Small sample pipeline DR defect detection based on smooth variational autoencoder and enhanced detection head faster RCNN

The safe operation of gas pipelines is crucial for the safety of residents’ lives and property. However, accurately detecting defects within these gas pipelines is a challenging task. To improve the accuracy of defect detection in pipeline DR images with small sample sizes, we propose an enhanced Fa...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 55; no. 10; p. 716
Main Authors: Zhang, Ting, You, Tianyang, Liu, Zhaoying, Rehman, Sadaqat Ur, Shi, Yanan, Munshi, Amr
Format: Journal Article
Language:English
Published: Boston Springer Nature B.V 01.06.2025
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The safe operation of gas pipelines is crucial for the safety of residents’ lives and property. However, accurately detecting defects within these gas pipelines is a challenging task. To improve the accuracy of defect detection in pipeline DR images with small sample sizes, we propose an enhanced Faster RCNN model based on a Smooth Variational Autoencoder and Enhanced Detection Head (S-EDH-Faster RCNN). This model leverages a smooth variational autoencoder to reconstruct features and enhances classification scores through an improved detection head, thereby boosting overall detection accuracy. In detail, to address the issue of scarce training samples for new categories, we design a smooth variational autoencoder to reconstruct features that better fit the distribution of training data. Furthermore, to refine classification precision, we present an enhanced detection head that incorporates a convolutional block attention-based center point classification calibration module, which strengthens classification-related portions of the RoI features and adjusts classification scores accordingly. Finally, to effectively learn characteristics of novel class samples, we introduce an adaptive fine-tuning method that adaptively updates key convolutional kernels during the fine-tuning stage, enabling the model to generalize better to novel classes. Experimental results demonstrate that our approach achieves superior detection performance over state-of-the-art models on both the home-made PIP-DET dataset and the publicly available NEU-DET dataset, demonstrating its effectiveness.
AbstractList The safe operation of gas pipelines is crucial for the safety of residents’ lives and property. However, accurately detecting defects within these gas pipelines is a challenging task. To improve the accuracy of defect detection in pipeline DR images with small sample sizes, we propose an enhanced Faster RCNN model based on a Smooth Variational Autoencoder and Enhanced Detection Head (S-EDH-Faster RCNN). This model leverages a smooth variational autoencoder to reconstruct features and enhances classification scores through an improved detection head, thereby boosting overall detection accuracy. In detail, to address the issue of scarce training samples for new categories, we design a smooth variational autoencoder to reconstruct features that better fit the distribution of training data. Furthermore, to refine classification precision, we present an enhanced detection head that incorporates a convolutional block attention-based center point classification calibration module, which strengthens classification-related portions of the RoI features and adjusts classification scores accordingly. Finally, to effectively learn characteristics of novel class samples, we introduce an adaptive fine-tuning method that adaptively updates key convolutional kernels during the fine-tuning stage, enabling the model to generalize better to novel classes. Experimental results demonstrate that our approach achieves superior detection performance over state-of-the-art models on both the home-made PIP-DET dataset and the publicly available NEU-DET dataset, demonstrating its effectiveness.
ArticleNumber 716
Author You, Tianyang
Shi, Yanan
Zhang, Ting
Liu, Zhaoying
Rehman, Sadaqat Ur
Munshi, Amr
Author_xml – sequence: 1
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
– sequence: 2
  givenname: Tianyang
  surname: You
  fullname: You, Tianyang
– sequence: 3
  givenname: Zhaoying
  surname: Liu
  fullname: Liu, Zhaoying
– sequence: 4
  givenname: Sadaqat Ur
  orcidid: 0000-0001-7823-3814
  surname: Rehman
  fullname: Rehman, Sadaqat Ur
– sequence: 5
  givenname: Yanan
  surname: Shi
  fullname: Shi, Yanan
– sequence: 6
  givenname: Amr
  surname: Munshi
  fullname: Munshi, Amr
BookMark eNqFkc1rGzEQxUVJoHbSf6AnQc7bjj72Q8fipmnBOOAk0JsYr2bxmvVqI8mB_PeR7UKhh-b0BvR7o-G9ObsY_UiMfRbwRQDUX6MA3ZgCZFlAVRoo1Ac2E2Wtilqb-oLNwEhdVJX5_ZHNY9wBgFIgZuz1YY_DwCPup4H41E809CPx72vuqKM2ZUlZej_yDUZyPA9x733a8hcMPR5fcOB4SJ7G1jsKHEfHadzi2Gb8r31L6HiHMWVkvVitrtllh0OkT3_0ij39uH1c_CyW93e_Ft-WRau0SYUgUZcaZQOEZVk1jTMOBWnUCLWsKika15hWIHVtt0HYVE53iK7Mgcj8pbpiN-e9U_DPB4rJ7vwh5KOjVRJ0Ds4o-Q6llJJGHil5ptrgYwzU2Sn0ewyvVoA9FmHPRdhchD0VYVU2Nf-Y2j6dgksB--F_1jeFrJAU
CitedBy_id crossref_primary_10_3390_s25154535
Cites_doi 10.1109/COASE.2018.8560423
10.1016/j.patcog.2024.110792
10.1007/s10489-024-05388-z
10.1109/TIM.2019.2915404
10.1109/SSCI52147.2023.10371859
10.1109/CVPR52729.2023.00709
10.1109/CVPR42600.2020.00407
10.1007/s10489-022-03595-0
10.1109/TNNLS.2022.3204597
10.1145/3394171.3413832
10.1007/s10489-022-03671-5
10.1016/j.asoc.2020.106333
10.1109/CVPR46437.2021.00450
10.1609/aaai.v36i1.19959
10.1609/aaai.v37i2.25274
10.1016/j.patcog.2023.109904
10.1109/ICCV51070.2023.01737
10.1109/TII.2023.3327341
10.1007/s10489-023-05199-8
10.1109/ICCV48922.2021.00856
10.1109/TII.2022.3204554
10.1109/TCSVT.2021.3088545
10.1109/CVPR52729.2023.01888
10.1109/TPAMI.2016.2577031
10.1609/aaai.v34i07.6957
10.1007/s10489-024-05516-9
10.1109/CVPR46437.2021.00728
10.1016/j.knosys.2023.111079
10.1007/s10489-022-03633-x
10.1109/CVPR42600.2020.00867
10.1109/CVPR52688.2022.00883
10.1109/TNNLS.2022.3230426
10.1109/ICCV.2019.00851
10.1609/aaai.v37i1.25216
10.1109/ICCV.2019.01002
10.1109/TII.2022.3216900
10.1109/CVPR46437.2021.00727
10.1049/trit.2019.0019
10.1016/j.ins.2022.10.052
10.1609/aaai.v37i1.25153
10.1109/ICRA48891.2023.10160283
10.1137/1.9781611975673.71
10.1007/978-3-031-20053-3_18
10.1016/j.inffus.2024.102307
10.1109/TNNLS.2022.3152245
10.1109/TPAMI.2024.3357847
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Jun 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright Springer Nature B.V. Jun 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-025-06590-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_025_06590_3
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77I
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~A9
~EX
7SC
8FD
AESKC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-1e1754a280ea55688d9da1e4a4a07266218d89c1aefcfba0b6d4faad50482ead3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480578400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:55:55 EST 2025
Wed Nov 05 14:45:53 EST 2025
Tue Nov 18 22:42:17 EST 2025
Sat Nov 29 07:28:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-1e1754a280ea55688d9da1e4a4a07266218d89c1aefcfba0b6d4faad50482ead3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7823-3814
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10489-025-06590-3.pdf
PQID 3203332922
PQPubID 326365
ParticipantIDs proquest_journals_3204104932
proquest_journals_3203332922
crossref_primary_10_1007_s10489_025_06590_3
crossref_citationtrail_10_1007_s10489_025_06590_3
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 6590_CR32
6590_CR30
B Song (6590_CR10) 2024; 54
6590_CR36
T Liu (6590_CR4) 2024; 35
6590_CR34
6590_CR33
R Bai (6590_CR35) 2023; 623
6590_CR39
6590_CR38
6590_CR37
M Cheng (6590_CR16) 2021; 32
Y He (6590_CR56) 2019; 69
Y Gong (6590_CR5) 2024; 54
6590_CR43
6590_CR42
6590_CR40
6590_CR47
6590_CR46
6590_CR45
J Xu (6590_CR9) 2024; 54
6590_CR44
6590_CR49
D Shan (6590_CR52) 2022; 19
6590_CR48
R Ding (6590_CR57) 2019; 4
Z Yu (6590_CR1) 2023; 53
M Luo (6590_CR51) 2022; 19
6590_CR8
D Qi (6590_CR7) 2023; 35
6590_CR50
6590_CR2
6590_CR3
6590_CR53
6590_CR14
6590_CR58
6590_CR13
6590_CR11
G Zhang (6590_CR25) 2022; 45
6590_CR55
6590_CR18
6590_CR17
6590_CR15
6590_CR59
S Ren (6590_CR41) 2016; 39
P Chen (6590_CR31) 2019; 51
Y Xiao (6590_CR54) 2022; 45
6590_CR21
6590_CR20
6590_CR24
6590_CR23
6590_CR22
Y Meng (6590_CR6) 2023; 53
6590_CR29
6590_CR28
6590_CR27
6590_CR26
6590_CR19
A Vettoruzzo (6590_CR12) 2024; 46
References_xml – ident: 6590_CR58
  doi: 10.1109/COASE.2018.8560423
– volume: 45
  start-page: 12832
  issue: 11
  year: 2022
  ident: 6590_CR25
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: 6590_CR30
  doi: 10.1016/j.patcog.2024.110792
– volume: 54
  start-page: 4077
  issue: 5
  year: 2024
  ident: 6590_CR9
  publication-title: Appl Intell
  doi: 10.1007/s10489-024-05388-z
– volume: 69
  start-page: 1493
  issue: 4
  year: 2019
  ident: 6590_CR56
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2915404
– ident: 6590_CR50
– ident: 6590_CR29
– ident: 6590_CR48
  doi: 10.1109/SSCI52147.2023.10371859
– ident: 6590_CR17
  doi: 10.1109/CVPR52729.2023.00709
– ident: 6590_CR53
  doi: 10.1109/CVPR42600.2020.00407
– ident: 6590_CR11
– ident: 6590_CR2
  doi: 10.1007/s10489-022-03595-0
– ident: 6590_CR38
– volume: 35
  start-page: 5435
  issue: 4
  year: 2023
  ident: 6590_CR7
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2022.3204597
– ident: 6590_CR15
  doi: 10.1145/3394171.3413832
– volume: 45
  start-page: 3090
  issue: 3
  year: 2022
  ident: 6590_CR54
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 53
  start-page: 7022
  issue: 6
  year: 2023
  ident: 6590_CR6
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03671-5
– ident: 6590_CR34
  doi: 10.1016/j.asoc.2020.106333
– ident: 6590_CR49
  doi: 10.1109/CVPR46437.2021.00450
– ident: 6590_CR18
  doi: 10.1609/aaai.v36i1.19959
– ident: 6590_CR14
  doi: 10.1609/aaai.v37i2.25274
– ident: 6590_CR43
  doi: 10.1016/j.patcog.2023.109904
– ident: 6590_CR42
  doi: 10.1109/ICCV51070.2023.01737
– ident: 6590_CR3
  doi: 10.1109/TII.2023.3327341
– volume: 54
  start-page: 375
  issue: 1
  year: 2024
  ident: 6590_CR5
  publication-title: Appl Intell
  doi: 10.1007/s10489-023-05199-8
– ident: 6590_CR20
  doi: 10.1109/ICCV48922.2021.00856
– volume: 19
  start-page: 6883
  issue: 5
  year: 2022
  ident: 6590_CR51
  publication-title: IEEE Trans Indust Inf
  doi: 10.1109/TII.2022.3204554
– volume: 32
  start-page: 2158
  issue: 4
  year: 2021
  ident: 6590_CR16
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2021.3088545
– ident: 6590_CR39
– ident: 6590_CR24
  doi: 10.1109/CVPR52729.2023.01888
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  ident: 6590_CR41
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– ident: 6590_CR46
  doi: 10.1609/aaai.v34i07.6957
– volume: 54
  start-page: 6592
  issue: 8
  year: 2024
  ident: 6590_CR10
  publication-title: Appl Intell
  doi: 10.1007/s10489-024-05516-9
– ident: 6590_CR23
  doi: 10.1109/CVPR46437.2021.00728
– ident: 6590_CR27
  doi: 10.1016/j.knosys.2023.111079
– volume: 53
  start-page: 6344
  issue: 6
  year: 2023
  ident: 6590_CR1
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03633-x
– ident: 6590_CR28
  doi: 10.1109/CVPR42600.2020.00867
– ident: 6590_CR47
  doi: 10.1109/CVPR52688.2022.00883
– volume: 35
  start-page: 8510
  issue: 6
  year: 2024
  ident: 6590_CR4
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2022.3230426
– ident: 6590_CR32
– ident: 6590_CR36
– ident: 6590_CR55
  doi: 10.1109/ICCV.2019.00851
– ident: 6590_CR44
  doi: 10.1609/aaai.v37i1.25216
– ident: 6590_CR13
  doi: 10.1109/ICCV.2019.01002
– volume: 19
  start-page: 8072
  issue: 7
  year: 2022
  ident: 6590_CR52
  publication-title: IEEE Trans Indust Inf
  doi: 10.1109/TII.2022.3216900
– ident: 6590_CR45
  doi: 10.1109/CVPR46437.2021.00727
– volume: 4
  start-page: 110
  issue: 2
  year: 2019
  ident: 6590_CR57
  publication-title: CAAI Transactions on Intelligence Technology
  doi: 10.1049/trit.2019.0019
– ident: 6590_CR26
– volume: 623
  start-page: 40
  year: 2023
  ident: 6590_CR35
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.10.052
– ident: 6590_CR19
  doi: 10.1609/aaai.v37i1.25153
– ident: 6590_CR21
  doi: 10.1109/ICRA48891.2023.10160283
– ident: 6590_CR40
  doi: 10.1137/1.9781611975673.71
– ident: 6590_CR59
  doi: 10.1007/978-3-031-20053-3_18
– ident: 6590_CR22
  doi: 10.1016/j.inffus.2024.102307
– ident: 6590_CR8
  doi: 10.1109/TNNLS.2022.3152245
– ident: 6590_CR37
– ident: 6590_CR33
– volume: 46
  start-page: 4763
  issue: 7
  year: 2024
  ident: 6590_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2024.3357847
– volume: 51
  start-page: 2512
  issue: 4
  year: 2019
  ident: 6590_CR31
  publication-title: IEEE Trans Syst
SSID ssj0003301
Score 2.3934824
Snippet The safe operation of gas pipelines is crucial for the safety of residents’ lives and property. However, accurately detecting defects within these gas...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 716
SubjectTerms Accuracy
Adaptive sampling
Classification
Datasets
Defects
Gas pipelines
Title Small sample pipeline DR defect detection based on smooth variational autoencoder and enhanced detection head faster RCNN
URI https://www.proquest.com/docview/3203332922
https://www.proquest.com/docview/3204104932
Volume 55
WOSCitedRecordID wos001480578400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jePDi_MTplBy8aaFNszY5ynR4kCGbjt3Ka5LiYOvG2g38731pu-nACTu10OaDl_eV5L3fI-TOQKhQNaIgxfa0SgruSNNWjqtiP9EcRJnHPXwNez0xGsm3GnnYeYNvk9y4DethbcfeAaLWQIXrBWWy1mC4Ubu4MS_K4-GGwgkCOaoyZP7uYtsKbSvhwrJ0G_vN6ZgcVR4kfSyX_ITUTHpKGuvqDLQS1jPyNZjCZEIzsPi_dD6e28xzQ5_6VBsbw4GPvIjDSqk1ZZriSzad4crRFW6gq0NCCst8ZsEuNfYNqaYm_SyCBn41R32uaQIWcoH2O73eOfnoPr93Xpyq0IKjfC5zxzPoRHBgwjVgEcmElho8w4GDG6IFRzdAC6k8MIlKYnDjQPMEQLeRCgyH8C9IPZ2l5pJQGcYmNCG4geJcSwClvEAJMEIxmRjWJN6a8JGqUMhtMYxJ9IOfbGkbIW2jgraR3yT3mzbzEoPj379b6_WMKnnMIp8hf_hMMrbrM8eO0Je92musa3LISiZwXK9F6vliaW7IgVrl42xxW_DnNzaH3SM
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+sample+pipeline+DR+defect+detection+based+on+smooth+variational+autoencoder+and+enhanced+detection+head+faster+RCNN&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=8&rft.spage=716&rft_id=info:doi/10.1007%2Fs10489-025-06590-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon