Small sample pipeline DR defect detection based on smooth variational autoencoder and enhanced detection head faster RCNN
The safe operation of gas pipelines is crucial for the safety of residents’ lives and property. However, accurately detecting defects within these gas pipelines is a challenging task. To improve the accuracy of defect detection in pipeline DR images with small sample sizes, we propose an enhanced Fa...
Saved in:
| Published in: | Applied intelligence (Dordrecht, Netherlands) Vol. 55; no. 10; p. 716 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer Nature B.V
01.06.2025
|
| Subjects: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The safe operation of gas pipelines is crucial for the safety of residents’ lives and property. However, accurately detecting defects within these gas pipelines is a challenging task. To improve the accuracy of defect detection in pipeline DR images with small sample sizes, we propose an enhanced Faster RCNN model based on a Smooth Variational Autoencoder and Enhanced Detection Head (S-EDH-Faster RCNN). This model leverages a smooth variational autoencoder to reconstruct features and enhances classification scores through an improved detection head, thereby boosting overall detection accuracy. In detail, to address the issue of scarce training samples for new categories, we design a smooth variational autoencoder to reconstruct features that better fit the distribution of training data. Furthermore, to refine classification precision, we present an enhanced detection head that incorporates a convolutional block attention-based center point classification calibration module, which strengthens classification-related portions of the RoI features and adjusts classification scores accordingly. Finally, to effectively learn characteristics of novel class samples, we introduce an adaptive fine-tuning method that adaptively updates key convolutional kernels during the fine-tuning stage, enabling the model to generalize better to novel classes. Experimental results demonstrate that our approach achieves superior detection performance over state-of-the-art models on both the home-made PIP-DET dataset and the publicly available NEU-DET dataset, demonstrating its effectiveness. |
|---|---|
| AbstractList | The safe operation of gas pipelines is crucial for the safety of residents’ lives and property. However, accurately detecting defects within these gas pipelines is a challenging task. To improve the accuracy of defect detection in pipeline DR images with small sample sizes, we propose an enhanced Faster RCNN model based on a Smooth Variational Autoencoder and Enhanced Detection Head (S-EDH-Faster RCNN). This model leverages a smooth variational autoencoder to reconstruct features and enhances classification scores through an improved detection head, thereby boosting overall detection accuracy. In detail, to address the issue of scarce training samples for new categories, we design a smooth variational autoencoder to reconstruct features that better fit the distribution of training data. Furthermore, to refine classification precision, we present an enhanced detection head that incorporates a convolutional block attention-based center point classification calibration module, which strengthens classification-related portions of the RoI features and adjusts classification scores accordingly. Finally, to effectively learn characteristics of novel class samples, we introduce an adaptive fine-tuning method that adaptively updates key convolutional kernels during the fine-tuning stage, enabling the model to generalize better to novel classes. Experimental results demonstrate that our approach achieves superior detection performance over state-of-the-art models on both the home-made PIP-DET dataset and the publicly available NEU-DET dataset, demonstrating its effectiveness. |
| ArticleNumber | 716 |
| Author | You, Tianyang Shi, Yanan Zhang, Ting Liu, Zhaoying Rehman, Sadaqat Ur Munshi, Amr |
| Author_xml | – sequence: 1 givenname: Ting surname: Zhang fullname: Zhang, Ting – sequence: 2 givenname: Tianyang surname: You fullname: You, Tianyang – sequence: 3 givenname: Zhaoying surname: Liu fullname: Liu, Zhaoying – sequence: 4 givenname: Sadaqat Ur orcidid: 0000-0001-7823-3814 surname: Rehman fullname: Rehman, Sadaqat Ur – sequence: 5 givenname: Yanan surname: Shi fullname: Shi, Yanan – sequence: 6 givenname: Amr surname: Munshi fullname: Munshi, Amr |
| BookMark | eNqFkc1rGzEQxUVJoHbSf6AnQc7bjj72Q8fipmnBOOAk0JsYr2bxmvVqI8mB_PeR7UKhh-b0BvR7o-G9ObsY_UiMfRbwRQDUX6MA3ZgCZFlAVRoo1Ac2E2Wtilqb-oLNwEhdVJX5_ZHNY9wBgFIgZuz1YY_DwCPup4H41E809CPx72vuqKM2ZUlZej_yDUZyPA9x733a8hcMPR5fcOB4SJ7G1jsKHEfHadzi2Gb8r31L6HiHMWVkvVitrtllh0OkT3_0ij39uH1c_CyW93e_Ft-WRau0SYUgUZcaZQOEZVk1jTMOBWnUCLWsKika15hWIHVtt0HYVE53iK7Mgcj8pbpiN-e9U_DPB4rJ7vwh5KOjVRJ0Ds4o-Q6llJJGHil5ptrgYwzU2Sn0ewyvVoA9FmHPRdhchD0VYVU2Nf-Y2j6dgksB--F_1jeFrJAU |
| CitedBy_id | crossref_primary_10_3390_s25154535 |
| Cites_doi | 10.1109/COASE.2018.8560423 10.1016/j.patcog.2024.110792 10.1007/s10489-024-05388-z 10.1109/TIM.2019.2915404 10.1109/SSCI52147.2023.10371859 10.1109/CVPR52729.2023.00709 10.1109/CVPR42600.2020.00407 10.1007/s10489-022-03595-0 10.1109/TNNLS.2022.3204597 10.1145/3394171.3413832 10.1007/s10489-022-03671-5 10.1016/j.asoc.2020.106333 10.1109/CVPR46437.2021.00450 10.1609/aaai.v36i1.19959 10.1609/aaai.v37i2.25274 10.1016/j.patcog.2023.109904 10.1109/ICCV51070.2023.01737 10.1109/TII.2023.3327341 10.1007/s10489-023-05199-8 10.1109/ICCV48922.2021.00856 10.1109/TII.2022.3204554 10.1109/TCSVT.2021.3088545 10.1109/CVPR52729.2023.01888 10.1109/TPAMI.2016.2577031 10.1609/aaai.v34i07.6957 10.1007/s10489-024-05516-9 10.1109/CVPR46437.2021.00728 10.1016/j.knosys.2023.111079 10.1007/s10489-022-03633-x 10.1109/CVPR42600.2020.00867 10.1109/CVPR52688.2022.00883 10.1109/TNNLS.2022.3230426 10.1109/ICCV.2019.00851 10.1609/aaai.v37i1.25216 10.1109/ICCV.2019.01002 10.1109/TII.2022.3216900 10.1109/CVPR46437.2021.00727 10.1049/trit.2019.0019 10.1016/j.ins.2022.10.052 10.1609/aaai.v37i1.25153 10.1109/ICRA48891.2023.10160283 10.1137/1.9781611975673.71 10.1007/978-3-031-20053-3_18 10.1016/j.inffus.2024.102307 10.1109/TNNLS.2022.3152245 10.1109/TPAMI.2024.3357847 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Jun 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Jun 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10489-025-06590-3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| ExternalDocumentID | 10_1007_s10489_025_06590_3 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77I 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~A9 ~EX 7SC 8FD AESKC JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c349t-1e1754a280ea55688d9da1e4a4a07266218d89c1aefcfba0b6d4faad50482ead3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480578400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:55:55 EST 2025 Wed Nov 05 14:45:53 EST 2025 Tue Nov 18 22:42:17 EST 2025 Sat Nov 29 07:28:32 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-1e1754a280ea55688d9da1e4a4a07266218d89c1aefcfba0b6d4faad50482ead3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7823-3814 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10489-025-06590-3.pdf |
| PQID | 3203332922 |
| PQPubID | 326365 |
| ParticipantIDs | proquest_journals_3204104932 proquest_journals_3203332922 crossref_primary_10_1007_s10489_025_06590_3 crossref_citationtrail_10_1007_s10489_025_06590_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | 6590_CR32 6590_CR30 B Song (6590_CR10) 2024; 54 6590_CR36 T Liu (6590_CR4) 2024; 35 6590_CR34 6590_CR33 R Bai (6590_CR35) 2023; 623 6590_CR39 6590_CR38 6590_CR37 M Cheng (6590_CR16) 2021; 32 Y He (6590_CR56) 2019; 69 Y Gong (6590_CR5) 2024; 54 6590_CR43 6590_CR42 6590_CR40 6590_CR47 6590_CR46 6590_CR45 J Xu (6590_CR9) 2024; 54 6590_CR44 6590_CR49 D Shan (6590_CR52) 2022; 19 6590_CR48 R Ding (6590_CR57) 2019; 4 Z Yu (6590_CR1) 2023; 53 M Luo (6590_CR51) 2022; 19 6590_CR8 D Qi (6590_CR7) 2023; 35 6590_CR50 6590_CR2 6590_CR3 6590_CR53 6590_CR14 6590_CR58 6590_CR13 6590_CR11 G Zhang (6590_CR25) 2022; 45 6590_CR55 6590_CR18 6590_CR17 6590_CR15 6590_CR59 S Ren (6590_CR41) 2016; 39 P Chen (6590_CR31) 2019; 51 Y Xiao (6590_CR54) 2022; 45 6590_CR21 6590_CR20 6590_CR24 6590_CR23 6590_CR22 Y Meng (6590_CR6) 2023; 53 6590_CR29 6590_CR28 6590_CR27 6590_CR26 6590_CR19 A Vettoruzzo (6590_CR12) 2024; 46 |
| References_xml | – ident: 6590_CR58 doi: 10.1109/COASE.2018.8560423 – volume: 45 start-page: 12832 issue: 11 year: 2022 ident: 6590_CR25 publication-title: IEEE Trans Pattern Anal Mach Intell – ident: 6590_CR30 doi: 10.1016/j.patcog.2024.110792 – volume: 54 start-page: 4077 issue: 5 year: 2024 ident: 6590_CR9 publication-title: Appl Intell doi: 10.1007/s10489-024-05388-z – volume: 69 start-page: 1493 issue: 4 year: 2019 ident: 6590_CR56 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2915404 – ident: 6590_CR50 – ident: 6590_CR29 – ident: 6590_CR48 doi: 10.1109/SSCI52147.2023.10371859 – ident: 6590_CR17 doi: 10.1109/CVPR52729.2023.00709 – ident: 6590_CR53 doi: 10.1109/CVPR42600.2020.00407 – ident: 6590_CR11 – ident: 6590_CR2 doi: 10.1007/s10489-022-03595-0 – ident: 6590_CR38 – volume: 35 start-page: 5435 issue: 4 year: 2023 ident: 6590_CR7 publication-title: IEEE Trans Neural Networks Learn Syst doi: 10.1109/TNNLS.2022.3204597 – ident: 6590_CR15 doi: 10.1145/3394171.3413832 – volume: 45 start-page: 3090 issue: 3 year: 2022 ident: 6590_CR54 publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 53 start-page: 7022 issue: 6 year: 2023 ident: 6590_CR6 publication-title: Appl Intell doi: 10.1007/s10489-022-03671-5 – ident: 6590_CR34 doi: 10.1016/j.asoc.2020.106333 – ident: 6590_CR49 doi: 10.1109/CVPR46437.2021.00450 – ident: 6590_CR18 doi: 10.1609/aaai.v36i1.19959 – ident: 6590_CR14 doi: 10.1609/aaai.v37i2.25274 – ident: 6590_CR43 doi: 10.1016/j.patcog.2023.109904 – ident: 6590_CR42 doi: 10.1109/ICCV51070.2023.01737 – ident: 6590_CR3 doi: 10.1109/TII.2023.3327341 – volume: 54 start-page: 375 issue: 1 year: 2024 ident: 6590_CR5 publication-title: Appl Intell doi: 10.1007/s10489-023-05199-8 – ident: 6590_CR20 doi: 10.1109/ICCV48922.2021.00856 – volume: 19 start-page: 6883 issue: 5 year: 2022 ident: 6590_CR51 publication-title: IEEE Trans Indust Inf doi: 10.1109/TII.2022.3204554 – volume: 32 start-page: 2158 issue: 4 year: 2021 ident: 6590_CR16 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2021.3088545 – ident: 6590_CR39 – ident: 6590_CR24 doi: 10.1109/CVPR52729.2023.01888 – volume: 39 start-page: 1137 issue: 6 year: 2016 ident: 6590_CR41 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – ident: 6590_CR46 doi: 10.1609/aaai.v34i07.6957 – volume: 54 start-page: 6592 issue: 8 year: 2024 ident: 6590_CR10 publication-title: Appl Intell doi: 10.1007/s10489-024-05516-9 – ident: 6590_CR23 doi: 10.1109/CVPR46437.2021.00728 – ident: 6590_CR27 doi: 10.1016/j.knosys.2023.111079 – volume: 53 start-page: 6344 issue: 6 year: 2023 ident: 6590_CR1 publication-title: Appl Intell doi: 10.1007/s10489-022-03633-x – ident: 6590_CR28 doi: 10.1109/CVPR42600.2020.00867 – ident: 6590_CR47 doi: 10.1109/CVPR52688.2022.00883 – volume: 35 start-page: 8510 issue: 6 year: 2024 ident: 6590_CR4 publication-title: IEEE Trans Neural Networks Learn Syst doi: 10.1109/TNNLS.2022.3230426 – ident: 6590_CR32 – ident: 6590_CR36 – ident: 6590_CR55 doi: 10.1109/ICCV.2019.00851 – ident: 6590_CR44 doi: 10.1609/aaai.v37i1.25216 – ident: 6590_CR13 doi: 10.1109/ICCV.2019.01002 – volume: 19 start-page: 8072 issue: 7 year: 2022 ident: 6590_CR52 publication-title: IEEE Trans Indust Inf doi: 10.1109/TII.2022.3216900 – ident: 6590_CR45 doi: 10.1109/CVPR46437.2021.00727 – volume: 4 start-page: 110 issue: 2 year: 2019 ident: 6590_CR57 publication-title: CAAI Transactions on Intelligence Technology doi: 10.1049/trit.2019.0019 – ident: 6590_CR26 – volume: 623 start-page: 40 year: 2023 ident: 6590_CR35 publication-title: Inf Sci doi: 10.1016/j.ins.2022.10.052 – ident: 6590_CR19 doi: 10.1609/aaai.v37i1.25153 – ident: 6590_CR21 doi: 10.1109/ICRA48891.2023.10160283 – ident: 6590_CR40 doi: 10.1137/1.9781611975673.71 – ident: 6590_CR59 doi: 10.1007/978-3-031-20053-3_18 – ident: 6590_CR22 doi: 10.1016/j.inffus.2024.102307 – ident: 6590_CR8 doi: 10.1109/TNNLS.2022.3152245 – ident: 6590_CR37 – ident: 6590_CR33 – volume: 46 start-page: 4763 issue: 7 year: 2024 ident: 6590_CR12 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2024.3357847 – volume: 51 start-page: 2512 issue: 4 year: 2019 ident: 6590_CR31 publication-title: IEEE Trans Syst |
| SSID | ssj0003301 |
| Score | 2.3934824 |
| Snippet | The safe operation of gas pipelines is crucial for the safety of residents’ lives and property. However, accurately detecting defects within these gas... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 716 |
| SubjectTerms | Accuracy Adaptive sampling Classification Datasets Defects Gas pipelines |
| Title | Small sample pipeline DR defect detection based on smooth variational autoencoder and enhanced detection head faster RCNN |
| URI | https://www.proquest.com/docview/3203332922 https://www.proquest.com/docview/3204104932 |
| Volume | 55 |
| WOSCitedRecordID | wos001480578400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jePDi_MTplBy8aaFNszY5ynR4kCGbjt3Ka5LiYOvG2g38731pu-nACTu10OaDl_eV5L3fI-TOQKhQNaIgxfa0SgruSNNWjqtiP9EcRJnHPXwNez0xGsm3GnnYeYNvk9y4DethbcfeAaLWQIXrBWWy1mC4Ubu4MS_K4-GGwgkCOaoyZP7uYtsKbSvhwrJ0G_vN6ZgcVR4kfSyX_ITUTHpKGuvqDLQS1jPyNZjCZEIzsPi_dD6e28xzQ5_6VBsbw4GPvIjDSqk1ZZriSzad4crRFW6gq0NCCst8ZsEuNfYNqaYm_SyCBn41R32uaQIWcoH2O73eOfnoPr93Xpyq0IKjfC5zxzPoRHBgwjVgEcmElho8w4GDG6IFRzdAC6k8MIlKYnDjQPMEQLeRCgyH8C9IPZ2l5pJQGcYmNCG4geJcSwClvEAJMEIxmRjWJN6a8JGqUMhtMYxJ9IOfbGkbIW2jgraR3yT3mzbzEoPj379b6_WMKnnMIp8hf_hMMrbrM8eO0Je92musa3LISiZwXK9F6vliaW7IgVrl42xxW_DnNzaH3SM |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+sample+pipeline+DR+defect+detection+based+on+smooth+variational+autoencoder+and+enhanced+detection+head+faster+RCNN&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=8&rft.spage=716&rft_id=info:doi/10.1007%2Fs10489-025-06590-3&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |