Relaxation methods for mixed-integer optimal control of partial differential equations

We consider integer-restricted optimal control of systems governed by abstract semilinear evolution equations. This includes the problem of optimal control design for certain distributed parameter systems endowed with multiple actuators, where the task is to minimize costs associated with the dynami...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 55; číslo 1; s. 197 - 225
Hlavní autoři: Hante, Falk M., Sager, Sebastian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.05.2013
Springer Nature B.V
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider integer-restricted optimal control of systems governed by abstract semilinear evolution equations. This includes the problem of optimal control design for certain distributed parameter systems endowed with multiple actuators, where the task is to minimize costs associated with the dynamics of the system by choosing, for each instant in time, one of the actuators together with ordinary controls. We consider relaxation techniques that are already used successfully for mixed-integer optimal control of ordinary differential equations. Our analysis yields sufficient conditions such that the optimal value and the optimal state of the relaxed problem can be approximated with arbitrary precision by a control satisfying the integer restrictions. The results are obtained by semigroup theory methods. The approach is constructive and gives rise to a numerical method. We supplement the analysis with numerical experiments.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-012-9518-3