
  start-page: 8
  year: 2005
  ident: 10.1016/j.engfracmech.2021.108221_b0045
  article-title: Effects of hybrid fiber on HPC properties under hightemperature
  publication-title: Ind Constr
– volume: 30
  start-page: 4018271
  issue: 11
  year: 2018
  ident: 10.1016/j.engfracmech.2021.108221_b0255
  article-title: Behavior of high-strength polypropylene fiber-reinforced self-compacting concrete exposed to high temperatures
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)MT.1943-5533.0002491
– volume: 29
  start-page: 1215
  issue: 8
  year: 1999
  ident: 10.1016/j.engfracmech.2021.108221_b0185
  article-title: High-performance concretes from calcium aluminate cements
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(99)00103-9
– volume: 46
  start-page: 543
  issue: 8
  year: 2011
  ident: 10.1016/j.engfracmech.2021.108221_b0015
  article-title: Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures
  publication-title: Fire Saf J
  doi: 10.1016/j.firesaf.2011.07.010
– volume: 40
  start-page: 128
  issue: 1
  year: 2010
  ident: 10.1016/j.engfracmech.2021.108221_b0020
  article-title: Thermal properties of hydrating calcium aluminate cement pastes
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2009.09.005
– volume: 36
  start-page: 515
  issue: 8
  year: 2003
  ident: 10.1016/j.engfracmech.2021.108221_b0040
  article-title: Residual fracture energy of high-performance and normal concrete subject to high temperatures
  publication-title: Mater Struct
  doi: 10.1007/BF02480828
– ident: 10.1016/j.engfracmech.2021.108221_b0095
– ident: 10.1016/j.engfracmech.2021.108221_b0105
– volume: 15
  start-page: 101
  issue: 2
  year: 2003
  ident: 10.1016/j.engfracmech.2021.108221_b0215
  article-title: Effect of temperature on thermal properties of high-strength concrete
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)0899-1561(2003)15:2(101)
– volume: 18
  start-page: 407
  issue: 5
  year: 1985
  ident: 10.1016/j.engfracmech.2021.108221_b0140
  article-title: Results of three comparative test series for determining the fracture energy GF of concrete
  publication-title: Mater Struct
  doi: 10.1007/BF02472416
– volume: 61
  start-page: 323
  issue: 5
  year: 2009
  ident: 10.1016/j.engfracmech.2021.108221_b0225
  article-title: Mechanical and fracture properties of normal-and high-strength concretes with fly ash after exposure to high temperatures
  publication-title: Mag Concr Res
  doi: 10.1680/macr.2008.00084
– volume: 29
  start-page: 383
  issue: 6
  year: 1996
  ident: 10.1016/j.engfracmech.2021.108221_b0025
  article-title: The effect of exposure to elevated temperatures on the fracture energy of plain concrete
  publication-title: Mater Struct
  doi: 10.1007/BF02486347
– volume: 99
  start-page: 54
  issue: 1
  year: 2002
  ident: 10.1016/j.engfracmech.2021.108221_b0165
  article-title: Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures
  publication-title: ACI Mater J
– volume: 30
  start-page: 1609
  issue: 6
  year: 1995
  ident: 10.1016/j.engfracmech.2021.108221_b0080
  article-title: Fracture toughness of concretes at high temperature
  publication-title: J Mater Sci
  doi: 10.1007/BF00375272
– ident: 10.1016/j.engfracmech.2021.108221_b0220
– volume: 30
  start-page: 375
  issue: 6
  year: 1997
  ident: 10.1016/j.engfracmech.2021.108221_b0145
  article-title: On the measurement of concrete fracture energy using three-point bend tests
  publication-title: Mater Struct
  doi: 10.1007/BF02480689
– volume: 58
  start-page: 277
  issue: 5
  year: 2006
  ident: 10.1016/j.engfracmech.2021.108221_b0245
  article-title: Fracture energy of high-performance concrete at high temperatures up to 450° C: the effects of heating temperatures and testing conditions (hot and cold)
  publication-title: Mag Concr Res
  doi: 10.1680/macr.2006.58.5.277
– ident: 10.1016/j.engfracmech.2021.108221_b0085
– volume: 35
  start-page: 590
  issue: 3
  year: 2005
  ident: 10.1016/j.engfracmech.2021.108221_b0195
  article-title: Effect of high temperature or fire on heavy weight concrete properties
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.05.023
– start-page: 102690
  year: 2020
  ident: 10.1016/j.engfracmech.2021.108221_b0055
  article-title: The fracture behavior and microstructure of calcium aluminate cement concrete with various water-cement ratios
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2020.102690
– volume: 52
  start-page: 123
  issue: 2
  year: 2000
  ident: 10.1016/j.engfracmech.2021.108221_b0230
  article-title: Residual fracture properties of normal-and high-strength concrete subject to elevated temperatures
  publication-title: Mag Concr Res
  doi: 10.1680/macr.2000.52.2.123
– volume: 100
  start-page: 12959
  year: 2010
  ident: 10.1016/j.engfracmech.2021.108221_b0110
  article-title: Standard test method for flexural strength of concrete (using simple beam with third-point loading)
  publication-title: Am Soc Test Mater
SSID ssj0007680
Score 2.5299118
Snippet •Residual fracture properties of CACC were obtained at different temperatures.•Microsturctural changes of CACC were conducted.•Residual Mechanical property of...
In this study, a comprehensive experimental program was developed to determine the microstructural, mechanical, and fracture features of calcium aluminate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108221
SubjectTerms Aluminous cements
Brittleness
Calcium aluminate
Calcium aluminate cement
Cement hydration
Chemical compounds
Chemical reactions
Concrete structures
Evaluation
Evaporation
Flexural strength
Fracture energy
Fracture toughness
High temperature
High temperatures
Mechanical properties
Microstructure
Modulus of elasticity
Residual energy
Vapor pressure
Weight loss
Title A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperatures
URI https://dx.doi.org/10.1016/j.engfracmech.2021.108221
https://www.proquest.com/docview/2639718372
Volume 261
WOSCitedRecordID wos000782610800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-7315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007680
  issn: 0013-7944
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELbKLkJwQPyKhQUZiVvJqondJpa4BFgESKyQWKTeIsexSUqTVG1Z9ZV4Kl6FmdhJ2kUrFSEuUTut7SbzdfzZnh9CXhiVAm2YpF4E7NvjGfe9SIy552fpRIgMk0OapthEeHYWTafi82Dwq42FuZiHVRVtNmLxX1UNMlA2hs7-hbq7TkEAr0HpcAW1w3UvxceNm_hS5841vc_njcTQYFQUHhqssTwP2jl8yJ1UN6GAjWiuN01KDowmqb65CLgS_fdszln8Ovqky7kq0MMZrFxRAXMdqmbHEf3ZgZHCe71Z1CvgtcByMTnyELNhuVTOq52DgT41Yv-DSo2hyVsu-XFaz3O5sqWohnFZLMs6l6XMur2iXH7HkwUbiZSX9Y_uo7caq4O5pp90nhVdI-jBBoq_LmbuD-P2QmAZjZVZxv0GXRuk03tENUbfZx6YHbtvoa2dj0KQMdfWTQSBTQv_x6Ri9zdmJ_Cw8e7xxk9gdB_9MwMb330pZ_eXJl0rDAkL6tEEGO41chiEYwFm9zD-cDr92JEFWO2N2iIb2OAGed67IF4x4FUU6hKZaBjS-R1y2y1taGwheZcMdHWP3NrS6n3yM6Y74KQ9OGltaKt12oHzZS-z0ASBAyZtgUkBmHQXmNiZAybtgEktMGkLTOqACaNRBCbdBuYD8vXd6fmb954rFuIpxsXaC1gYZUyOjFYGZhnFU2MCyUSKJ7-hNDxL2UhGmVRm7DMeINUfp2bCDBA0pgx7SA6qutKPCB1pLrAsg5-qgItUCsZTzmToq0lmfKGOSNQ-_0S5TPpY0GWetC6Ts2RLdQmqLrGqOyJB13Rh08ns0-hVq-TE8WLLdxNA6D7Nj1tgJM5OrZIAD_RhOg-Dx__W-xNys_8nHpMDULR-Sq6ri3WxWj5zcP8NbNb6TA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+evaluation+of+fracture+toughness%2C+fracture+energy%2C+flexural+strength+and+microstructure+of+calcium+aluminate+cement+concrete+exposed+to+high+temperatures&rft.jtitle=Engineering+fracture+mechanics&rft.au=Abolhasani%2C+Amirmohamad&rft.au=Shakouri%2C+Mahmoud&rft.au=Dehestani%2C+Mehdi&rft.au=Samali%2C+Bijan&rft.date=2022-02-15&rft.pub=Elsevier+Ltd&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=261&rft_id=info:doi/10.1016%2Fj.engfracmech.2021.108221&rft.externalDocID=S0013794421006226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon