Feature Preserving Mesh Denoising Based on Graph Spectral Processing

The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on visualization and computer graphics Ročník 25; číslo 3; s. 1513 - 1527
Hlavní autoři: Arvanitis, Gerasimos, Lalos, Aris S., Moustakas, Konstantinos, Fakotakis, Nikos
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1077-2626, 1941-0506, 1941-0506
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different characteristics due to variable environmental factors (e.g., lighting conditions, orientation of the scanning device). In this work, we introduce a novel coarse-to-fine graph spectral processing approach that exploits the fact that the sharp features reside in a low dimensional structure hidden in the noisy 3D dataset. In the coarse step, the mesh is processed in parts, using a model based Bayesian learning method that identifies the noise level in each part and the subspace where the features lie. In the feature-aware fine step, we iteratively smooth face normals and vertices, while preserving geometric features. Extensive evaluation studies carried out under a broad set of complex noise patterns verify the superiority of our approach as compared to the state-of-the-art schemes, in terms of reconstruction quality and computational complexity.
AbstractList The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different characteristics due to variable environmental factors (e.g., lighting conditions, orientation of the scanning device). In this work, we introduce a novel coarse-to-fine graph spectral processing approach that exploits the fact that the sharp features reside in a low dimensional structure hidden in the noisy 3D dataset. In the coarse step, the mesh is processed in parts, using a model based Bayesian learning method that identifies the noise level in each part and the subspace where the features lie. In the feature-aware fine step, we iteratively smooth face normals and vertices, while preserving geometric features. Extensive evaluation studies carried out under a broad set of complex noise patterns verify the superiority of our approach as compared to the state-of-the-art schemes, in terms of reconstruction quality and computational complexity.
The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different characteristics due to variable environmental factors (e.g., lighting conditions, orientation of the scanning device). In this work, we introduce a novel coarse-to-fine graph spectral processing approach that exploits the fact that the sharp features reside in a low dimensional structure hidden in the noisy 3D dataset. In the coarse step, the mesh is processed in parts, using a model based Bayesian learning method that identifies the noise level in each part and the subspace where the features lie. In the feature-aware fine step, we iteratively smooth face normals and vertices, while preserving geometric features. Extensive evaluation studies carried out under a broad set of complex noise patterns verify the superiority of our approach as compared to the state-of-the-art schemes, in terms of reconstruction quality and computational complexity.The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different characteristics due to variable environmental factors (e.g., lighting conditions, orientation of the scanning device). In this work, we introduce a novel coarse-to-fine graph spectral processing approach that exploits the fact that the sharp features reside in a low dimensional structure hidden in the noisy 3D dataset. In the coarse step, the mesh is processed in parts, using a model based Bayesian learning method that identifies the noise level in each part and the subspace where the features lie. In the feature-aware fine step, we iteratively smooth face normals and vertices, while preserving geometric features. Extensive evaluation studies carried out under a broad set of complex noise patterns verify the superiority of our approach as compared to the state-of-the-art schemes, in terms of reconstruction quality and computational complexity.
Author Lalos, Aris S.
Moustakas, Konstantinos
Arvanitis, Gerasimos
Fakotakis, Nikos
Author_xml – sequence: 1
  givenname: Gerasimos
  orcidid: 0000-0001-8149-5188
  surname: Arvanitis
  fullname: Arvanitis, Gerasimos
  email: arvanitis@ece.upatras.gr
  organization: Department of Electrical and Computer Engineering, University of Patras, Rio, Patras, Greece
– sequence: 2
  givenname: Aris S.
  orcidid: 0000-0003-0511-9302
  surname: Lalos
  fullname: Lalos, Aris S.
  email: aris.lalos@ece.upatras.gr
  organization: Department of Electrical and Computer Engineering, University of Patras, Rio, Patras, Greece
– sequence: 3
  givenname: Konstantinos
  orcidid: 0000-0001-8545-3110
  surname: Moustakas
  fullname: Moustakas, Konstantinos
  email: moustakas@ece.upatras.gr
  organization: Department of Electrical and Computer Engineering, University of Patras, Rio, Patras, Greece
– sequence: 4
  givenname: Nikos
  surname: Fakotakis
  fullname: Fakotakis, Nikos
  email: fakotaki@upatras.gr
  organization: Department of Electrical and Computer Engineering, University of Patras, Rio, Patras, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994513$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMofv8AEaTgxUvXSdI0yVFXXQVFwY9rSNuJVrrNmrSC_96WXT148DQz8DzDMO8OWW99i4QcUJhQCvr06WU6mzCgasIUMM3yNbJNdUZTEJCvDz1ImbKc5VtkJ8Z3AJplSm-SLaa1zgTl2-TiCm3XB0weAkYMn3X7mtxhfEsusPV1HMdzG7FKfJvMgl28JY8LLLtgm8HwJcYR2SMbzjYR91d1lzxfXT5Nr9Pb-9nN9Ow2LXmmu5Q6zSRIJbVjheA2R1VklVUMEGhhK-YkVq5kosKiyLSCQrvMVdRaYbVwyHfJyXLvIviPHmNn5nUssWlsi76PhkGuONcgYUCP_6Dvvg_tcJ1hVAqutNB8oI5WVF_MsTKLUM9t-DI__xkAuQTK4GMM6ExZd7arfTu8oG4MBTMmYcYkzJiEWSUxmPSP-bP8P-dw6dSI-MsrpriQOf8GxRaStg
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2021_3088118
crossref_primary_10_3390_diagnostics14171979
crossref_primary_10_1016_j_cad_2019_102804
crossref_primary_10_1016_j_cad_2021_103088
crossref_primary_10_1016_j_cad_2019_102807
crossref_primary_10_1016_j_cagd_2025_102477
crossref_primary_10_1016_j_cag_2019_05_017
crossref_primary_10_1109_TII_2020_3000491
crossref_primary_10_1109_TVCG_2019_2944357
crossref_primary_10_1007_s40745_020_00301_0
crossref_primary_10_1016_j_cmpb_2024_108061
crossref_primary_10_1109_ACCESS_2019_2894533
crossref_primary_10_1109_TMM_2021_3089838
crossref_primary_10_1109_ACCESS_2022_3164714
crossref_primary_10_1109_TII_2020_3003455
crossref_primary_10_1111_cgf_14752
crossref_primary_10_1109_ACCESS_2022_3176961
crossref_primary_10_1109_ACCESS_2020_3023167
crossref_primary_10_1109_TVCG_2020_3045490
crossref_primary_10_1137_21M1397945
crossref_primary_10_1109_TVCG_2020_3001681
crossref_primary_10_1109_TVCG_2021_3110658
crossref_primary_10_1145_3625098
Cites_doi 10.1016/S0923-5965(02)00147-9
10.1145/2661229.2661276
10.1109/TVCG.2010.264
10.1109/ISSPIT.2015.7394369
10.1111/cgf.12742
10.1109/TVCG.2007.1065
10.1109/TIP.2013.2283400
10.1111/cgf.12245
10.1016/j.gmod.2008.12.002
10.1109/ICCV.2017.569
10.1145/311535.311576
10.1109/LRA.2017.2715378
10.1145/344779.344849
10.1111/j.1467-8659.2008.01122.x
10.1145/2816795.2818068
10.1109/TVCG.2004.1272725
10.1145/2461912.2461965
10.1145/2980179.2980232
10.1016/j.cad.2012.03.001
10.1109/TVCG.2015.2398432
10.1137/141002037
10.1109/ACCESS.2017.2733003
10.1145/344779.344924
10.1145/882262.882368
10.1145/588272.588276
10.1145/218380.218473
10.1109/SMI.2006.21
10.1109/TVCG.2014.2326872
10.1111/j.1467-8659.2004.00770.x
10.1145/1122501.1122504
10.1111/j.1467-8659.2010.01655.x
10.1109/SMI.2006.38
10.1109/TVCG.2009.70
10.1145/2980179.2980225
10.1109/TVCG.2015.2500222
10.1109/LRA.2016.2518242
10.1109/5.58320
10.1109/TMM.2016.2605927
10.1145/882262.882367
10.1016/j.cag.2003.10.002
10.1002/cnm.1630040603
10.1109/TASE.2016.2553449
10.1109/SMI.2003.1199613
10.1145/1073204.1073226
10.1145/1462048.1462052
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2018.2802926
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 1527
ExternalDocumentID 29994513
10_1109_TVCG_2018_2802926
8283576
Genre orig-research
Journal Article
GrantInformation_xml – fundername: H2020-PHC-2014 RIA project MyAirCoach
  grantid: 643607
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
5VS
AAYOK
AETIX
AGSQL
AI.
AIBXA
ALLEH
H~9
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-1f92707879f2b53a6e8b4da820e01bad2f7edfc25debb4980b9f4fd1aa5a95fe3
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457824500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Sat Sep 27 22:29:24 EDT 2025
Sun Nov 30 04:23:34 EST 2025
Wed Feb 19 02:36:17 EST 2025
Tue Nov 18 22:21:57 EST 2025
Sat Nov 29 06:05:39 EST 2025
Wed Aug 27 03:06:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-1f92707879f2b53a6e8b4da820e01bad2f7edfc25debb4980b9f4fd1aa5a95fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8149-5188
0000-0001-8545-3110
0000-0003-0511-9302
PMID 29994513
PQID 2175389593
PQPubID 75741
PageCount 15
ParticipantIDs crossref_primary_10_1109_TVCG_2018_2802926
crossref_citationtrail_10_1109_TVCG_2018_2802926
pubmed_primary_29994513
proquest_miscellaneous_2068339070
proquest_journals_2175389593
ieee_primary_8283576
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References karni (ref53) 2004; 28
ref13
ref15
ref14
ref11
nehab (ref37) 2005; 24
ref17
ref16
ref19
fan (ref5) 2016; 35
(ref52) 2009
ref45
ref48
ref47
svub (ref50) 2010
ref44
sorkine (ref18) 2005
ref43
ref49
ref8
ref7
zhang (ref46) 2011
taubin (ref21) 2000
ref4
ref3
(ref51) 1994
ref6
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
wang (ref42) 2014; 33
hepp (ref2) 2017; abs 1705 9314
wang (ref9) 2016; 35
ref24
ref23
ref26
ref25
ref20
ref22
fan (ref41) 2010; 16
ref28
ref29
wang (ref27) 2015; 34
moench (ref12) 2010
he (ref10) 2013; 32
References_xml – ident: ref43
  doi: 10.1016/S0923-5965(02)00147-9
– year: 2000
  ident: ref21
  article-title: Geometric Signal Processing on Polygonal Meshes
  publication-title: STAR Proceedings of Eurographics 2000
– year: 2011
  ident: ref46
  article-title: Iterative Methods for Computing Eigenvalues and Eigenvectors
– volume: 33
  start-page: 1
  year: 2014
  ident: ref42
  article-title: Decoupling noises and features via weighted l1-analysis compressed sensing
  publication-title: ACM Trans Graph
  doi: 10.1145/2661229.2661276
– ident: ref32
  doi: 10.1109/TVCG.2010.264
– ident: ref45
  doi: 10.1109/ISSPIT.2015.7394369
– year: 2005
  ident: ref18
  article-title: Laplacian Mesh Processing
  publication-title: Eurographics 2005 State of the Art Reports
– ident: ref8
  doi: 10.1111/cgf.12742
– ident: ref31
  doi: 10.1109/TVCG.2007.1065
– ident: ref49
  doi: 10.1109/TIP.2013.2283400
– ident: ref35
  doi: 10.1111/cgf.12245
– ident: ref11
  doi: 10.1016/j.gmod.2008.12.002
– ident: ref1
  doi: 10.1109/ICCV.2017.569
– ident: ref15
  doi: 10.1145/311535.311576
– ident: ref6
  doi: 10.1109/LRA.2017.2715378
– ident: ref7
  doi: 10.1145/344779.344849
– ident: ref20
  doi: 10.1111/j.1467-8659.2008.01122.x
– volume: 34
  start-page: 173:1
  year: 2015
  ident: ref27
  article-title: Rolling guidance normal filter for geometric processing
  publication-title: ACM Trans Graph
  doi: 10.1145/2816795.2818068
– ident: ref33
  doi: 10.1109/TVCG.2004.1272725
– year: 2009
  ident: ref52
– volume: abs 1705 9314
  year: 2017
  ident: ref2
  article-title: Plan3d: Viewpoint and trajectory optimization for aerial multi-view stereo reconstruction
  publication-title: CoRR
– volume: 32
  start-page: 64:1
  year: 2013
  ident: ref10
  article-title: Mesh denoising via $l_0$ minimization
  publication-title: ACM Trans Graph
  doi: 10.1145/2461912.2461965
– volume: 35
  start-page: 232:1
  year: 2016
  ident: ref9
  article-title: Mesh denoising via cascaded normal regression
  publication-title: ACM Trans Graph
  doi: 10.1145/2980179.2980232
– ident: ref30
  doi: 10.1016/j.cad.2012.03.001
– ident: ref36
  doi: 10.1109/TVCG.2015.2398432
– ident: ref23
  doi: 10.1137/141002037
– ident: ref4
  doi: 10.1109/ACCESS.2017.2733003
– ident: ref47
  doi: 10.1145/344779.344924
– ident: ref28
  doi: 10.1145/882262.882368
– year: 1994
  ident: ref51
– ident: ref25
  doi: 10.1145/588272.588276
– start-page: 83
  year: 2010
  ident: ref12
  article-title: Staircase-Aware Smoothing of Medical Surface Meshes
  publication-title: Proc Eurograph Workshop Vis Comput Biol Med
– ident: ref14
  doi: 10.1145/218380.218473
– ident: ref17
  doi: 10.1109/SMI.2006.21
– ident: ref34
  doi: 10.1109/TVCG.2014.2326872
– ident: ref24
  doi: 10.1111/j.1467-8659.2004.00770.x
– ident: ref38
  doi: 10.1145/1122501.1122504
– ident: ref19
  doi: 10.1111/j.1467-8659.2010.01655.x
– ident: ref26
  doi: 10.1109/SMI.2006.38
– year: 2010
  ident: ref50
  article-title: Feature preserving mesh smoothing algorithm based on local normal covariance
  publication-title: Proc 17th Int Conf Central Eur Comput Graph Vis Comput Vis
– volume: 16
  start-page: 312
  year: 2010
  ident: ref41
  article-title: Robust feature-preserving mesh denoising based on consistent subneighborhoods
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2009.70
– volume: 35
  year: 2016
  ident: ref5
  article-title: Automated view and path planning for scalable multi-object 3D scanning
  publication-title: ACM Trans Graph
  doi: 10.1145/2980179.2980225
– ident: ref40
  doi: 10.1109/TVCG.2015.2500222
– ident: ref3
  doi: 10.1109/LRA.2016.2518242
– ident: ref22
  doi: 10.1109/5.58320
– ident: ref44
  doi: 10.1109/TMM.2016.2605927
– ident: ref29
  doi: 10.1145/882262.882367
– volume: 28
  start-page: 25
  year: 2004
  ident: ref53
  article-title: Compression of soft-body animation sequences
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2003.10.002
– ident: ref13
  doi: 10.1002/cnm.1630040603
– ident: ref39
  doi: 10.1109/TASE.2016.2553449
– ident: ref16
  doi: 10.1109/SMI.2003.1199613
– volume: 24
  start-page: 536
  year: 2005
  ident: ref37
  article-title: Efficiently combining positions and normals for precise 3D geometry
  publication-title: ACM Trans Graph
  doi: 10.1145/1073204.1073226
– ident: ref48
  doi: 10.1145/1462048.1462052
SSID ssj0014489
Score 2.4165428
Snippet The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1513
SubjectTerms Apexes
Bayesian analysis
Complexity
Face
Feature extraction
Finite element method
Image reconstruction
level noise estimation
Machine learning
Noise
Noise measurement
Noise reduction
orthogonal iteration
Scanners
Solid modeling
spectral denoising filtering
Spectral smoothing
State of the art
Surface treatment
Three-dimensional displays
Title Feature Preserving Mesh Denoising Based on Graph Spectral Processing
URI https://ieeexplore.ieee.org/document/8283576
https://www.ncbi.nlm.nih.gov/pubmed/29994513
https://www.proquest.com/docview/2175389593
https://www.proquest.com/docview/2068339070
Volume 25
WOSCitedRecordID wos000457824500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lb9YwDLe2iQMceI1HYUxB4oTolkf7JT7CxsYBJg4DfbcqTRyYhFr0Pfj7iduu2gGQuFWqm0a2Ezux_TPAK2VasqZ2ZYhWlxX6VHplQ5lNExokbdWIrv_RXly45RI_78CbuRaGiIbkMzrixyGWH_uw5auyY8fgYHaxC7vW2rFWa44Y5GMGjvmFttTZS58imEri8eXXk3NO4nJH2kmNjKNwwwYNTVX-7l8Odubs3v_N8D7cnfxJ8XZUgAewQ91DuHMDZXAfTtnN265IcLoFbw3dN_GJ1t_FKXX9Fd8ViHfZlkXRd-Kc8asFN6XnGxAxlRFkkkfw5ez95cmHcmqeUAZT4aZUCTUj-VhMuq2NX5Brq-izwSepWh91shRT0HWktq3QyRZTlaLyvvZYJzKPYa_rO3oKQnFHYjKtrwNWLVWYpA8hhkrmMSyZAuQ1O5swIYtzg4sfzXDCkNiwBBqWQDNJoIDX8yc_R1iNfxHvM6dnwonJBRxcy6yZFt660Yw86hhtuYCX8-u8ZDgO4jvqt5lGLpwxmDe7Ap6Msp7HztYZq1qZZ3_-53O4nWeGYxLaAextVlt6AbfCr83VenWY9XLpDge9_A33tt3s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkR74FVKAwWMxAmRNn5knTlCS1vEdsVhQb1Fjj2hlaoE7YPfjydJox4AiVukTBxrxvaM5_ENwFupK7I6L1IfrEoNujp10vo0qibUSMrKHl1_amez4uICv27A-7EWhoi65DM64Mculh9av2ZX2WHB4GB2cgfu5sYo2VdrjTGDeNHAPsPQpira6UMMU2Z4OP9-dMppXMWBKjKFjKRwSwt1bVX-bmF2mubk4f_N8RE8GCxK8aFfAo9hg5onsH0LZ3AHjtnQWy9IcMIFHw7ND3FOy0txTE17xd4C8TFqsyDaRpwygrXgtvTsAxFDIUEkeQrfTj7Nj87SoX1C6rXBVSprVIzlY7FWVa7dhIrKBBdVPmWyckHVlkLtVR6oqgwWWYW1qYN0LneY16R3YbNpG9oDIbknMenK5R5NRQbrzHkfvMniGJZ0AtkNO0s_YItzi4vrsrtjZFiyBEqWQDlIIIF34yc_e2CNfxHvMKdHwoHJCezfyKwctt6yVIw9WjDecgJvxtdx03AkxDXUriNNNim0xnjcJfCsl_U4dtTPaHKpn__5n6_h_tn8fFpOP8--vICtOEvsU9L2YXO1WNNLuOd_ra6Wi1fd6vwNbK7gSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Preserving+Mesh+Denoising+Based+on+Graph+Spectral+Processing&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Arvanitis%2C+Gerasimos&rft.au=Lalos%2C+Aris+S&rft.au=Moustakas%2C+Konstantinos&rft.au=Fakotakis%2C+Nikos&rft.date=2019-03-01&rft.eissn=1941-0506&rft.volume=25&rft.issue=3&rft.spage=1513&rft_id=info:doi/10.1109%2FTVCG.2018.2802926&rft_id=info%3Apmid%2F29994513&rft.externalDocID=29994513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon