Towards Visual Explainable Active Learning for Zero-Shot Classification
Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribute matrix to define which classes have which attri...
Uloženo v:
| Vydáno v: | IEEE transactions on visualization and computer graphics Ročník 28; číslo 1; s. 791 - 801 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribute matrix to define which classes have which attributes. Designing a suitable class-attribute matrix is the key to the subsequent procedure, but this design process is tedious and trial-and-error with no guidance. This paper proposes a visual explainable active learning approach with its design and implementation called semantic navigator to solve the above problems. This approach promotes human-AI teaming with four actions (ask, explain, recommend, respond) in each interaction loop. The machine asks contrastive questions to guide humans in the thinking process of attributes. A novel visualization called semantic map explains the current status of the machine. Therefore analysts can better understand why the machine misclassifies objects. Moreover, the machine recommends the labels of classes for each attribute to ease the labeling burden. Finally, humans can steer the model by modifying the labels interactively, and the machine adjusts its recommendations. The visual explainable active learning approach improves humans' efficiency of building zero-shot classification models interactively, compared with the method without guidance. We justify our results with user studies using the standard benchmarks for zero-shot classification. |
|---|---|
| AbstractList | Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribute matrix to define which classes have which attributes. Designing a suitable class-attribute matrix is the key to the subsequent procedure, but this design process is tedious and trial-and-error with no guidance. This paper proposes a visual explainable active learning approach with its design and implementation called semantic navigator to solve the above problems. This approach promotes human-AI teaming with four actions (ask, explain, recommend, respond) in each interaction loop. The machine asks contrastive questions to guide humans in the thinking process of attributes. A novel visualization called semantic map explains the current status of the machine. Therefore analysts can better understand why the machine misclassifies objects. Moreover, the machine recommends the labels of classes for each attribute to ease the labeling burden. Finally, humans can steer the model by modifying the labels interactively, and the machine adjusts its recommendations. The visual explainable active learning approach improves humans' efficiency of building zero-shot classification models interactively, compared with the method without guidance. We justify our results with user studies using the standard benchmarks for zero-shot classification.Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribute matrix to define which classes have which attributes. Designing a suitable class-attribute matrix is the key to the subsequent procedure, but this design process is tedious and trial-and-error with no guidance. This paper proposes a visual explainable active learning approach with its design and implementation called semantic navigator to solve the above problems. This approach promotes human-AI teaming with four actions (ask, explain, recommend, respond) in each interaction loop. The machine asks contrastive questions to guide humans in the thinking process of attributes. A novel visualization called semantic map explains the current status of the machine. Therefore analysts can better understand why the machine misclassifies objects. Moreover, the machine recommends the labels of classes for each attribute to ease the labeling burden. Finally, humans can steer the model by modifying the labels interactively, and the machine adjusts its recommendations. The visual explainable active learning approach improves humans' efficiency of building zero-shot classification models interactively, compared with the method without guidance. We justify our results with user studies using the standard benchmarks for zero-shot classification. Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribute matrix to define which classes have which attributes. Designing a suitable class-attribute matrix is the key to the subsequent procedure, but this design process is tedious and trial-and-error with no guidance. This paper proposes a visual explainable active learning approach with its design and implementation called semantic navigator to solve the above problems. This approach promotes human-AI teaming with four actions (ask, explain, recommend, respond) in each interaction loop. The machine asks contrastive questions to guide humans in the thinking process of attributes. A novel visualization called semantic map explains the current status of the machine. Therefore analysts can better understand why the machine misclassifies objects. Moreover, the machine recommends the labels of classes for each attribute to ease the labeling burden. Finally, humans can steer the model by modifying the labels interactively, and the machine adjusts its recommendations. The visual explainable active learning approach improves humans' efficiency of building zero-shot classification models interactively, compared with the method without guidance. We justify our results with user studies using the standard benchmarks for zero-shot classification. |
| Author | Li, Zeyu Zhang, Jiawan Jia, Shichao Chen, Nuo |
| Author_xml | – sequence: 1 givenname: Shichao surname: Jia fullname: Jia, Shichao email: jsc_se@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, China – sequence: 2 givenname: Zeyu surname: Li fullname: Li, Zeyu email: lzytianda@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, China – sequence: 3 givenname: Nuo surname: Chen fullname: Chen, Nuo email: nicole_0420@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, China – sequence: 4 givenname: Jiawan surname: Zhang fullname: Zhang, Jiawan email: jwzhang@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34587036$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtPwzAUhS1URGnhByAkFImFJcWvOPFYRaUgVWKgdGCxbMcBV2lc7ITHvyelLUMHpnuH7xzde84A9GpXGwAuEBwhBPntfJFPRxhiNCII0ZSTI3CKOEUxTCDrdTtM0xgzzPpgEMISQkRpxk9An9AkSyFhp2A6d5_SFyFa2NDKKpp8rStpa6kqE411Yz9MNDPS17Z-jUrnoxfjXfz05poor2QItrRaNtbVZ-C4lFUw57s5BM93k3l-H88epw_5eBZrQnkTY8wKSnWieEokVUSX1BSFTDTVkGSMEwy5yhTHBErKy9J0u1KYFqREmeSKDMHN1nft3XtrQiNWNmhTVbI2rg0CJ2mGKOecdOj1Abp0ra-76wRmiBDWJbWhrnZUq1amEGtvV9J_i31EHZBuAe1dCN6UQtvm9-fGS1sJBMWmDLEpQ2zKELsyOiU6UO7N_9NcbjXWGPPH8yTBGcXkB1kxkzU |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1080_00207543_2023_2238083 crossref_primary_10_1109_MGRS_2024_3403423 crossref_primary_10_1109_TVCG_2023_3326591 crossref_primary_10_1109_TCSS_2022_3231687 crossref_primary_10_1109_TVCG_2023_3345340 crossref_primary_10_1108_IMDS_03_2022_0152 crossref_primary_10_1109_TVCG_2021_3138933 crossref_primary_10_1109_TVCG_2024_3388514 crossref_primary_10_1109_TVCG_2023_3326577 crossref_primary_10_1109_TETCI_2023_3299298 crossref_primary_10_1109_TVCG_2024_3370654 crossref_primary_10_1109_TVCG_2022_3209408 crossref_primary_10_1109_TVCG_2024_3357065 crossref_primary_10_1016_j_engappai_2025_111009 crossref_primary_10_1109_TVCG_2022_3182488 |
| Cites_doi | 10.1109/TVCG.2017.2744818 10.1111/cgf.13406 10.1109/CVPR.2019.00844 10.1109/TVCG.2017.2744805 10.1109/TVCG.2017.2744378 10.1145/3242587.3242596 10.1007/s00371-018-1500-3 10.1145/3290605.3300234 10.1109/TPAMI.2018.2857768 10.1109/TVCG.2018.2864812 10.1145/3293318 10.1145/3025171.3025208 10.1109/CVPR.2013.105 10.1016/j.neucom.2012.12.056 10.1109/MCG.2018.042731661 10.1007/s12650-019-00607-z 10.1109/TVCG.2018.2864504 10.1111/cgf.13730 10.1109/TVCG.2015.2467191 10.1109/CVPR.2009.5206594 10.1109/VIS47514.2020.00057 10.1007/978-3-319-50077-5_2 10.1109/TVCG.2019.2934267 10.1145/3272973.3274059 10.1109/TVCG.2012.277 10.1007/s12650-018-0531-1 10.1109/TVCG.2018.2865047 10.1109/VAST.2012.6400486 10.1109/TVCG.2018.2843369 10.1109/CVPR.2011.5995451 10.1007/s10844-014-0304-9 10.1109/ICCV.2011.6126281 10.1109/MCG.2014.73 10.1109/CVPR.2009.5206772 10.1109/CVPR.2017.321 10.1007/978-3-642-15549-9_48 10.1109/VAST.2017.8585721 10.1109/TVCG.2014.2331979 10.1109/TVCG.2012.260 10.1109/TVCG.2018.2864477 10.1109/TVCG.2017.2744158 10.1109/ICDMW.2010.181 10.1111/cgf.14034 10.1145/604045.604056 10.1007/s00371-015-1132-9 10.1037/0022-0663.95.2.393 10.1109/TVCG.2018.2864843 10.1109/CVPR.2016.90 10.1016/j.artint.2018.07.007 10.1145/2702123.2702149 10.1016/j.artmed.2019.01.001 10.1109/ICCV.2017.376 10.1109/CVPR.2019.00758 10.1109/TVCG.2017.2744938 10.1109/VAST47406.2019.8986943 10.1007/978-3-642-33712-3_26 10.1109/TVCG.2016.2598831 10.24963/ijcai.2019/328 10.1207/s15516709cog1502_3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TVCG.2021.3114793 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 801 |
| ExternalDocumentID | 34587036 10_1109_TVCG_2021_3114793 9552842 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2019YFC1521200 funderid: 10.13039/501100012166 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION AAYOK NPM PKN RIC RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-226d44c5b973a4b3cf4edda5c4c038693209b8b9230a49ffe8b9bb24d3f18a9b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733959000082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Mon Sep 29 04:26:37 EDT 2025 Sun Nov 09 08:13:41 EST 2025 Wed Feb 19 02:27:58 EST 2025 Tue Nov 18 22:37:44 EST 2025 Sat Nov 29 03:31:38 EST 2025 Wed Aug 27 02:49:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-226d44c5b973a4b3cf4edda5c4c038693209b8b9230a49ffe8b9bb24d3f18a9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 34587036 |
| PQID | 2613369413 |
| PQPubID | 75741 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2578149993 crossref_citationtrail_10_1109_TVCG_2021_3114793 ieee_primary_9552842 proquest_journals_2613369413 crossref_primary_10_1109_TVCG_2021_3114793 pubmed_primary_34587036 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan. 2022-1-00 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 duan (ref16) 2012 ref56 ref12 ref59 ref15 ref58 ref53 ref52 ref55 ref11 ref10 settles (ref61) 2009 kim (ref37) 0 ref17 ghorbani (ref26) 2019 ref19 van der maaten (ref66) 2009 ref18 tian (ref65) 0; 31 höferlin (ref31) 0 ref51 ref50 liu (ref42) 2016; 23 ref46 ref45 ref48 ref47 fabian (ref20) 0 ref41 ref44 ref43 vartak (ref67) 0; 8 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 guo (ref28) 0 ref35 ref34 ref75 ref74 ref30 ref33 ref32 bennett (ref1) 1999 ref2 ref39 ref38 wah (ref68) 2011 ref71 ref70 ref73 ref72 kaur (ref36) 2019 ref24 ref23 ref69 ref25 ref64 ref63 ref22 ref21 ref27 ref29 der maaten (ref14) 2008; 9 simard (ref62) 2017 ref60 zhang (ref76) 0; 4 parikh (ref54) 0 |
| References_xml | – ident: ref3 doi: 10.1109/TVCG.2017.2744818 – ident: ref4 doi: 10.1111/cgf.13406 – ident: ref59 doi: 10.1109/CVPR.2019.00844 – ident: ref57 doi: 10.1109/TVCG.2017.2744805 – ident: ref44 doi: 10.1109/TVCG.2017.2744378 – volume: 4 start-page: 1 year: 0 ident: ref76 article-title: an ideal human" expectations of ai teammates in human-ai teaming publication-title: Proc ACM SIG Computer-Human Interaction – ident: ref23 doi: 10.1145/3242587.3242596 – year: 2011 ident: ref68 publication-title: The Caltech-UCSD Birds-200-2011 Dataset – ident: ref5 doi: 10.1007/s00371-018-1500-3 – ident: ref8 doi: 10.1145/3290605.3300234 – ident: ref72 doi: 10.1109/TPAMI.2018.2857768 – ident: ref47 doi: 10.1109/TVCG.2018.2864812 – volume: 9 start-page: 2579 year: 2008 ident: ref14 article-title: Visualizing data using t-sne publication-title: Journal of Machine Learning Research – ident: ref70 doi: 10.1145/3293318 – year: 2019 ident: ref36 article-title: Building shared mental models between humans and ai for effective collaboration publication-title: CHI'19 – ident: ref64 doi: 10.1145/3025171.3025208 – ident: ref74 doi: 10.1109/CVPR.2013.105 – ident: ref27 doi: 10.1016/j.neucom.2012.12.056 – start-page: 23 year: 0 ident: ref31 article-title: Interactive learning of ad-hoc classifiers for video visual analytics publication-title: 2012 IEEE Conference on Visual Analytics Science and Technology (VAST) – ident: ref13 doi: 10.1109/MCG.2018.042731661 – ident: ref34 doi: 10.1007/s12650-019-00607-z – ident: ref69 doi: 10.1109/TVCG.2018.2864504 – start-page: 368 year: 1999 ident: ref1 article-title: Semi-supervised support vector machines publication-title: Advances in neural information processing systems – ident: ref10 doi: 10.1111/cgf.13730 – ident: ref71 doi: 10.1109/TVCG.2015.2467191 – start-page: 6870 year: 0 ident: ref28 article-title: Zero-shot learning with attribute selection publication-title: National Conference on Artificial Intelligence – ident: ref38 doi: 10.1109/CVPR.2009.5206594 – ident: ref58 doi: 10.1109/VIS47514.2020.00057 – ident: ref56 doi: 10.1007/978-3-319-50077-5_2 – ident: ref48 doi: 10.1109/TVCG.2019.2934267 – ident: ref33 doi: 10.1145/3272973.3274059 – ident: ref30 doi: 10.1109/TVCG.2012.277 – ident: ref35 doi: 10.1007/s12650-018-0531-1 – ident: ref15 doi: 10.1109/TVCG.2018.2865047 – ident: ref7 doi: 10.1109/VAST.2012.6400486 – ident: ref32 doi: 10.1109/TVCG.2018.2843369 – ident: ref52 doi: 10.1109/CVPR.2011.5995451 – ident: ref19 doi: 10.1007/s10844-014-0304-9 – start-page: 45 year: 0 ident: ref20 article-title: Sparse quasi-newton optimization for semi-supervised support vector machines publication-title: Proceedings of the 1 st International Conference on Pattern Recognition Applications and Methods (ICPRAM 2012) – ident: ref53 doi: 10.1109/ICCV.2011.6126281 – ident: ref17 doi: 10.1109/MCG.2014.73 – start-page: 2668 year: 0 ident: ref37 article-title: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav) publication-title: International Conference on Machine Learning – ident: ref22 doi: 10.1109/CVPR.2009.5206772 – ident: ref75 doi: 10.1109/CVPR.2017.321 – ident: ref2 doi: 10.1007/978-3-642-15549-9_48 – ident: ref46 doi: 10.1109/VAST.2017.8585721 – ident: ref51 doi: 10.1109/TVCG.2014.2331979 – ident: ref18 doi: 10.1109/TVCG.2012.260 – ident: ref9 doi: 10.1109/TVCG.2018.2864477 – ident: ref63 doi: 10.1109/TVCG.2017.2744158 – ident: ref60 doi: 10.1109/ICDMW.2010.181 – ident: ref12 doi: 10.1111/cgf.14034 – volume: 8 start-page: 2182 year: 0 ident: ref67 article-title: Seedb: Efficient data-driven visualization recommendations to support visual analytics publication-title: Proceedings of the 30th International Conference on Very Large Data Bases VLDB Endowment – ident: ref21 doi: 10.1145/604045.604056 – ident: ref6 doi: 10.1007/s00371-015-1132-9 – volume: 31 year: 0 ident: ref65 article-title: Learning attributes from the crowdsourced relative labels publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – ident: ref25 doi: 10.1037/0022-0663.95.2.393 – ident: ref43 doi: 10.1109/TVCG.2018.2864843 – year: 2009 ident: ref61 publication-title: Active Learning Literature Survey – ident: ref29 doi: 10.1109/CVPR.2016.90 – start-page: 9273 year: 2019 ident: ref26 article-title: Towards automatic concept-based explanations publication-title: Advances in neural information processing systems – start-page: 384 year: 2009 ident: ref66 article-title: Learning a parametric embedding by preserving local structure publication-title: Artificial Intelligence and Statistics – start-page: 3474 year: 2012 ident: ref16 article-title: Discovering localized attributes for fine-grained recognition publication-title: Computer Vision and Pattern Recognition – year: 0 ident: ref54 article-title: Relative attributes for enhanced human-machine communication publication-title: Twenty-Sixth AAAI Conference on Artificial Intelligence – ident: ref45 doi: 10.1016/j.artint.2018.07.007 – ident: ref49 doi: 10.1145/2702123.2702149 – ident: ref39 doi: 10.1016/j.artmed.2019.01.001 – ident: ref11 doi: 10.1109/ICCV.2017.376 – ident: ref40 doi: 10.1109/CVPR.2019.00758 – ident: ref41 doi: 10.1109/TVCG.2017.2744938 – ident: ref73 doi: 10.1109/VAST47406.2019.8986943 – ident: ref55 doi: 10.1007/978-3-642-33712-3_26 – year: 2017 ident: ref62 article-title: Machine teaching: A new paradigm for building machine learning systems publication-title: arXiv Learning – volume: 23 start-page: 91 year: 2016 ident: ref42 article-title: Towards better analysis of deep convolutional neural networks publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2016.2598831 – ident: ref24 doi: 10.24963/ijcai.2019/328 – ident: ref50 doi: 10.1207/s15516709cog1502_3 |
| SSID | ssj0014489 |
| Score | 2.511382 |
| Snippet | Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 791 |
| SubjectTerms | Active Learning Classification Explainable Artificial Intelligence Human-AI Teaming Labeling Labels Mixed-Initiative Visual Analytics Navigation Semantics Task analysis Testing Training Visual analytics Zero-shot learning |
| Title | Towards Visual Explainable Active Learning for Zero-Shot Classification |
| URI | https://ieeexplore.ieee.org/document/9552842 https://www.ncbi.nlm.nih.gov/pubmed/34587036 https://www.proquest.com/docview/2613369413 https://www.proquest.com/docview/2578149993 |
| Volume | 28 |
| WOSCitedRecordID | wos000733959000082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6oiOjBfRk3KngSq22T2OQo4nISwVEGLyWrCjKVWfz9vqSZoqCCt0Bf2pL3knxvBzgUzBaOKJnmWkpUUIxLldYmtdRwZSgxZ9yEZhPl7S3v9cTdFBy3uTDW2hB8Zk_8MPjyTa3H3lR2KhjD0xQP3OmyLJtcrdZjgGqGaOILy7RAlB49mHkmTruPF9eoCRY5Kqi5tyTNwxyhjPvaU9-uo9Bf5XeoGa6cq6X__ewyLEZomZw3srACU7a_CgtfCg6uwXU3RMkOk8fX4RhpfQReTJ9KzsPJl8SCq88JotnkyQ7q9P6lHiWheaYPKwqcXIeHq8vuxU0aWymkmlAxShFkGUo1U6IkkiqiHbXGSKapzgg_QxCXCcUVor1MUuGcxbFSBTXE5VwKRTZgpl_37RYkRGaacCa4FpJKziQvHO57iVCdMsdcB7LJilY61hn37S7eqqBvZKLy_Kg8P6rIjw4ctVPemyIbfxGv-cVuCeM6d2B3wrYqbsNhheohIT5VF2cdtI9xA3mviOzbeow0zFf9QpyMNJsNu9t3T6Rk--dv7sB84bMhgkVmF2ZGg7Hdg1n9MXodDvZRSnt8P0jpJ3Ec4P4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB8OLVUfrNWqp7bdgk_i1t1N4iWPclSveD2EniK-LPlUQW7lPvz7nWRzi4IW-hbYye6SmUl-k_kC2BfMFo4omeZaSjRQjEuV1ia11HBlKDHH3IRmE53BgF9fi4sWHDa5MNbaEHxmf_ph8OWbSs_8VdmRYAx3U9xwFxmlRV5nazU-AzQ0RB1h2EkLxOnRh5ln4mh41T1DW7DI0UTN_V3SMnwklHFfferVgRQ6rLwPNsOhc_rp_353DVYjuExOamn4DC07WoeVFyUHN-BsGOJkJ8nV_WSGtD4GLyZQJSdh70tiydXbBPFscmPHVfr3rpomoX2mDywKvPwCl6e_ht1eGpsppJpQMU0RZhlKNVOiQyRVRDtqjZFMU50RfowwLhOKK8R7maTCOYtjpQpqiMu5FIpswsKoGtltSIjMNOFMcC0klZxJXjjUfIlgnTLHXBuy-YqWOlYa9w0vHspgcWSi9PwoPT_KyI82HDRTHusyG_8i3vCL3RDGdW7D3pxtZVTESYkGIiE-WRdn_Wgeowp5v4gc2WqGNMzX_UKkjDRbNbubd8-lZOftb36Hpd7wT7_s_x6c78Jy4XMjwv3MHixMxzP7FT7op-n9ZPwtyOozAYTjXQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Visual+Explainable+Active+Learning+for+Zero-Shot+Classification&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Jia%2C+Shichao&rft.au=Li%2C+Zeyu&rft.au=Chen%2C+Nuo&rft.au=Zhang%2C+Jiawan&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=28&rft.issue=1&rft.spage=791&rft_id=info:doi/10.1109%2FTVCG.2021.3114793&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |