Feature Preserving Mesh Denoising Based on Graph Spectral Processing
The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that...
Uloženo v:
| Vydáno v: | IEEE transactions on visualization and computer graphics Ročník 25; číslo 3; s. 1513 - 1527 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different characteristics due to variable environmental factors (e.g., lighting conditions, orientation of the scanning device). In this work, we introduce a novel coarse-to-fine graph spectral processing approach that exploits the fact that the sharp features reside in a low dimensional structure hidden in the noisy 3D dataset. In the coarse step, the mesh is processed in parts, using a model based Bayesian learning method that identifies the noise level in each part and the subspace where the features lie. In the feature-aware fine step, we iteratively smooth face normals and vertices, while preserving geometric features. Extensive evaluation studies carried out under a broad set of complex noise patterns verify the superiority of our approach as compared to the state-of-the-art schemes, in terms of reconstruction quality and computational complexity. |
|---|---|
| AbstractList | The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different characteristics due to variable environmental factors (e.g., lighting conditions, orientation of the scanning device). In this work, we introduce a novel coarse-to-fine graph spectral processing approach that exploits the fact that the sharp features reside in a low dimensional structure hidden in the noisy 3D dataset. In the coarse step, the mesh is processed in parts, using a model based Bayesian learning method that identifies the noise level in each part and the subspace where the features lie. In the feature-aware fine step, we iteratively smooth face normals and vertices, while preserving geometric features. Extensive evaluation studies carried out under a broad set of complex noise patterns verify the superiority of our approach as compared to the state-of-the-art schemes, in terms of reconstruction quality and computational complexity. The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different characteristics due to variable environmental factors (e.g., lighting conditions, orientation of the scanning device). In this work, we introduce a novel coarse-to-fine graph spectral processing approach that exploits the fact that the sharp features reside in a low dimensional structure hidden in the noisy 3D dataset. In the coarse step, the mesh is processed in parts, using a model based Bayesian learning method that identifies the noise level in each part and the subspace where the features lie. In the feature-aware fine step, we iteratively smooth face normals and vertices, while preserving geometric features. Extensive evaluation studies carried out under a broad set of complex noise patterns verify the superiority of our approach as compared to the state-of-the-art schemes, in terms of reconstruction quality and computational complexity.The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different characteristics due to variable environmental factors (e.g., lighting conditions, orientation of the scanning device). In this work, we introduce a novel coarse-to-fine graph spectral processing approach that exploits the fact that the sharp features reside in a low dimensional structure hidden in the noisy 3D dataset. In the coarse step, the mesh is processed in parts, using a model based Bayesian learning method that identifies the noise level in each part and the subspace where the features lie. In the feature-aware fine step, we iteratively smooth face normals and vertices, while preserving geometric features. Extensive evaluation studies carried out under a broad set of complex noise patterns verify the superiority of our approach as compared to the state-of-the-art schemes, in terms of reconstruction quality and computational complexity. |
| Author | Lalos, Aris S. Moustakas, Konstantinos Arvanitis, Gerasimos Fakotakis, Nikos |
| Author_xml | – sequence: 1 givenname: Gerasimos orcidid: 0000-0001-8149-5188 surname: Arvanitis fullname: Arvanitis, Gerasimos email: arvanitis@ece.upatras.gr organization: Department of Electrical and Computer Engineering, University of Patras, Rio, Patras, Greece – sequence: 2 givenname: Aris S. orcidid: 0000-0003-0511-9302 surname: Lalos fullname: Lalos, Aris S. email: aris.lalos@ece.upatras.gr organization: Department of Electrical and Computer Engineering, University of Patras, Rio, Patras, Greece – sequence: 3 givenname: Konstantinos orcidid: 0000-0001-8545-3110 surname: Moustakas fullname: Moustakas, Konstantinos email: moustakas@ece.upatras.gr organization: Department of Electrical and Computer Engineering, University of Patras, Rio, Patras, Greece – sequence: 4 givenname: Nikos surname: Fakotakis fullname: Fakotakis, Nikos email: fakotaki@upatras.gr organization: Department of Electrical and Computer Engineering, University of Patras, Rio, Patras, Greece |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994513$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1LxDAQhoMofv8AEaTgxUvXSdI0yVFXXQVFwY9rSNuJVrrNmrSC_96WXT148DQz8DzDMO8OWW99i4QcUJhQCvr06WU6mzCgasIUMM3yNbJNdUZTEJCvDz1ImbKc5VtkJ8Z3AJplSm-SLaa1zgTl2-TiCm3XB0weAkYMn3X7mtxhfEsusPV1HMdzG7FKfJvMgl28JY8LLLtgm8HwJcYR2SMbzjYR91d1lzxfXT5Nr9Pb-9nN9Ow2LXmmu5Q6zSRIJbVjheA2R1VklVUMEGhhK-YkVq5kosKiyLSCQrvMVdRaYbVwyHfJyXLvIviPHmNn5nUssWlsi76PhkGuONcgYUCP_6Dvvg_tcJ1hVAqutNB8oI5WVF_MsTKLUM9t-DI__xkAuQTK4GMM6ExZd7arfTu8oG4MBTMmYcYkzJiEWSUxmPSP-bP8P-dw6dSI-MsrpriQOf8GxRaStg |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1109_TVCG_2021_3088118 crossref_primary_10_3390_diagnostics14171979 crossref_primary_10_1016_j_cad_2019_102804 crossref_primary_10_1016_j_cad_2021_103088 crossref_primary_10_1016_j_cad_2019_102807 crossref_primary_10_1016_j_cagd_2025_102477 crossref_primary_10_1016_j_cag_2019_05_017 crossref_primary_10_1109_TII_2020_3000491 crossref_primary_10_1109_TVCG_2019_2944357 crossref_primary_10_1007_s40745_020_00301_0 crossref_primary_10_1016_j_cmpb_2024_108061 crossref_primary_10_1109_ACCESS_2019_2894533 crossref_primary_10_1109_TMM_2021_3089838 crossref_primary_10_1109_ACCESS_2022_3164714 crossref_primary_10_1109_TII_2020_3003455 crossref_primary_10_1111_cgf_14752 crossref_primary_10_1109_ACCESS_2022_3176961 crossref_primary_10_1109_ACCESS_2020_3023167 crossref_primary_10_1109_TVCG_2020_3045490 crossref_primary_10_1137_21M1397945 crossref_primary_10_1109_TVCG_2020_3001681 crossref_primary_10_1109_TVCG_2021_3110658 crossref_primary_10_1145_3625098 |
| Cites_doi | 10.1016/S0923-5965(02)00147-9 10.1145/2661229.2661276 10.1109/TVCG.2010.264 10.1109/ISSPIT.2015.7394369 10.1111/cgf.12742 10.1109/TVCG.2007.1065 10.1109/TIP.2013.2283400 10.1111/cgf.12245 10.1016/j.gmod.2008.12.002 10.1109/ICCV.2017.569 10.1145/311535.311576 10.1109/LRA.2017.2715378 10.1145/344779.344849 10.1111/j.1467-8659.2008.01122.x 10.1145/2816795.2818068 10.1109/TVCG.2004.1272725 10.1145/2461912.2461965 10.1145/2980179.2980232 10.1016/j.cad.2012.03.001 10.1109/TVCG.2015.2398432 10.1137/141002037 10.1109/ACCESS.2017.2733003 10.1145/344779.344924 10.1145/882262.882368 10.1145/588272.588276 10.1145/218380.218473 10.1109/SMI.2006.21 10.1109/TVCG.2014.2326872 10.1111/j.1467-8659.2004.00770.x 10.1145/1122501.1122504 10.1111/j.1467-8659.2010.01655.x 10.1109/SMI.2006.38 10.1109/TVCG.2009.70 10.1145/2980179.2980225 10.1109/TVCG.2015.2500222 10.1109/LRA.2016.2518242 10.1109/5.58320 10.1109/TMM.2016.2605927 10.1145/882262.882367 10.1016/j.cag.2003.10.002 10.1002/cnm.1630040603 10.1109/TASE.2016.2553449 10.1109/SMI.2003.1199613 10.1145/1073204.1073226 10.1145/1462048.1462052 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TVCG.2018.2802926 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 1527 |
| ExternalDocumentID | 29994513 10_1109_TVCG_2018_2802926 8283576 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: H2020-PHC-2014 RIA project MyAirCoach grantid: 643607 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 AAYXX CITATION 5VS AAYOK AETIX AGSQL AI. AIBXA ALLEH H~9 IFJZH NPM PKN RIC RIG RNI RZB VH1 Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-1f92707879f2b53a6e8b4da820e01bad2f7edfc25debb4980b9f4fd1aa5a95fe3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457824500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Sat Sep 27 22:29:24 EDT 2025 Sun Nov 30 04:23:34 EST 2025 Wed Feb 19 02:36:17 EST 2025 Tue Nov 18 22:21:57 EST 2025 Sat Nov 29 06:05:39 EST 2025 Wed Aug 27 03:06:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-1f92707879f2b53a6e8b4da820e01bad2f7edfc25debb4980b9f4fd1aa5a95fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8149-5188 0000-0001-8545-3110 0000-0003-0511-9302 |
| PMID | 29994513 |
| PQID | 2175389593 |
| PQPubID | 75741 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TVCG_2018_2802926 crossref_citationtrail_10_1109_TVCG_2018_2802926 pubmed_primary_29994513 proquest_miscellaneous_2068339070 proquest_journals_2175389593 ieee_primary_8283576 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | karni (ref53) 2004; 28 ref13 ref15 ref14 ref11 nehab (ref37) 2005; 24 ref17 ref16 ref19 fan (ref5) 2016; 35 (ref52) 2009 ref45 ref48 ref47 svub (ref50) 2010 ref44 sorkine (ref18) 2005 ref43 ref49 ref8 ref7 zhang (ref46) 2011 taubin (ref21) 2000 ref4 ref3 (ref51) 1994 ref6 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 wang (ref42) 2014; 33 hepp (ref2) 2017; abs 1705 9314 wang (ref9) 2016; 35 ref24 ref23 ref26 ref25 ref20 ref22 fan (ref41) 2010; 16 ref28 ref29 wang (ref27) 2015; 34 moench (ref12) 2010 he (ref10) 2013; 32 |
| References_xml | – ident: ref43 doi: 10.1016/S0923-5965(02)00147-9 – year: 2000 ident: ref21 article-title: Geometric Signal Processing on Polygonal Meshes publication-title: STAR Proceedings of Eurographics 2000 – year: 2011 ident: ref46 article-title: Iterative Methods for Computing Eigenvalues and Eigenvectors – volume: 33 start-page: 1 year: 2014 ident: ref42 article-title: Decoupling noises and features via weighted l1-analysis compressed sensing publication-title: ACM Trans Graph doi: 10.1145/2661229.2661276 – ident: ref32 doi: 10.1109/TVCG.2010.264 – ident: ref45 doi: 10.1109/ISSPIT.2015.7394369 – year: 2005 ident: ref18 article-title: Laplacian Mesh Processing publication-title: Eurographics 2005 State of the Art Reports – ident: ref8 doi: 10.1111/cgf.12742 – ident: ref31 doi: 10.1109/TVCG.2007.1065 – ident: ref49 doi: 10.1109/TIP.2013.2283400 – ident: ref35 doi: 10.1111/cgf.12245 – ident: ref11 doi: 10.1016/j.gmod.2008.12.002 – ident: ref1 doi: 10.1109/ICCV.2017.569 – ident: ref15 doi: 10.1145/311535.311576 – ident: ref6 doi: 10.1109/LRA.2017.2715378 – ident: ref7 doi: 10.1145/344779.344849 – ident: ref20 doi: 10.1111/j.1467-8659.2008.01122.x – volume: 34 start-page: 173:1 year: 2015 ident: ref27 article-title: Rolling guidance normal filter for geometric processing publication-title: ACM Trans Graph doi: 10.1145/2816795.2818068 – ident: ref33 doi: 10.1109/TVCG.2004.1272725 – year: 2009 ident: ref52 – volume: abs 1705 9314 year: 2017 ident: ref2 article-title: Plan3d: Viewpoint and trajectory optimization for aerial multi-view stereo reconstruction publication-title: CoRR – volume: 32 start-page: 64:1 year: 2013 ident: ref10 article-title: Mesh denoising via $l_0$ minimization publication-title: ACM Trans Graph doi: 10.1145/2461912.2461965 – volume: 35 start-page: 232:1 year: 2016 ident: ref9 article-title: Mesh denoising via cascaded normal regression publication-title: ACM Trans Graph doi: 10.1145/2980179.2980232 – ident: ref30 doi: 10.1016/j.cad.2012.03.001 – ident: ref36 doi: 10.1109/TVCG.2015.2398432 – ident: ref23 doi: 10.1137/141002037 – ident: ref4 doi: 10.1109/ACCESS.2017.2733003 – ident: ref47 doi: 10.1145/344779.344924 – ident: ref28 doi: 10.1145/882262.882368 – year: 1994 ident: ref51 – ident: ref25 doi: 10.1145/588272.588276 – start-page: 83 year: 2010 ident: ref12 article-title: Staircase-Aware Smoothing of Medical Surface Meshes publication-title: Proc Eurograph Workshop Vis Comput Biol Med – ident: ref14 doi: 10.1145/218380.218473 – ident: ref17 doi: 10.1109/SMI.2006.21 – ident: ref34 doi: 10.1109/TVCG.2014.2326872 – ident: ref24 doi: 10.1111/j.1467-8659.2004.00770.x – ident: ref38 doi: 10.1145/1122501.1122504 – ident: ref19 doi: 10.1111/j.1467-8659.2010.01655.x – ident: ref26 doi: 10.1109/SMI.2006.38 – year: 2010 ident: ref50 article-title: Feature preserving mesh smoothing algorithm based on local normal covariance publication-title: Proc 17th Int Conf Central Eur Comput Graph Vis Comput Vis – volume: 16 start-page: 312 year: 2010 ident: ref41 article-title: Robust feature-preserving mesh denoising based on consistent subneighborhoods publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2009.70 – volume: 35 year: 2016 ident: ref5 article-title: Automated view and path planning for scalable multi-object 3D scanning publication-title: ACM Trans Graph doi: 10.1145/2980179.2980225 – ident: ref40 doi: 10.1109/TVCG.2015.2500222 – ident: ref3 doi: 10.1109/LRA.2016.2518242 – ident: ref22 doi: 10.1109/5.58320 – ident: ref44 doi: 10.1109/TMM.2016.2605927 – ident: ref29 doi: 10.1145/882262.882367 – volume: 28 start-page: 25 year: 2004 ident: ref53 article-title: Compression of soft-body animation sequences publication-title: Comput Graph doi: 10.1016/j.cag.2003.10.002 – ident: ref13 doi: 10.1002/cnm.1630040603 – ident: ref39 doi: 10.1109/TASE.2016.2553449 – ident: ref16 doi: 10.1109/SMI.2003.1199613 – volume: 24 start-page: 536 year: 2005 ident: ref37 article-title: Efficiently combining positions and normals for precise 3D geometry publication-title: ACM Trans Graph doi: 10.1145/1073204.1073226 – ident: ref48 doi: 10.1145/1462048.1462052 |
| SSID | ssj0014489 |
| Score | 2.4165428 |
| Snippet | The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1513 |
| SubjectTerms | Apexes Bayesian analysis Complexity Face Feature extraction Finite element method Image reconstruction level noise estimation Machine learning Noise Noise measurement Noise reduction orthogonal iteration Scanners Solid modeling spectral denoising filtering Spectral smoothing State of the art Surface treatment Three-dimensional displays |
| Title | Feature Preserving Mesh Denoising Based on Graph Spectral Processing |
| URI | https://ieeexplore.ieee.org/document/8283576 https://www.ncbi.nlm.nih.gov/pubmed/29994513 https://www.proquest.com/docview/2175389593 https://www.proquest.com/docview/2068339070 |
| Volume | 25 |
| WOSCitedRecordID | wos000457824500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lb9YwDLe2iQMceI1HYUxB4oTolkf7JT7CxsYBJg4DfbcqTRyYhFr0Pfj7iduu2gGQuFWqm0a2Ezux_TPAK2VasqZ2ZYhWlxX6VHplQ5lNExokbdWIrv_RXly45RI_78CbuRaGiIbkMzrixyGWH_uw5auyY8fgYHaxC7vW2rFWa44Y5GMGjvmFttTZS58imEri8eXXk3NO4nJH2kmNjKNwwwYNTVX-7l8Odubs3v_N8D7cnfxJ8XZUgAewQ91DuHMDZXAfTtnN265IcLoFbw3dN_GJ1t_FKXX9Fd8ViHfZlkXRd-Kc8asFN6XnGxAxlRFkkkfw5ez95cmHcmqeUAZT4aZUCTUj-VhMuq2NX5Brq-izwSepWh91shRT0HWktq3QyRZTlaLyvvZYJzKPYa_rO3oKQnFHYjKtrwNWLVWYpA8hhkrmMSyZAuQ1O5swIYtzg4sfzXDCkNiwBBqWQDNJoIDX8yc_R1iNfxHvM6dnwonJBRxcy6yZFt660Yw86hhtuYCX8-u8ZDgO4jvqt5lGLpwxmDe7Ap6Msp7HztYZq1qZZ3_-53O4nWeGYxLaAextVlt6AbfCr83VenWY9XLpDge9_A33tt3s |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkR74FVKAwWMxAmRNn5knTlCS1vEdsVhQb1Fjj2hlaoE7YPfjydJox4AiVukTBxrxvaM5_ENwFupK7I6L1IfrEoNujp10vo0qibUSMrKHl1_amez4uICv27A-7EWhoi65DM64Mculh9av2ZX2WHB4GB2cgfu5sYo2VdrjTGDeNHAPsPQpira6UMMU2Z4OP9-dMppXMWBKjKFjKRwSwt1bVX-bmF2mubk4f_N8RE8GCxK8aFfAo9hg5onsH0LZ3AHjtnQWy9IcMIFHw7ND3FOy0txTE17xd4C8TFqsyDaRpwygrXgtvTsAxFDIUEkeQrfTj7Nj87SoX1C6rXBVSprVIzlY7FWVa7dhIrKBBdVPmWyckHVlkLtVR6oqgwWWYW1qYN0LneY16R3YbNpG9oDIbknMenK5R5NRQbrzHkfvMniGJZ0AtkNO0s_YItzi4vrsrtjZFiyBEqWQDlIIIF34yc_e2CNfxHvMKdHwoHJCezfyKwctt6yVIw9WjDecgJvxtdx03AkxDXUriNNNim0xnjcJfCsl_U4dtTPaHKpn__5n6_h_tn8fFpOP8--vICtOEvsU9L2YXO1WNNLuOd_ra6Wi1fd6vwNbK7gSw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Preserving+Mesh+Denoising+Based+on+Graph+Spectral+Processing&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Arvanitis%2C+Gerasimos&rft.au=Lalos%2C+Aris+S&rft.au=Moustakas%2C+Konstantinos&rft.au=Fakotakis%2C+Nikos&rft.date=2019-03-01&rft.eissn=1941-0506&rft.volume=25&rft.issue=3&rft.spage=1513&rft_id=info:doi/10.1109%2FTVCG.2018.2802926&rft_id=info%3Apmid%2F29994513&rft.externalDocID=29994513 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |