Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors
Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand harsh conditions, e.g., ≥150 °C, is of crucial importance for advanced electronics and electrical power systems. Herein, high-temperature diel...
Uloženo v:
| Vydáno v: | Composites science and technology Ročník 201; s. 108528 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Barking
Elsevier Ltd
05.01.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0266-3538, 1879-1050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand harsh conditions, e.g., ≥150 °C, is of crucial importance for advanced electronics and electrical power systems. Herein, high-temperature dielectric polymer composites composed of polyetherimide (PEI) matrix and hafnium oxide (HfO2) nanoparticles are presented. It is found that the incorporation of HfO2 with a moderate dielectric constant and a wide bandgap improves the dielectric constant and simultaneously reduces the high-field leakage current density of the PEI nanocomposites. As a result, the PEI/HfO2 composites exhibit superior energy storage performance to the current high-temperature engineering polymers at elevated temperatures. Specifically, the nanocomposite with 3 vol% HfO2 displays a discharged energy density of 2.82 J/cm3 at 150 °C, which is 77% higher than neat PEI. This work demonstrates the effectiveness of incorporation of the nanofiller with a medium dielectric constant into the polymer on the improvement of high-temperature capacitive properties of the polymer composites.
[Display omitted] |
|---|---|
| AbstractList | Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand harsh conditions, e.g., ≥150 °C, is of crucial importance for advanced electronics and electrical power systems. Herein, high-temperature dielectric polymer composites composed of polyetherimide (PEI) matrix and hafnium oxide (HfO2) nanoparticles are presented. It is found that the incorporation of HfO2 with a moderate dielectric constant and a wide bandgap improves the dielectric constant and simultaneously reduces the high-field leakage current density of the PEI nanocomposites. As a result, the PEI/HfO2 composites exhibit superior energy storage performance to the current high-temperature engineering polymers at elevated temperatures. Specifically, the nanocomposite with 3 vol% HfO2 displays a discharged energy density of 2.82 J/cm3 at 150 °C, which is 77% higher than neat PEI. This work demonstrates the effectiveness of incorporation of the nanofiller with a medium dielectric constant into the polymer on the improvement of high-temperature capacitive properties of the polymer composites. Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand harsh conditions, e.g., ≥150 °C, is of crucial importance for advanced electronics and electrical power systems. Herein, high-temperature dielectric polymer composites composed of polyetherimide (PEI) matrix and hafnium oxide (HfO2) nanoparticles are presented. It is found that the incorporation of HfO2 with a moderate dielectric constant and a wide bandgap improves the dielectric constant and simultaneously reduces the high-field leakage current density of the PEI nanocomposites. As a result, the PEI/HfO2 composites exhibit superior energy storage performance to the current high-temperature engineering polymers at elevated temperatures. Specifically, the nanocomposite with 3 vol% HfO2 displays a discharged energy density of 2.82 J/cm3 at 150 °C, which is 77% higher than neat PEI. This work demonstrates the effectiveness of incorporation of the nanofiller with a medium dielectric constant into the polymer on the improvement of high-temperature capacitive properties of the polymer composites. [Display omitted] |
| ArticleNumber | 108528 |
| Author | Zhou, Yao Peng, Zongren Li, He Xie, Zongliang Yang, Lijun Zhao, Xuetong Ai, Ding Liao, Ruijin Ren, Lulu Wang, Qing Zhang, Siyu |
| Author_xml | – sequence: 1 givenname: Lulu surname: Ren fullname: Ren, Lulu organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, China – sequence: 2 givenname: Lijun surname: Yang fullname: Yang, Lijun organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, China – sequence: 3 givenname: Siyu surname: Zhang fullname: Zhang, Siyu organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China – sequence: 4 givenname: He orcidid: 0000-0002-4076-7279 surname: Li fullname: Li, He organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA – sequence: 5 givenname: Yao surname: Zhou fullname: Zhou, Yao organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA – sequence: 6 givenname: Ding surname: Ai fullname: Ai, Ding organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA – sequence: 7 givenname: Zongliang orcidid: 0000-0001-5965-332X surname: Xie fullname: Xie, Zongliang organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China – sequence: 8 givenname: Xuetong surname: Zhao fullname: Zhao, Xuetong email: zxt201314@cqu.edu.cn organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, China – sequence: 9 givenname: Zongren surname: Peng fullname: Peng, Zongren organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China – sequence: 10 givenname: Ruijin surname: Liao fullname: Liao, Ruijin organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, China – sequence: 11 givenname: Qing surname: Wang fullname: Wang, Qing email: wang@matse.psu.edu organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA |
| BookMark | eNqNkUtLxDAUhYMoOD7-Q8R1xzymTboSGXzBgBtdhzS9sRnapiYZZf69KeNCXLkKuZx7zr3fPUPHox8BoStKlpTQ6ma7NH6YonEJTLdkhM11WTJ5hBZUirqgpCTHaEFYVRW85PIUncW4JYSIsmYLtN_o8A79HsPY6dFAi1sHPZgUnMFT8BOE5CBib_Hk-_0AAc-BPubAiL9c6vCTfWF41KOfdNaaPtetD7hz712RYMgOOu0CYOv6ARs96TysD_ECnVjdR7j8ec_R28P96_qp2Lw8Pq_vNoXhqzoVtFlVdmWbpmZcNpRrEKXh1hJG6wZ42TTQSMmFJG3V1kK0uuRUM1bpWmiTP-fo-uCbt_nYQUxq63dhzJGKraSglRSEZ9XtQWWCjzGAVXlKnZwfU9CuV5Sombfaql-81cxbHXhnh_qPwxTcoMP-X73rQy9kEJ8OgsoqmM_hQr6Far37h8s3Ajenyg |
| CitedBy_id | crossref_primary_10_1007_s40843_022_2412_2 crossref_primary_10_1680_jsuin_24_00003 crossref_primary_10_1109_TDEI_2023_3298878 crossref_primary_10_1002_adfm_202300555 crossref_primary_10_1016_j_mseb_2025_118795 crossref_primary_10_1088_1361_6463_adbd4c crossref_primary_10_1016_j_est_2025_116401 crossref_primary_10_1039_D4MH00299G crossref_primary_10_1002_macp_202200457 crossref_primary_10_3390_polym14142918 crossref_primary_10_1016_j_ceramint_2025_07_346 crossref_primary_10_1016_j_jallcom_2024_175468 crossref_primary_10_1063_5_0172051 crossref_primary_10_3390_molecules27134289 crossref_primary_10_1002_app_54214 crossref_primary_10_1063_5_0205468 crossref_primary_10_1016_j_mtener_2022_101145 crossref_primary_10_1039_D4EE05689B crossref_primary_10_1016_j_compscitech_2021_108980 crossref_primary_10_1007_s11696_024_03581_5 crossref_primary_10_1016_j_apsusc_2025_162827 crossref_primary_10_1016_j_synthmet_2022_117097 crossref_primary_10_1016_j_ceramint_2022_03_288 crossref_primary_10_1016_j_nanoen_2024_110105 crossref_primary_10_1016_j_mseb_2024_117597 crossref_primary_10_1039_D5NR01685A crossref_primary_10_1063_5_0145879 crossref_primary_10_1016_j_porgcoat_2023_107877 crossref_primary_10_1016_j_compscitech_2025_111194 crossref_primary_10_1002_aenm_202101297 crossref_primary_10_1016_j_jallcom_2023_171308 crossref_primary_10_1063_5_0190323 crossref_primary_10_1016_j_est_2025_116934 crossref_primary_10_1016_j_est_2024_115156 crossref_primary_10_1007_s00289_025_05747_x crossref_primary_10_1016_j_jpowsour_2022_231415 crossref_primary_10_1002_adma_202302392 crossref_primary_10_1016_j_cej_2024_154779 crossref_primary_10_1016_j_cej_2025_160793 crossref_primary_10_3390_coatings13081386 crossref_primary_10_1016_j_surfin_2024_104462 crossref_primary_10_1016_j_compscitech_2022_109421 crossref_primary_10_1016_j_est_2022_105756 crossref_primary_10_1016_j_compscitech_2025_111226 crossref_primary_10_1002_smll_202205247 crossref_primary_10_1039_D4EE02371D crossref_primary_10_1002_adfm_202210050 crossref_primary_10_1016_j_jallcom_2022_166961 crossref_primary_10_1007_s12598_022_02241_5 crossref_primary_10_1016_j_compositesa_2023_107791 crossref_primary_10_1063_5_0209123 crossref_primary_10_1016_j_compscitech_2022_109856 crossref_primary_10_1016_j_cej_2022_140950 crossref_primary_10_1016_j_surfin_2021_101686 crossref_primary_10_1002_adfm_202312238 crossref_primary_10_1016_j_colsurfa_2024_133479 crossref_primary_10_1016_j_progpolymsci_2025_101957 crossref_primary_10_1016_j_mtener_2025_101800 crossref_primary_10_1016_j_ceramint_2023_05_075 crossref_primary_10_1016_j_cej_2025_161063 crossref_primary_10_1002_app_55056 crossref_primary_10_1142_S2010135X25300014 crossref_primary_10_1016_j_compositesb_2025_112777 crossref_primary_10_1016_j_rineng_2024_103722 crossref_primary_10_1002_smll_202405786 crossref_primary_10_1002_macp_202400020 crossref_primary_10_3390_polym14061160 crossref_primary_10_1016_j_apsusc_2025_164504 crossref_primary_10_1016_j_est_2024_114525 crossref_primary_10_1002_pat_70127 crossref_primary_10_1007_s12274_024_6793_0 crossref_primary_10_1002_pc_28634 crossref_primary_10_1016_j_ceramint_2024_08_234 crossref_primary_10_3390_coatings14091193 crossref_primary_10_1016_j_cej_2023_143324 crossref_primary_10_1016_j_jmst_2024_05_046 crossref_primary_10_1016_j_jwpe_2023_104754 crossref_primary_10_1063_5_0080825 crossref_primary_10_1002_adma_202411507 crossref_primary_10_1016_j_jpowsour_2024_235822 crossref_primary_10_1039_D5NR02969D crossref_primary_10_1016_j_cej_2024_158941 crossref_primary_10_1016_j_compscitech_2021_108949 crossref_primary_10_1007_s12598_023_02312_1 crossref_primary_10_1002_adfm_202314910 crossref_primary_10_1016_j_cej_2024_158708 crossref_primary_10_1016_j_est_2023_108930 crossref_primary_10_1016_j_eurpolymj_2025_114044 crossref_primary_10_1016_j_cej_2023_146672 crossref_primary_10_1039_D2NR03753J crossref_primary_10_1002_smll_202202421 crossref_primary_10_1016_j_cej_2023_142068 crossref_primary_10_1016_j_est_2025_117781 crossref_primary_10_1016_j_mtsust_2022_100310 crossref_primary_10_1002_adma_202207580 crossref_primary_10_1007_s42114_021_00329_7 crossref_primary_10_1039_D4SC05437G crossref_primary_10_1016_j_eurpolymj_2025_113904 crossref_primary_10_1007_s40032_024_01146_9 crossref_primary_10_1016_j_est_2024_112524 crossref_primary_10_1016_j_est_2024_114789 crossref_primary_10_1016_j_cej_2024_154056 crossref_primary_10_1002_mame_202100079 crossref_primary_10_1016_j_cej_2022_135431 crossref_primary_10_26599_NR_2025_94907492 crossref_primary_10_15407_spqeo28_02_134 crossref_primary_10_1002_app_54389 crossref_primary_10_1016_j_cej_2022_136925 crossref_primary_10_1016_j_compscitech_2022_109342 crossref_primary_10_1088_1742_6596_2133_1_012002 crossref_primary_10_1002_adma_202401954 crossref_primary_10_1177_09540083211041027 crossref_primary_10_1002_smtd_202401059 crossref_primary_10_1016_j_jmat_2024_100960 crossref_primary_10_1016_j_progpolymsci_2024_101870 crossref_primary_10_1016_j_cej_2025_165855 crossref_primary_10_1007_s40042_024_01094_8 crossref_primary_10_1016_j_jpowsour_2024_235255 crossref_primary_10_1007_s10854_025_15484_6 crossref_primary_10_3390_polym15143088 crossref_primary_10_1002_aenm_202203925 crossref_primary_10_1016_j_cej_2022_138312 crossref_primary_10_1039_D3EE02313C crossref_primary_10_1016_j_matchemphys_2022_126529 crossref_primary_10_1002_adma_202310272 crossref_primary_10_1016_j_polymer_2022_125572 crossref_primary_10_1016_j_mtener_2022_101161 crossref_primary_10_1016_j_cej_2024_157312 crossref_primary_10_1016_j_mtener_2022_101160 crossref_primary_10_1021_acsapm_5c00920 crossref_primary_10_1002_pc_29132 crossref_primary_10_1016_j_cej_2025_160204 crossref_primary_10_1016_j_jpcs_2022_111045 crossref_primary_10_1142_S0217979225500821 crossref_primary_10_1016_j_cej_2023_147581 crossref_primary_10_1016_j_compscitech_2022_109379 crossref_primary_10_1016_j_pmatsci_2023_101208 crossref_primary_10_1016_j_compositesb_2022_109649 crossref_primary_10_1109_TDEI_2024_3394395 crossref_primary_10_3390_coatings15050555 crossref_primary_10_1039_D3MH00907F crossref_primary_10_1039_D4MH01613K crossref_primary_10_1088_1742_6596_2500_1_012008 crossref_primary_10_1002_adfm_202403402 crossref_primary_10_1007_s12274_024_6765_4 crossref_primary_10_1016_j_cej_2024_151458 crossref_primary_10_1021_acsapm_5c02281 crossref_primary_10_1039_D1MH01918J crossref_primary_10_1002_adfm_202214100 crossref_primary_10_1002_adfm_202418466 crossref_primary_10_1002_elan_202100180 crossref_primary_10_3390_ma17143625 crossref_primary_10_1088_1402_4896_adb346 crossref_primary_10_1002_adfm_202401901 crossref_primary_10_1016_j_cej_2025_159343 crossref_primary_10_1016_j_polymer_2023_126397 crossref_primary_10_1016_j_cej_2022_135059 crossref_primary_10_1002_app_54848 crossref_primary_10_1039_D2MH00912A crossref_primary_10_1002_pc_27345 crossref_primary_10_1007_s10118_024_3068_x crossref_primary_10_1039_D4MH01123F crossref_primary_10_1002_adma_202415652 crossref_primary_10_1016_j_nanoen_2022_107314 crossref_primary_10_1016_j_cej_2025_160211 crossref_primary_10_1002_sstr_202500460 crossref_primary_10_1002_smll_202300510 |
| Cites_doi | 10.1016/j.compscitech.2019.107968 10.1109/TPS.2002.805318 10.1016/j.nanoen.2017.12.018 10.1039/C8TA11392K 10.1002/adma.201701864 10.1109/TDEI.2005.1511092 10.1109/TDEI.2012.6215104 10.1016/j.compscitech.2017.08.006 10.1109/TDEI.2018.007637 10.1016/j.pmatsci.2011.08.001 10.1116/1.591472 10.1002/admi.201800096 10.1021/acssuschemeng.8b04370 10.1016/j.compscitech.2018.05.052 10.1021/acsami.8b07705 10.1063/1.4979040 10.1002/adma.201707269 10.1016/j.cej.2020.124443 10.1109/TDEI.2017.006163 10.1002/smtd.201700399 10.1142/S2010135X18500431 10.1002/ange.201710474 10.1002/adma.201900875 10.1002/polb.24399 10.1039/C9EE03603B 10.1002/inf2.12043 10.1016/j.compscitech.2020.108209 10.1016/j.compositesa.2020.106012 10.1007/s11664-014-3440-7 10.1002/aenm.201901826 10.1021/am100146u 10.1049/hve.2020.0076 10.1146/annurev-matsci-070317-124435 10.1038/nature14647 10.1039/C9CS00043G 10.1021/acsami.7b00095 10.1063/5.0009650 10.1016/j.nanoen.2019.104351 10.1016/j.nanoen.2018.10.028 10.1021/jz501831q 10.1039/C6EE03190K 10.1016/j.compscitech.2020.108046 10.1002/aenm.201903881 10.1016/j.compscitech.2019.04.035 10.1002/adma.201805672 10.1049/iet-nde.2018.0002 10.1021/acs.chemrev.5b00495 10.4271/2008-01-2851 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jan 5, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jan 5, 2021 |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1016/j.compscitech.2020.108528 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-1050 |
| ExternalDocumentID | 10_1016_j_compscitech_2020_108528 S0266353820323186 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~G- ~HD .-4 29F 6TJ 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADIYS ADMUD ADNMO AFJKZ AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS T9H VH1 WUQ 7SR 8FD JG9 |
| ID | FETCH-LOGICAL-c349t-1b46f4fbb9238b13ae75c3ff0219be35bbeb883780d6d977da531a226a97aca53 |
| ISICitedReferencesCount | 203 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596316100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-3538 |
| IngestDate | Sun Nov 09 05:57:53 EST 2025 Sat Nov 29 07:21:52 EST 2025 Tue Nov 18 21:44:05 EST 2025 Sat Oct 11 16:50:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | High temperature Hafnium oxide nanoparticles Dielectric properties Polymer nanocomposites Energy storage |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-1b46f4fbb9238b13ae75c3ff0219be35bbeb883780d6d977da531a226a97aca53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5965-332X 0000-0002-4076-7279 |
| PQID | 2487168703 |
| PQPubID | 2045270 |
| ParticipantIDs | proquest_journals_2487168703 crossref_citationtrail_10_1016_j_compscitech_2020_108528 crossref_primary_10_1016_j_compscitech_2020_108528 elsevier_sciencedirect_doi_10_1016_j_compscitech_2020_108528 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-05 |
| PublicationDateYYYYMMDD | 2021-01-05 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Composites science and technology |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Li, Gadinski, Zhang, Zhang, Li, Iagodkine, Haque, Chen, Jackson, Wang (bib14) 2015; 523 Huang, Min, Li, Wang, Lin (bib43) 2017; 24 Azizi, Gadnski, Li, Alsaud, Wang, Wang, Wang, Liu, Chen, Alem, Wang (bib32) 2017; 29 Zhu, Jiang, Huang (bib22) 2019; 179 Chen, Zhou, Luo, Tang, Guo, Zhang (bib39) 2020; 137 Li, Ren, Zhou, Yao, Wang (bib31) 2020; 5 Liu, Zhang, Feng, Zhang, Zhang, Zhang, Wang, Chi, Chen, Lei (bib33) 2020; 389 Zhang, Wang, Litt, Tan, Zhu (bib44) 2018; 130 Irwin, Tan, Cao, Silvi, Carter, Rumler, Garet (bib18) 2008; 1 Liang, Yu, Lv, Zhao, Luo, Yu, Sun, Wong, Zhu (bib27) 2020; 68 Tan, Zhang, Chen, Irwin (bib10) 2014; 43 Dang, Yuan, Zha, Zhou, Li, Hu (bib4) 2012; 57 Li, Xie, Liu, Peng, Ding, Ren, Ai, Reainthippayasakul, Huang, Wang (bib16) 2019; 26 Li, Gadinski, Huang, Ren, Zhou, Ai, Han, Yao, Wang (bib45) 2020; 13 Pan, Li, Chuayprakong, Hsu, Wang (bib11) 2010; 2 Dang, Zheng, Zha (bib30) 2018; 8 Wang, Chen, Li, Niu, Wang, Hong (bib29) 2019; 7 Zhu (bib2) 2014; 5 Chen, Wang, Yuan, Xu, Niu, Wang, Wang (bib47) 2018; 54 Li, Liu, Yang, Li, Dong, Xiong, Wang (bib20) 2018; 164 Ai, Li, Zhou, Ren, Han, Yao, Zhou, Zhao, Xu, Wang (bib35) 2020; 10 Rabuffi, Picci (bib3) 2002; 30 Thakur, Lean, Zhang (bib46) 2017; 110 Tanaka, Kozako, Fuse, Ohki (bib48) 2005; 12 Kerwien, Malandro, Broomall (bib8) 2016 Bright (bib17) 1983 Chi, Gao, Zhang, Zhang, Zhang, Chen, Wang, Lei (bib23) 2018; 7 Zhang, Jiang, Shen, Dan, Li, Lin, Nan, Chen, Shen (bib26) 2018; 30 Wu, Luo, Xie, Liu, Chen, Fu (bib40) 2020; 190 Li, Ren, Ai, Han, Liu, Yao, Wang (bib19) 2020; 2 Fan, Liu, Yang, Li, Zhang, Jiang, Wang (bib13) 2018; 1 Ho, Jow (bib41) 2012; 19 Zhou, Li, Dang, Yang, Shao, Li, Hu, Zeng, He, Wang (bib5) 2018; 30 Bai, Ge, He, Shen, Zhai, Pan (bib24) 2020; 195 Thakur, Gupta (bib49) 2016; 116 Wang, Wang, Yuan, Chen, Niu, Xu, Cheng, Yao, Wang, Wang (bib21) 2018; 44 Zhang, Li, Dong, Liu, Chen, Shen, Nan (bib38) 2018; 5 Zhou, Wang (bib12) 2020; 127 Robertson (bib50) 2000; 18 Chen, Xie, Liu, Li, Wei, Zhang (bib36) 2020; 188 Li, Ai, Ren, Han, Shen, Wang, Chen, Wang (bib15) 2019; 31 Zhang, Li, Tang, Thompson, Zhu (bib42) 2017; 9 He, Wang, Song, Liu, Luo, Deng (bib25) 2017; 151 Luo, Shen, Yu, Wan, Liao, Sun, Wong (bib28) 2017; 10 Ho, Greenbaum (bib9) 2018; 10 Luo, Zhou, Ellingford, Zhang, Chen, Zhou, Zhang, Bowen, Wan (bib37) 2019; 48 Zhu, Zhu, Huang, Chen, Li, He, Jiang (bib34) 2019; 9 Li, Yao, Liu, Zhang, Wang, Wang (bib6) 2018; 48 Gupta, Offenbach, Ronzello, Cao, Boggs, Weiss, Cakmak (bib7) 2017; 55 Li, Liu, Fan, Ai, Peng, Wang (bib1) 2018; 2 Azizi (10.1016/j.compscitech.2020.108528_bib32) 2017; 29 Zhang (10.1016/j.compscitech.2020.108528_bib38) 2018; 5 Huang (10.1016/j.compscitech.2020.108528_bib43) 2017; 24 Wang (10.1016/j.compscitech.2020.108528_bib21) 2018; 44 Gupta (10.1016/j.compscitech.2020.108528_bib7) 2017; 55 Li (10.1016/j.compscitech.2020.108528_bib31) 2020; 5 Ho (10.1016/j.compscitech.2020.108528_bib9) 2018; 10 Thakur (10.1016/j.compscitech.2020.108528_bib49) 2016; 116 Li (10.1016/j.compscitech.2020.108528_bib1) 2018; 2 Zhou (10.1016/j.compscitech.2020.108528_bib12) 2020; 127 Ai (10.1016/j.compscitech.2020.108528_bib35) 2020; 10 Li (10.1016/j.compscitech.2020.108528_bib6) 2018; 48 Luo (10.1016/j.compscitech.2020.108528_bib28) 2017; 10 Zhang (10.1016/j.compscitech.2020.108528_bib42) 2017; 9 Li (10.1016/j.compscitech.2020.108528_bib19) 2020; 2 Zhang (10.1016/j.compscitech.2020.108528_bib44) 2018; 130 Tan (10.1016/j.compscitech.2020.108528_bib10) 2014; 43 Li (10.1016/j.compscitech.2020.108528_bib14) 2015; 523 Dang (10.1016/j.compscitech.2020.108528_bib30) 2018; 8 Luo (10.1016/j.compscitech.2020.108528_bib37) 2019; 48 Li (10.1016/j.compscitech.2020.108528_bib45) 2020; 13 Zhu (10.1016/j.compscitech.2020.108528_bib22) 2019; 179 Bright (10.1016/j.compscitech.2020.108528_bib17) 1983 Liang (10.1016/j.compscitech.2020.108528_bib27) 2020; 68 Liu (10.1016/j.compscitech.2020.108528_bib33) 2020; 389 Robertson (10.1016/j.compscitech.2020.108528_bib50) 2000; 18 Wu (10.1016/j.compscitech.2020.108528_bib40) 2020; 190 Chen (10.1016/j.compscitech.2020.108528_bib36) 2020; 188 Zhou (10.1016/j.compscitech.2020.108528_bib5) 2018; 30 Li (10.1016/j.compscitech.2020.108528_bib16) 2019; 26 Dang (10.1016/j.compscitech.2020.108528_bib4) 2012; 57 Tanaka (10.1016/j.compscitech.2020.108528_bib48) 2005; 12 Pan (10.1016/j.compscitech.2020.108528_bib11) 2010; 2 Chen (10.1016/j.compscitech.2020.108528_bib39) 2020; 137 Ho (10.1016/j.compscitech.2020.108528_bib41) 2012; 19 Chi (10.1016/j.compscitech.2020.108528_bib23) 2018; 7 Fan (10.1016/j.compscitech.2020.108528_bib13) 2018; 1 Wang (10.1016/j.compscitech.2020.108528_bib29) 2019; 7 Zhu (10.1016/j.compscitech.2020.108528_bib2) 2014; 5 Irwin (10.1016/j.compscitech.2020.108528_bib18) 2008; 1 Thakur (10.1016/j.compscitech.2020.108528_bib46) 2017; 110 Kerwien (10.1016/j.compscitech.2020.108528_bib8) 2016 Chen (10.1016/j.compscitech.2020.108528_bib47) 2018; 54 Rabuffi (10.1016/j.compscitech.2020.108528_bib3) 2002; 30 He (10.1016/j.compscitech.2020.108528_bib25) 2017; 151 Bai (10.1016/j.compscitech.2020.108528_bib24) 2020; 195 Zhang (10.1016/j.compscitech.2020.108528_bib26) 2018; 30 Li (10.1016/j.compscitech.2020.108528_bib15) 2019; 31 Li (10.1016/j.compscitech.2020.108528_bib20) 2018; 164 Zhu (10.1016/j.compscitech.2020.108528_bib34) 2019; 9 |
| References_xml | – volume: 54 start-page: 288 year: 2018 end-page: 296 ident: bib47 article-title: Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency publication-title: Nano Energy – volume: 130 start-page: 1544 year: 2018 end-page: 1547 ident: bib44 article-title: High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2, 6-dimethyl-1, 4-phenylene oxide) publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 32 year: 2018 end-page: 40 ident: bib13 article-title: Dielectric materials for high-temperature capacitors publication-title: IET Nanodielectr. – volume: 31 start-page: 1900875 year: 2019 ident: bib15 article-title: Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers publication-title: Adv. Mater. – volume: 190 year: 2020 ident: bib40 article-title: Improved breakdown strength of Poly (vinylidene fluoride)-based composites by using all ball-milled hexagonal boron nitride sheets without centrifugation publication-title: Compos. Sci. Technol. – volume: 26 start-page: 722 year: 2019 end-page: 729 ident: bib16 article-title: High-performance insulation materials from poly(ether imide)/boron nitride nanosheets with enhanced DC breakdown strength and thermal stability publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 8 year: 2018 ident: bib30 article-title: Improvements of dielectric properties and energy storage performances in BaTiO publication-title: J. Adv. Dielectr. – volume: 389 year: 2020 ident: bib33 article-title: Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics publication-title: Chem. Eng. J. – volume: 164 start-page: 214 year: 2018 end-page: 221 ident: bib20 article-title: Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO publication-title: Compos. Sci. Technol. – volume: 57 start-page: 60 year: 2012 end-page: 723 ident: bib4 article-title: Fundamentals, processes and applications of high-permittivity polymer–matrix composites publication-title: Prog. Mater. Sci. – volume: 179 start-page: 115 year: 2019 end-page: 124 ident: bib22 article-title: Poly(vinylidene fluoride) terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application publication-title: Compos. Sci. Technol. – volume: 12 start-page: 669 year: 2005 end-page: 681 ident: bib48 article-title: Proposal of a multi-core model for polymer nanocomposite dielectrics publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 127 year: 2020 ident: bib12 article-title: Advanced polymer dielectrics for high temperature capacitive energy storage publication-title: J. Appl. Phys. – volume: 5 year: 2018 ident: bib38 article-title: Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces publication-title: Adv. Mater. Interfaces – volume: 10 year: 2020 ident: bib35 article-title: Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage publication-title: Adv. Energy Mater. – volume: 30 start-page: 1939 year: 2002 end-page: 1942 ident: bib3 article-title: Status quo and future prospects for metallized polypropylene energy storage capacitors publication-title: IEEE Trans. Plasma Sci. – volume: 9 year: 2019 ident: bib34 article-title: High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets publication-title: Adv. Energy Mater. – volume: 10 start-page: 137 year: 2017 end-page: 144 ident: bib28 article-title: Construction of a 3D-BaTiO publication-title: Energy Environ. Sci. – volume: 151 start-page: 25 year: 2017 end-page: 33 ident: bib25 article-title: Polymer-based nanocomposites employing Bi publication-title: Compos. Sci. Technol. – volume: 2 start-page: 389 year: 2020 end-page: 400 ident: bib19 article-title: Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors publication-title: InfoMat – volume: 7 start-page: 748 year: 2018 end-page: 757 ident: bib23 article-title: Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films publication-title: ACS Sustain. Chem. Eng. – volume: 55 start-page: 1497 year: 2017 end-page: 1515 ident: bib7 article-title: Evaluation of poly(4-methyl-1-pentene) as a dielectric capacitor film for high-temperature energy storage applications publication-title: J. Polym. Sci. Part B – volume: 29 year: 2017 ident: bib32 article-title: High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials publication-title: Adv. Mater. – volume: 523 start-page: 576 year: 2015 end-page: 579 ident: bib14 article-title: Flexible high-temperature dielectric materials from polymer nanocomposites publication-title: Nature – volume: 48 start-page: 4424 year: 2019 end-page: 4465 ident: bib37 article-title: Interface design for high energy density polymer nanocomposites publication-title: Chem. Soc. Rev. – start-page: 206 year: 1983 end-page: 210 ident: bib17 article-title: Polyetherimide: high temperature, melt processable insulation publication-title: IEEE Electr. Insul, Conf. (EIC) – volume: 10 start-page: 29189 year: 2018 end-page: 29218 ident: bib9 article-title: Polymer capacitor dielectrics for high temperature applications publication-title: ACS Appl. Mater. Interfaces – volume: 68 year: 2020 ident: bib27 article-title: BaTiO publication-title: Nano Energy – volume: 2 year: 2018 ident: bib1 article-title: Nanostructured ferroelectric-polymer composites for capacitive energy storage publication-title: Small Methods – volume: 7 start-page: 2965 year: 2019 end-page: 2980 ident: bib29 article-title: Multilayered hierarchical polymer composites for high energy density capacitors publication-title: J. Mater. Chem. A – volume: 188 year: 2020 ident: bib36 article-title: Enhanced energy storage capability of P(VDF-HFP) nanodielectrics by HfO publication-title: Compos. Sci. Technol. – volume: 116 start-page: 4260 year: 2016 end-page: 4317 ident: bib49 article-title: Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects publication-title: Chem. Rev. – volume: 43 start-page: 4569 year: 2014 end-page: 4575 ident: bib10 article-title: High-temperature capacitor polymer films publication-title: J. Electron. Mater. – volume: 5 start-page: 3677 year: 2014 end-page: 3687 ident: bib2 article-title: Exploring strategies for high dielectric constant and low loss polymer dielectrics publication-title: J. Phys. Chem. Lett. – volume: 18 start-page: 1785 year: 2000 end-page: 1791 ident: bib50 article-title: Band offsets of wide-band-gap oxides and implications for future electronic devices publication-title: J. Vac. Sci. Technol. B – volume: 9 start-page: 10106 year: 2017 end-page: 10119 ident: bib42 article-title: The role of field electron emission in polypropylene/aluminum nanodielectrics under high electric fields publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 1279 year: 2020 end-page: 1286 ident: bib45 article-title: Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency publication-title: Energy Environ. Sci. – volume: 110 year: 2017 ident: bib46 article-title: Reducing conduction losses in high energy density polymer using nanocomposites publication-title: Appl. Phys. Lett. – volume: 2 start-page: 1286 year: 2010 end-page: 1289 ident: bib11 article-title: High-temperature poly (phthalazinone ether ketone) thin films for dielectric energy storage publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 364 year: 2018 end-page: 370 ident: bib21 article-title: Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization publication-title: Nano Energy – volume: 30 start-page: 1805672 year: 2018 ident: bib5 article-title: A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures publication-title: Adv. Mater. – volume: 195 year: 2020 ident: bib24 article-title: Ultrahigh breakdown strength and energy density of polymer nanocomposite containing surface insulated BCZT@ BN nanofibers publication-title: Compos. Sci. Technol. – volume: 5 start-page: 365 year: 2020 end-page: 376 ident: bib31 article-title: Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors publication-title: High Volt. – volume: 137 year: 2020 ident: bib39 article-title: Core-shell TiO publication-title: Compos. Part A – volume: 1 start-page: 817 year: 2008 end-page: 821 ident: bib18 article-title: Development of high temperature capacitors for high density, high temperature applications publication-title: SAE Int. J. Aerosp. – volume: 24 start-page: 3083 year: 2017 end-page: 3091 ident: bib43 article-title: Dielectric relaxation and carrier transport in epoxy resin and its microcomposite publication-title: IEEE Trans. Dielectr. Electr. Insul. – start-page: 486 year: 2016 end-page: 489 ident: bib8 article-title: Large area DC dielectric breakdown voltage measurement of BOPP and PTFE thin films publication-title: IEEE Conf. Electl. Insul. Dielectr. Phen. (CEIDP) – volume: 19 start-page: 990 year: 2012 end-page: 995 ident: bib41 article-title: High field conduction in biaxially oriented polypropylene at elevated temperature publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 48 start-page: 219 year: 2018 end-page: 243 ident: bib6 article-title: High-temperature dielectric materials for electrical energy storage publication-title: Annu. Rev. Mater. Res. – volume: 30 year: 2018 ident: bib26 article-title: Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions publication-title: Adv. Mater. – volume: 188 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib36 article-title: Enhanced energy storage capability of P(VDF-HFP) nanodielectrics by HfO2 passivation layer: preparation, performance and simulation publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107968 – volume: 30 start-page: 1939 issue: 5 year: 2002 ident: 10.1016/j.compscitech.2020.108528_bib3 article-title: Status quo and future prospects for metallized polypropylene energy storage capacitors publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2002.805318 – volume: 44 start-page: 364 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib21 article-title: Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.018 – volume: 7 start-page: 2965 issue: 7 year: 2019 ident: 10.1016/j.compscitech.2020.108528_bib29 article-title: Multilayered hierarchical polymer composites for high energy density capacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11392K – volume: 29 issue: 35 year: 2017 ident: 10.1016/j.compscitech.2020.108528_bib32 article-title: High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials publication-title: Adv. Mater. doi: 10.1002/adma.201701864 – volume: 12 start-page: 669 issue: 4 year: 2005 ident: 10.1016/j.compscitech.2020.108528_bib48 article-title: Proposal of a multi-core model for polymer nanocomposite dielectrics publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2005.1511092 – volume: 19 start-page: 990 issue: 3 year: 2012 ident: 10.1016/j.compscitech.2020.108528_bib41 article-title: High field conduction in biaxially oriented polypropylene at elevated temperature publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2012.6215104 – volume: 151 start-page: 25 year: 2017 ident: 10.1016/j.compscitech.2020.108528_bib25 article-title: Polymer-based nanocomposites employing Bi2S3@ SiO2 nanorods for high dielectric performance: understanding the role of interfacial polarization in semiconductor-insulator core-shell nanostructure publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.08.006 – volume: 26 start-page: 722 issue: 3 year: 2019 ident: 10.1016/j.compscitech.2020.108528_bib16 article-title: High-performance insulation materials from poly(ether imide)/boron nitride nanosheets with enhanced DC breakdown strength and thermal stability publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2018.007637 – volume: 57 start-page: 60 issue: 4 year: 2012 ident: 10.1016/j.compscitech.2020.108528_bib4 article-title: Fundamentals, processes and applications of high-permittivity polymer–matrix composites publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2011.08.001 – volume: 18 start-page: 1785 issue: 3 year: 2000 ident: 10.1016/j.compscitech.2020.108528_bib50 article-title: Band offsets of wide-band-gap oxides and implications for future electronic devices publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.591472 – volume: 5 issue: 11 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib38 article-title: Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800096 – volume: 7 start-page: 748 issue: 1 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib23 article-title: Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04370 – volume: 164 start-page: 214 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib20 article-title: Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO3 nanofibers publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.05.052 – volume: 10 start-page: 29189 issue: 35 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib9 article-title: Polymer capacitor dielectrics for high temperature applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07705 – volume: 110 issue: 12 year: 2017 ident: 10.1016/j.compscitech.2020.108528_bib46 article-title: Reducing conduction losses in high energy density polymer using nanocomposites publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979040 – volume: 30 issue: 16 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib26 article-title: Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions publication-title: Adv. Mater. doi: 10.1002/adma.201707269 – volume: 389 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib33 article-title: Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124443 – volume: 24 start-page: 3083 issue: 5 year: 2017 ident: 10.1016/j.compscitech.2020.108528_bib43 article-title: Dielectric relaxation and carrier transport in epoxy resin and its microcomposite publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2017.006163 – volume: 2 issue: 6 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib1 article-title: Nanostructured ferroelectric-polymer composites for capacitive energy storage publication-title: Small Methods doi: 10.1002/smtd.201700399 – volume: 8 issue: 6 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib30 article-title: Improvements of dielectric properties and energy storage performances in BaTiO3/PVDF nanocomposites by employing a thermal treatment process publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X18500431 – start-page: 486 year: 2016 ident: 10.1016/j.compscitech.2020.108528_bib8 article-title: Large area DC dielectric breakdown voltage measurement of BOPP and PTFE thin films publication-title: IEEE Conf. Electl. Insul. Dielectr. Phen. (CEIDP) – volume: 130 start-page: 1544 issue: 6 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib44 article-title: High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2, 6-dimethyl-1, 4-phenylene oxide) publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201710474 – volume: 31 start-page: 1900875 issue: 23 year: 2019 ident: 10.1016/j.compscitech.2020.108528_bib15 article-title: Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers publication-title: Adv. Mater. doi: 10.1002/adma.201900875 – volume: 55 start-page: 1497 issue: 20 year: 2017 ident: 10.1016/j.compscitech.2020.108528_bib7 article-title: Evaluation of poly(4-methyl-1-pentene) as a dielectric capacitor film for high-temperature energy storage applications publication-title: J. Polym. Sci. Part B doi: 10.1002/polb.24399 – volume: 13 start-page: 1279 issue: 4 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib45 article-title: Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03603B – volume: 2 start-page: 389 issue: 2 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib19 article-title: Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors publication-title: InfoMat doi: 10.1002/inf2.12043 – volume: 195 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib24 article-title: Ultrahigh breakdown strength and energy density of polymer nanocomposite containing surface insulated BCZT@ BN nanofibers publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108209 – volume: 137 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib39 article-title: Core-shell TiO2@ HfO2 nanowire arrays with designable shell thicknesses for improved permittivity and energy density in polymer nanocomposites publication-title: Compos. Part A doi: 10.1016/j.compositesa.2020.106012 – volume: 43 start-page: 4569 issue: 12 year: 2014 ident: 10.1016/j.compscitech.2020.108528_bib10 article-title: High-temperature capacitor polymer films publication-title: J. Electron. Mater. doi: 10.1007/s11664-014-3440-7 – volume: 9 year: 2019 ident: 10.1016/j.compscitech.2020.108528_bib34 article-title: High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901826 – volume: 2 start-page: 1286 issue: 5 year: 2010 ident: 10.1016/j.compscitech.2020.108528_bib11 article-title: High-temperature poly (phthalazinone ether ketone) thin films for dielectric energy storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100146u – volume: 5 start-page: 365 issue: 4 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib31 article-title: Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors publication-title: High Volt. doi: 10.1049/hve.2020.0076 – volume: 48 start-page: 219 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib6 article-title: High-temperature dielectric materials for electrical energy storage publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070317-124435 – volume: 523 start-page: 576 issue: 7562 year: 2015 ident: 10.1016/j.compscitech.2020.108528_bib14 article-title: Flexible high-temperature dielectric materials from polymer nanocomposites publication-title: Nature doi: 10.1038/nature14647 – volume: 48 start-page: 4424 issue: 16 year: 2019 ident: 10.1016/j.compscitech.2020.108528_bib37 article-title: Interface design for high energy density polymer nanocomposites publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00043G – volume: 9 start-page: 10106 issue: 11 year: 2017 ident: 10.1016/j.compscitech.2020.108528_bib42 article-title: The role of field electron emission in polypropylene/aluminum nanodielectrics under high electric fields publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00095 – volume: 127 issue: 24 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib12 article-title: Advanced polymer dielectrics for high temperature capacitive energy storage publication-title: J. Appl. Phys. doi: 10.1063/5.0009650 – start-page: 206 year: 1983 ident: 10.1016/j.compscitech.2020.108528_bib17 article-title: Polyetherimide: high temperature, melt processable insulation publication-title: IEEE Electr. Insul, Conf. (EIC) – volume: 68 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib27 article-title: BaTiO3 internally decorated hollow porous carbon hybrids as fillers enhancing dielectric and energy storage performance of sandwich-structured polymer composite publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104351 – volume: 54 start-page: 288 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib47 article-title: Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.028 – volume: 5 start-page: 3677 issue: 21 year: 2014 ident: 10.1016/j.compscitech.2020.108528_bib2 article-title: Exploring strategies for high dielectric constant and low loss polymer dielectrics publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501831q – volume: 10 start-page: 137 issue: 1 year: 2017 ident: 10.1016/j.compscitech.2020.108528_bib28 article-title: Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03190K – volume: 190 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib40 article-title: Improved breakdown strength of Poly (vinylidene fluoride)-based composites by using all ball-milled hexagonal boron nitride sheets without centrifugation publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108046 – volume: 10 issue: 16 year: 2020 ident: 10.1016/j.compscitech.2020.108528_bib35 article-title: Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903881 – volume: 179 start-page: 115 year: 2019 ident: 10.1016/j.compscitech.2020.108528_bib22 article-title: Poly(vinylidene fluoride) terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.04.035 – volume: 30 start-page: 1805672 issue: 49 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib5 article-title: A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures publication-title: Adv. Mater. doi: 10.1002/adma.201805672 – volume: 1 start-page: 32 issue: 1 year: 2018 ident: 10.1016/j.compscitech.2020.108528_bib13 article-title: Dielectric materials for high-temperature capacitors publication-title: IET Nanodielectr. doi: 10.1049/iet-nde.2018.0002 – volume: 116 start-page: 4260 issue: 7 year: 2016 ident: 10.1016/j.compscitech.2020.108528_bib49 article-title: Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00495 – volume: 1 start-page: 817 issue: 1 year: 2008 ident: 10.1016/j.compscitech.2020.108528_bib18 article-title: Development of high temperature capacitors for high density, high temperature applications publication-title: SAE Int. J. Aerosp. doi: 10.4271/2008-01-2851 |
| SSID | ssj0007592 |
| Score | 2.6802728 |
| Snippet | Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108528 |
| SubjectTerms | Dielectric properties Dielectrics Electric power systems Energy storage Flux density Hafnium oxide Hafnium oxide nanoparticles High temperature Leakage current Nanocomposites Nanoparticles Permittivity Polyetherimides Polymer matrix composites Polymer nanocomposites Polymers |
| Title | Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors |
| URI | https://dx.doi.org/10.1016/j.compscitech.2020.108528 https://www.proquest.com/docview/2487168703 |
| Volume | 201 |
| WOSCitedRecordID | wos000596316100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFvE4ICggCgUtEuISuYrXdmxLXKoqVUFWilBa5bby2rvCkeuYPKrmD_E7mfGuHy0UhQMXK9nEju3v88zuZOYbQj64yUAFtuNZKvYxdONJS0gAxBdpnA5dTwZVb8CLyB-Pg-k0_Nrr_axrYa5yvyiC6-uw_K9QwxiAjaWz_wB3c1AYgNcAOmwBdthuBXyEud35pi-L7_rf_TTTvW6yBLOxSkyk1kqz5TzfXMpFlVaOuVvSlLqdqjPWL-IC1tMmba5KRkRlYwulrIwOM2o6XfYT8LZJhj17uvPc4_aQdeFQlar5WyD_mzZ70TpfNwbIhLCjbLZuqNsGtrNN881It9yW3dAFs6vQhdfG05qamouO1YMZg-V4WvLlUGqrHPgh-AutUFubbWaCINrw2n90BzoyMUM0S7havMhDOJEqs9IzRek3JLjHZ_zkPIr4ZDSdfCx_WNidDG-WadVyj-wy3wvBeu4efR5NvzQ-HwaZjubpk39A3reZhHf8-l0zoVtzgmqiM3lKnpgVCj3S0D8jPVnskYd1AftyjzzuaFg-JxvDN1rzjbZ8oy3f6FxRwzfa8o0i3yjyjd7gGwW-0dt8o8g32vLtBTk_GU2OTy3Tz8NKHDdcWbZwh8pVQsCiIhC2E0vfSxylgBmhkI4nhBQBNjgYpMMU1iVpDA4ihvVBHPpxAm9ekp1iXshXhCZuzCRGb1BQkoUqFoPUH0qpfDeQjmL7JKjvLU-M2D32XMl5ndU44x1YOMLCNSz7hDW7llrxZZudPtUAcvNY6SkpBypus_tBDTo3pmTJmYvBDPCnzuu_f_yGPGqfrgOys1qs5VtyP7laZcvFO0PVXwwQzNw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Largely+enhanced+dielectric+properties+of+polymer+composites+with+HfO2+nanoparticles+for+high-temperature+film+capacitors&rft.jtitle=Composites+science+and+technology&rft.au=Ren%2C+Lulu&rft.au=Yang%2C+Lijun&rft.au=Zhang%2C+Siyu&rft.au=Li%2C+He&rft.date=2021-01-05&rft.pub=Elsevier+BV&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=201&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compscitech.2020.108528&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon |