Hybrid Methods for Solving Simultaneously an Equilibrium Problem and Countably Many Fixed Point Problems in a Hilbert Space

This paper presents a framework of iterative methods for finding a common solution to an equilibrium problem and a countable number of fixed point problems defined in a Hilbert space. A general strong convergence theorem is established under mild conditions. Two hybrid methods are derived from the p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 160; číslo 3; s. 809 - 831
Hlavní autoři: Nguyen, Thi Thu Van, Strodiot, Jean Jacques, Nguyen, Van Hien
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.03.2014
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a framework of iterative methods for finding a common solution to an equilibrium problem and a countable number of fixed point problems defined in a Hilbert space. A general strong convergence theorem is established under mild conditions. Two hybrid methods are derived from the proposed framework in coupling the fixed point iterations with the iterations of the proximal point method or the extragradient method, which are well-known methods for solving equilibrium problems. The strategy is to obtain the strong convergence from the weak convergence of the iterates without additional assumptions on the problem data. To achieve this aim, the solution set of the problem is outer approximated by a sequence of polyhedral subsets.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-013-0400-y