Modeling of Water Resources Allocation and Water Quality Management for Supporting Regional Sustainability under Uncertainty in an Arid Region

In this study, a scenario-based interval-stochastic fraticle optimization with Laplace criterion (SISFL) method is developed for sustainable water resources allocation and water quality management (WAQM) under multiple uncertainties. SISFL can tackle uncertainties presented as interval parameters an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources management Ročník 31; číslo 12; s. 3699 - 3721
Hlavní autori: Zeng, X. T., Li, Y. P., Huang, G. H., Liu, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.09.2017
Springer Nature B.V
Predmet:
ISSN:0920-4741, 1573-1650
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this study, a scenario-based interval-stochastic fraticle optimization with Laplace criterion (SISFL) method is developed for sustainable water resources allocation and water quality management (WAQM) under multiple uncertainties. SISFL can tackle uncertainties presented as interval parameters and probability distributions; meanwhile, it can also quantify artificial fuzziness such as risk-averse attitude in a decision-making issue. Besides, it can reflect random scenario occurrence under the supposition of no data available. The developed method is applied to a real case of water resources allocation and water quality management in the Kaidu-kongque River Basin, where encounter serve water deficit and water quality degradation simultaneously in Northwest China. Results of water allocation pattern, pollution mitigation scheme, and system benefit under various scenarios are analyzed. The tradeoff between economic activity and water-environment protection with interval necessity levels and Laplace criterions can support policymakers generating an effective and robust manner associated with risk control for WAQM under multiple uncertainties. These discoveries avail local policymakers gain insight into the capacity planning of water-environment to satisfy the basin’s integrity of socio-economic development and eco-environmental sustainability.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-017-1696-4