Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors

Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand harsh conditions, e.g., ≥150 °C, is of crucial importance for advanced electronics and electrical power systems. Herein, high-temperature diel...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology Vol. 201; p. 108528
Main Authors: Ren, Lulu, Yang, Lijun, Zhang, Siyu, Li, He, Zhou, Yao, Ai, Ding, Xie, Zongliang, Zhao, Xuetong, Peng, Zongren, Liao, Ruijin, Wang, Qing
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 05.01.2021
Elsevier BV
Subjects:
ISSN:0266-3538, 1879-1050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand harsh conditions, e.g., ≥150 °C, is of crucial importance for advanced electronics and electrical power systems. Herein, high-temperature dielectric polymer composites composed of polyetherimide (PEI) matrix and hafnium oxide (HfO2) nanoparticles are presented. It is found that the incorporation of HfO2 with a moderate dielectric constant and a wide bandgap improves the dielectric constant and simultaneously reduces the high-field leakage current density of the PEI nanocomposites. As a result, the PEI/HfO2 composites exhibit superior energy storage performance to the current high-temperature engineering polymers at elevated temperatures. Specifically, the nanocomposite with 3 vol% HfO2 displays a discharged energy density of 2.82 J/cm3 at 150 °C, which is 77% higher than neat PEI. This work demonstrates the effectiveness of incorporation of the nanofiller with a medium dielectric constant into the polymer on the improvement of high-temperature capacitive properties of the polymer composites. [Display omitted]
AbstractList Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand harsh conditions, e.g., ≥150 °C, is of crucial importance for advanced electronics and electrical power systems. Herein, high-temperature dielectric polymer composites composed of polyetherimide (PEI) matrix and hafnium oxide (HfO2) nanoparticles are presented. It is found that the incorporation of HfO2 with a moderate dielectric constant and a wide bandgap improves the dielectric constant and simultaneously reduces the high-field leakage current density of the PEI nanocomposites. As a result, the PEI/HfO2 composites exhibit superior energy storage performance to the current high-temperature engineering polymers at elevated temperatures. Specifically, the nanocomposite with 3 vol% HfO2 displays a discharged energy density of 2.82 J/cm3 at 150 °C, which is 77% higher than neat PEI. This work demonstrates the effectiveness of incorporation of the nanofiller with a medium dielectric constant into the polymer on the improvement of high-temperature capacitive properties of the polymer composites.
Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand harsh conditions, e.g., ≥150 °C, is of crucial importance for advanced electronics and electrical power systems. Herein, high-temperature dielectric polymer composites composed of polyetherimide (PEI) matrix and hafnium oxide (HfO2) nanoparticles are presented. It is found that the incorporation of HfO2 with a moderate dielectric constant and a wide bandgap improves the dielectric constant and simultaneously reduces the high-field leakage current density of the PEI nanocomposites. As a result, the PEI/HfO2 composites exhibit superior energy storage performance to the current high-temperature engineering polymers at elevated temperatures. Specifically, the nanocomposite with 3 vol% HfO2 displays a discharged energy density of 2.82 J/cm3 at 150 °C, which is 77% higher than neat PEI. This work demonstrates the effectiveness of incorporation of the nanofiller with a medium dielectric constant into the polymer on the improvement of high-temperature capacitive properties of the polymer composites. [Display omitted]
ArticleNumber 108528
Author Zhou, Yao
Peng, Zongren
Li, He
Xie, Zongliang
Yang, Lijun
Zhao, Xuetong
Ai, Ding
Liao, Ruijin
Ren, Lulu
Wang, Qing
Zhang, Siyu
Author_xml – sequence: 1
  givenname: Lulu
  surname: Ren
  fullname: Ren, Lulu
  organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, China
– sequence: 2
  givenname: Lijun
  surname: Yang
  fullname: Yang, Lijun
  organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, China
– sequence: 3
  givenname: Siyu
  surname: Zhang
  fullname: Zhang, Siyu
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
– sequence: 4
  givenname: He
  orcidid: 0000-0002-4076-7279
  surname: Li
  fullname: Li, He
  organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
– sequence: 5
  givenname: Yao
  surname: Zhou
  fullname: Zhou, Yao
  organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
– sequence: 6
  givenname: Ding
  surname: Ai
  fullname: Ai, Ding
  organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
– sequence: 7
  givenname: Zongliang
  orcidid: 0000-0001-5965-332X
  surname: Xie
  fullname: Xie, Zongliang
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
– sequence: 8
  givenname: Xuetong
  surname: Zhao
  fullname: Zhao, Xuetong
  email: zxt201314@cqu.edu.cn
  organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, China
– sequence: 9
  givenname: Zongren
  surname: Peng
  fullname: Peng, Zongren
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
– sequence: 10
  givenname: Ruijin
  surname: Liao
  fullname: Liao, Ruijin
  organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, China
– sequence: 11
  givenname: Qing
  surname: Wang
  fullname: Wang, Qing
  email: wang@matse.psu.edu
  organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
BookMark eNqNkUtLxDAUhYMoOD7-Q8R1xzymTboSGXzBgBtdhzS9sRnapiYZZf69KeNCXLkKuZx7zr3fPUPHox8BoStKlpTQ6ma7NH6YonEJTLdkhM11WTJ5hBZUirqgpCTHaEFYVRW85PIUncW4JYSIsmYLtN_o8A79HsPY6dFAi1sHPZgUnMFT8BOE5CBib_Hk-_0AAc-BPubAiL9c6vCTfWF41KOfdNaaPtetD7hz712RYMgOOu0CYOv6ARs96TysD_ECnVjdR7j8ec_R28P96_qp2Lw8Pq_vNoXhqzoVtFlVdmWbpmZcNpRrEKXh1hJG6wZ42TTQSMmFJG3V1kK0uuRUM1bpWmiTP-fo-uCbt_nYQUxq63dhzJGKraSglRSEZ9XtQWWCjzGAVXlKnZwfU9CuV5Sombfaql-81cxbHXhnh_qPwxTcoMP-X73rQy9kEJ8OgsoqmM_hQr6Far37h8s3Ajenyg
CitedBy_id crossref_primary_10_1007_s40843_022_2412_2
crossref_primary_10_1680_jsuin_24_00003
crossref_primary_10_1109_TDEI_2023_3298878
crossref_primary_10_1002_adfm_202300555
crossref_primary_10_1016_j_mseb_2025_118795
crossref_primary_10_1088_1361_6463_adbd4c
crossref_primary_10_1016_j_est_2025_116401
crossref_primary_10_1039_D4MH00299G
crossref_primary_10_1002_macp_202200457
crossref_primary_10_3390_polym14142918
crossref_primary_10_1016_j_ceramint_2025_07_346
crossref_primary_10_1016_j_jallcom_2024_175468
crossref_primary_10_1063_5_0172051
crossref_primary_10_3390_molecules27134289
crossref_primary_10_1002_app_54214
crossref_primary_10_1063_5_0205468
crossref_primary_10_1016_j_mtener_2022_101145
crossref_primary_10_1039_D4EE05689B
crossref_primary_10_1016_j_compscitech_2021_108980
crossref_primary_10_1007_s11696_024_03581_5
crossref_primary_10_1016_j_apsusc_2025_162827
crossref_primary_10_1016_j_synthmet_2022_117097
crossref_primary_10_1016_j_ceramint_2022_03_288
crossref_primary_10_1016_j_nanoen_2024_110105
crossref_primary_10_1016_j_mseb_2024_117597
crossref_primary_10_1039_D5NR01685A
crossref_primary_10_1063_5_0145879
crossref_primary_10_1016_j_porgcoat_2023_107877
crossref_primary_10_1016_j_compscitech_2025_111194
crossref_primary_10_1002_aenm_202101297
crossref_primary_10_1016_j_jallcom_2023_171308
crossref_primary_10_1063_5_0190323
crossref_primary_10_1016_j_est_2025_116934
crossref_primary_10_1016_j_est_2024_115156
crossref_primary_10_1007_s00289_025_05747_x
crossref_primary_10_1016_j_jpowsour_2022_231415
crossref_primary_10_1002_adma_202302392
crossref_primary_10_1016_j_cej_2024_154779
crossref_primary_10_1016_j_cej_2025_160793
crossref_primary_10_3390_coatings13081386
crossref_primary_10_1016_j_surfin_2024_104462
crossref_primary_10_1016_j_compscitech_2022_109421
crossref_primary_10_1016_j_est_2022_105756
crossref_primary_10_1016_j_compscitech_2025_111226
crossref_primary_10_1002_smll_202205247
crossref_primary_10_1039_D4EE02371D
crossref_primary_10_1002_adfm_202210050
crossref_primary_10_1016_j_jallcom_2022_166961
crossref_primary_10_1007_s12598_022_02241_5
crossref_primary_10_1016_j_compositesa_2023_107791
crossref_primary_10_1063_5_0209123
crossref_primary_10_1016_j_compscitech_2022_109856
crossref_primary_10_1016_j_cej_2022_140950
crossref_primary_10_1016_j_surfin_2021_101686
crossref_primary_10_1002_adfm_202312238
crossref_primary_10_1016_j_colsurfa_2024_133479
crossref_primary_10_1016_j_progpolymsci_2025_101957
crossref_primary_10_1016_j_mtener_2025_101800
crossref_primary_10_1016_j_ceramint_2023_05_075
crossref_primary_10_1016_j_cej_2025_161063
crossref_primary_10_1002_app_55056
crossref_primary_10_1142_S2010135X25300014
crossref_primary_10_1016_j_compositesb_2025_112777
crossref_primary_10_1016_j_rineng_2024_103722
crossref_primary_10_1002_smll_202405786
crossref_primary_10_1002_macp_202400020
crossref_primary_10_3390_polym14061160
crossref_primary_10_1016_j_apsusc_2025_164504
crossref_primary_10_1016_j_est_2024_114525
crossref_primary_10_1002_pat_70127
crossref_primary_10_1007_s12274_024_6793_0
crossref_primary_10_1002_pc_28634
crossref_primary_10_1016_j_ceramint_2024_08_234
crossref_primary_10_3390_coatings14091193
crossref_primary_10_1016_j_cej_2023_143324
crossref_primary_10_1016_j_jmst_2024_05_046
crossref_primary_10_1016_j_jwpe_2023_104754
crossref_primary_10_1063_5_0080825
crossref_primary_10_1002_adma_202411507
crossref_primary_10_1016_j_jpowsour_2024_235822
crossref_primary_10_1039_D5NR02969D
crossref_primary_10_1016_j_cej_2024_158941
crossref_primary_10_1016_j_compscitech_2021_108949
crossref_primary_10_1007_s12598_023_02312_1
crossref_primary_10_1002_adfm_202314910
crossref_primary_10_1016_j_cej_2024_158708
crossref_primary_10_1016_j_est_2023_108930
crossref_primary_10_1016_j_eurpolymj_2025_114044
crossref_primary_10_1016_j_cej_2023_146672
crossref_primary_10_1039_D2NR03753J
crossref_primary_10_1002_smll_202202421
crossref_primary_10_1016_j_cej_2023_142068
crossref_primary_10_1016_j_est_2025_117781
crossref_primary_10_1016_j_mtsust_2022_100310
crossref_primary_10_1002_adma_202207580
crossref_primary_10_1007_s42114_021_00329_7
crossref_primary_10_1039_D4SC05437G
crossref_primary_10_1016_j_eurpolymj_2025_113904
crossref_primary_10_1007_s40032_024_01146_9
crossref_primary_10_1016_j_est_2024_112524
crossref_primary_10_1016_j_est_2024_114789
crossref_primary_10_1016_j_cej_2024_154056
crossref_primary_10_1002_mame_202100079
crossref_primary_10_1016_j_cej_2022_135431
crossref_primary_10_26599_NR_2025_94907492
crossref_primary_10_15407_spqeo28_02_134
crossref_primary_10_1002_app_54389
crossref_primary_10_1016_j_cej_2022_136925
crossref_primary_10_1016_j_compscitech_2022_109342
crossref_primary_10_1088_1742_6596_2133_1_012002
crossref_primary_10_1002_adma_202401954
crossref_primary_10_1177_09540083211041027
crossref_primary_10_1002_smtd_202401059
crossref_primary_10_1016_j_jmat_2024_100960
crossref_primary_10_1016_j_progpolymsci_2024_101870
crossref_primary_10_1016_j_cej_2025_165855
crossref_primary_10_1007_s40042_024_01094_8
crossref_primary_10_1016_j_jpowsour_2024_235255
crossref_primary_10_1007_s10854_025_15484_6
crossref_primary_10_3390_polym15143088
crossref_primary_10_1002_aenm_202203925
crossref_primary_10_1016_j_cej_2022_138312
crossref_primary_10_1039_D3EE02313C
crossref_primary_10_1016_j_matchemphys_2022_126529
crossref_primary_10_1002_adma_202310272
crossref_primary_10_1016_j_polymer_2022_125572
crossref_primary_10_1016_j_mtener_2022_101161
crossref_primary_10_1016_j_cej_2024_157312
crossref_primary_10_1016_j_mtener_2022_101160
crossref_primary_10_1021_acsapm_5c00920
crossref_primary_10_1002_pc_29132
crossref_primary_10_1016_j_cej_2025_160204
crossref_primary_10_1016_j_jpcs_2022_111045
crossref_primary_10_1142_S0217979225500821
crossref_primary_10_1016_j_cej_2023_147581
crossref_primary_10_1016_j_compscitech_2022_109379
crossref_primary_10_1016_j_pmatsci_2023_101208
crossref_primary_10_1016_j_compositesb_2022_109649
crossref_primary_10_1109_TDEI_2024_3394395
crossref_primary_10_3390_coatings15050555
crossref_primary_10_1039_D3MH00907F
crossref_primary_10_1039_D4MH01613K
crossref_primary_10_1088_1742_6596_2500_1_012008
crossref_primary_10_1002_adfm_202403402
crossref_primary_10_1007_s12274_024_6765_4
crossref_primary_10_1016_j_cej_2024_151458
crossref_primary_10_1021_acsapm_5c02281
crossref_primary_10_1039_D1MH01918J
crossref_primary_10_1002_adfm_202214100
crossref_primary_10_1002_adfm_202418466
crossref_primary_10_1002_elan_202100180
crossref_primary_10_3390_ma17143625
crossref_primary_10_1088_1402_4896_adb346
crossref_primary_10_1002_adfm_202401901
crossref_primary_10_1016_j_cej_2025_159343
crossref_primary_10_1016_j_polymer_2023_126397
crossref_primary_10_1016_j_cej_2022_135059
crossref_primary_10_1002_app_54848
crossref_primary_10_1039_D2MH00912A
crossref_primary_10_1002_pc_27345
crossref_primary_10_1007_s10118_024_3068_x
crossref_primary_10_1039_D4MH01123F
crossref_primary_10_1002_adma_202415652
crossref_primary_10_1016_j_nanoen_2022_107314
crossref_primary_10_1016_j_cej_2025_160211
crossref_primary_10_1002_sstr_202500460
crossref_primary_10_1002_smll_202300510
Cites_doi 10.1016/j.compscitech.2019.107968
10.1109/TPS.2002.805318
10.1016/j.nanoen.2017.12.018
10.1039/C8TA11392K
10.1002/adma.201701864
10.1109/TDEI.2005.1511092
10.1109/TDEI.2012.6215104
10.1016/j.compscitech.2017.08.006
10.1109/TDEI.2018.007637
10.1016/j.pmatsci.2011.08.001
10.1116/1.591472
10.1002/admi.201800096
10.1021/acssuschemeng.8b04370
10.1016/j.compscitech.2018.05.052
10.1021/acsami.8b07705
10.1063/1.4979040
10.1002/adma.201707269
10.1016/j.cej.2020.124443
10.1109/TDEI.2017.006163
10.1002/smtd.201700399
10.1142/S2010135X18500431
10.1002/ange.201710474
10.1002/adma.201900875
10.1002/polb.24399
10.1039/C9EE03603B
10.1002/inf2.12043
10.1016/j.compscitech.2020.108209
10.1016/j.compositesa.2020.106012
10.1007/s11664-014-3440-7
10.1002/aenm.201901826
10.1021/am100146u
10.1049/hve.2020.0076
10.1146/annurev-matsci-070317-124435
10.1038/nature14647
10.1039/C9CS00043G
10.1021/acsami.7b00095
10.1063/5.0009650
10.1016/j.nanoen.2019.104351
10.1016/j.nanoen.2018.10.028
10.1021/jz501831q
10.1039/C6EE03190K
10.1016/j.compscitech.2020.108046
10.1002/aenm.201903881
10.1016/j.compscitech.2019.04.035
10.1002/adma.201805672
10.1049/iet-nde.2018.0002
10.1021/acs.chemrev.5b00495
10.4271/2008-01-2851
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jan 5, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 5, 2021
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.compscitech.2020.108528
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-1050
ExternalDocumentID 10_1016_j_compscitech_2020_108528
S0266353820323186
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFPUW
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
~HD
.-4
29F
6TJ
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
AFJKZ
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
T9H
VH1
WUQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c349t-1b46f4fbb9238b13ae75c3ff0219be35bbeb883780d6d977da531a226a97aca53
ISICitedReferencesCount 203
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596316100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-3538
IngestDate Sun Nov 09 05:57:53 EST 2025
Sat Nov 29 07:21:52 EST 2025
Tue Nov 18 21:44:05 EST 2025
Sat Oct 11 16:50:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords High temperature
Hafnium oxide nanoparticles
Dielectric properties
Polymer nanocomposites
Energy storage
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-1b46f4fbb9238b13ae75c3ff0219be35bbeb883780d6d977da531a226a97aca53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5965-332X
0000-0002-4076-7279
PQID 2487168703
PQPubID 2045270
ParticipantIDs proquest_journals_2487168703
crossref_citationtrail_10_1016_j_compscitech_2020_108528
crossref_primary_10_1016_j_compscitech_2020_108528
elsevier_sciencedirect_doi_10_1016_j_compscitech_2020_108528
PublicationCentury 2000
PublicationDate 2021-01-05
PublicationDateYYYYMMDD 2021-01-05
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-05
  day: 05
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Composites science and technology
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Gadinski, Zhang, Zhang, Li, Iagodkine, Haque, Chen, Jackson, Wang (bib14) 2015; 523
Huang, Min, Li, Wang, Lin (bib43) 2017; 24
Azizi, Gadnski, Li, Alsaud, Wang, Wang, Wang, Liu, Chen, Alem, Wang (bib32) 2017; 29
Zhu, Jiang, Huang (bib22) 2019; 179
Chen, Zhou, Luo, Tang, Guo, Zhang (bib39) 2020; 137
Li, Ren, Zhou, Yao, Wang (bib31) 2020; 5
Liu, Zhang, Feng, Zhang, Zhang, Zhang, Wang, Chi, Chen, Lei (bib33) 2020; 389
Zhang, Wang, Litt, Tan, Zhu (bib44) 2018; 130
Irwin, Tan, Cao, Silvi, Carter, Rumler, Garet (bib18) 2008; 1
Liang, Yu, Lv, Zhao, Luo, Yu, Sun, Wong, Zhu (bib27) 2020; 68
Tan, Zhang, Chen, Irwin (bib10) 2014; 43
Dang, Yuan, Zha, Zhou, Li, Hu (bib4) 2012; 57
Li, Xie, Liu, Peng, Ding, Ren, Ai, Reainthippayasakul, Huang, Wang (bib16) 2019; 26
Li, Gadinski, Huang, Ren, Zhou, Ai, Han, Yao, Wang (bib45) 2020; 13
Pan, Li, Chuayprakong, Hsu, Wang (bib11) 2010; 2
Dang, Zheng, Zha (bib30) 2018; 8
Wang, Chen, Li, Niu, Wang, Hong (bib29) 2019; 7
Zhu (bib2) 2014; 5
Chen, Wang, Yuan, Xu, Niu, Wang, Wang (bib47) 2018; 54
Li, Liu, Yang, Li, Dong, Xiong, Wang (bib20) 2018; 164
Ai, Li, Zhou, Ren, Han, Yao, Zhou, Zhao, Xu, Wang (bib35) 2020; 10
Rabuffi, Picci (bib3) 2002; 30
Thakur, Lean, Zhang (bib46) 2017; 110
Tanaka, Kozako, Fuse, Ohki (bib48) 2005; 12
Kerwien, Malandro, Broomall (bib8) 2016
Bright (bib17) 1983
Chi, Gao, Zhang, Zhang, Zhang, Chen, Wang, Lei (bib23) 2018; 7
Zhang, Jiang, Shen, Dan, Li, Lin, Nan, Chen, Shen (bib26) 2018; 30
Wu, Luo, Xie, Liu, Chen, Fu (bib40) 2020; 190
Li, Ren, Ai, Han, Liu, Yao, Wang (bib19) 2020; 2
Fan, Liu, Yang, Li, Zhang, Jiang, Wang (bib13) 2018; 1
Ho, Jow (bib41) 2012; 19
Zhou, Li, Dang, Yang, Shao, Li, Hu, Zeng, He, Wang (bib5) 2018; 30
Bai, Ge, He, Shen, Zhai, Pan (bib24) 2020; 195
Thakur, Gupta (bib49) 2016; 116
Wang, Wang, Yuan, Chen, Niu, Xu, Cheng, Yao, Wang, Wang (bib21) 2018; 44
Zhang, Li, Dong, Liu, Chen, Shen, Nan (bib38) 2018; 5
Zhou, Wang (bib12) 2020; 127
Robertson (bib50) 2000; 18
Chen, Xie, Liu, Li, Wei, Zhang (bib36) 2020; 188
Li, Ai, Ren, Han, Shen, Wang, Chen, Wang (bib15) 2019; 31
Zhang, Li, Tang, Thompson, Zhu (bib42) 2017; 9
He, Wang, Song, Liu, Luo, Deng (bib25) 2017; 151
Luo, Shen, Yu, Wan, Liao, Sun, Wong (bib28) 2017; 10
Ho, Greenbaum (bib9) 2018; 10
Luo, Zhou, Ellingford, Zhang, Chen, Zhou, Zhang, Bowen, Wan (bib37) 2019; 48
Zhu, Zhu, Huang, Chen, Li, He, Jiang (bib34) 2019; 9
Li, Yao, Liu, Zhang, Wang, Wang (bib6) 2018; 48
Gupta, Offenbach, Ronzello, Cao, Boggs, Weiss, Cakmak (bib7) 2017; 55
Li, Liu, Fan, Ai, Peng, Wang (bib1) 2018; 2
Azizi (10.1016/j.compscitech.2020.108528_bib32) 2017; 29
Zhang (10.1016/j.compscitech.2020.108528_bib38) 2018; 5
Huang (10.1016/j.compscitech.2020.108528_bib43) 2017; 24
Wang (10.1016/j.compscitech.2020.108528_bib21) 2018; 44
Gupta (10.1016/j.compscitech.2020.108528_bib7) 2017; 55
Li (10.1016/j.compscitech.2020.108528_bib31) 2020; 5
Ho (10.1016/j.compscitech.2020.108528_bib9) 2018; 10
Thakur (10.1016/j.compscitech.2020.108528_bib49) 2016; 116
Li (10.1016/j.compscitech.2020.108528_bib1) 2018; 2
Zhou (10.1016/j.compscitech.2020.108528_bib12) 2020; 127
Ai (10.1016/j.compscitech.2020.108528_bib35) 2020; 10
Li (10.1016/j.compscitech.2020.108528_bib6) 2018; 48
Luo (10.1016/j.compscitech.2020.108528_bib28) 2017; 10
Zhang (10.1016/j.compscitech.2020.108528_bib42) 2017; 9
Li (10.1016/j.compscitech.2020.108528_bib19) 2020; 2
Zhang (10.1016/j.compscitech.2020.108528_bib44) 2018; 130
Tan (10.1016/j.compscitech.2020.108528_bib10) 2014; 43
Li (10.1016/j.compscitech.2020.108528_bib14) 2015; 523
Dang (10.1016/j.compscitech.2020.108528_bib30) 2018; 8
Luo (10.1016/j.compscitech.2020.108528_bib37) 2019; 48
Li (10.1016/j.compscitech.2020.108528_bib45) 2020; 13
Zhu (10.1016/j.compscitech.2020.108528_bib22) 2019; 179
Bright (10.1016/j.compscitech.2020.108528_bib17) 1983
Liang (10.1016/j.compscitech.2020.108528_bib27) 2020; 68
Liu (10.1016/j.compscitech.2020.108528_bib33) 2020; 389
Robertson (10.1016/j.compscitech.2020.108528_bib50) 2000; 18
Wu (10.1016/j.compscitech.2020.108528_bib40) 2020; 190
Chen (10.1016/j.compscitech.2020.108528_bib36) 2020; 188
Zhou (10.1016/j.compscitech.2020.108528_bib5) 2018; 30
Li (10.1016/j.compscitech.2020.108528_bib16) 2019; 26
Dang (10.1016/j.compscitech.2020.108528_bib4) 2012; 57
Tanaka (10.1016/j.compscitech.2020.108528_bib48) 2005; 12
Pan (10.1016/j.compscitech.2020.108528_bib11) 2010; 2
Chen (10.1016/j.compscitech.2020.108528_bib39) 2020; 137
Ho (10.1016/j.compscitech.2020.108528_bib41) 2012; 19
Chi (10.1016/j.compscitech.2020.108528_bib23) 2018; 7
Fan (10.1016/j.compscitech.2020.108528_bib13) 2018; 1
Wang (10.1016/j.compscitech.2020.108528_bib29) 2019; 7
Zhu (10.1016/j.compscitech.2020.108528_bib2) 2014; 5
Irwin (10.1016/j.compscitech.2020.108528_bib18) 2008; 1
Thakur (10.1016/j.compscitech.2020.108528_bib46) 2017; 110
Kerwien (10.1016/j.compscitech.2020.108528_bib8) 2016
Chen (10.1016/j.compscitech.2020.108528_bib47) 2018; 54
Rabuffi (10.1016/j.compscitech.2020.108528_bib3) 2002; 30
He (10.1016/j.compscitech.2020.108528_bib25) 2017; 151
Bai (10.1016/j.compscitech.2020.108528_bib24) 2020; 195
Zhang (10.1016/j.compscitech.2020.108528_bib26) 2018; 30
Li (10.1016/j.compscitech.2020.108528_bib15) 2019; 31
Li (10.1016/j.compscitech.2020.108528_bib20) 2018; 164
Zhu (10.1016/j.compscitech.2020.108528_bib34) 2019; 9
References_xml – volume: 54
  start-page: 288
  year: 2018
  end-page: 296
  ident: bib47
  article-title: Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency
  publication-title: Nano Energy
– volume: 130
  start-page: 1544
  year: 2018
  end-page: 1547
  ident: bib44
  article-title: High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2, 6-dimethyl-1, 4-phenylene oxide)
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 32
  year: 2018
  end-page: 40
  ident: bib13
  article-title: Dielectric materials for high-temperature capacitors
  publication-title: IET Nanodielectr.
– volume: 31
  start-page: 1900875
  year: 2019
  ident: bib15
  article-title: Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers
  publication-title: Adv. Mater.
– volume: 190
  year: 2020
  ident: bib40
  article-title: Improved breakdown strength of Poly (vinylidene fluoride)-based composites by using all ball-milled hexagonal boron nitride sheets without centrifugation
  publication-title: Compos. Sci. Technol.
– volume: 26
  start-page: 722
  year: 2019
  end-page: 729
  ident: bib16
  article-title: High-performance insulation materials from poly(ether imide)/boron nitride nanosheets with enhanced DC breakdown strength and thermal stability
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 8
  year: 2018
  ident: bib30
  article-title: Improvements of dielectric properties and energy storage performances in BaTiO
  publication-title: J. Adv. Dielectr.
– volume: 389
  year: 2020
  ident: bib33
  article-title: Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics
  publication-title: Chem. Eng. J.
– volume: 164
  start-page: 214
  year: 2018
  end-page: 221
  ident: bib20
  article-title: Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO
  publication-title: Compos. Sci. Technol.
– volume: 57
  start-page: 60
  year: 2012
  end-page: 723
  ident: bib4
  article-title: Fundamentals, processes and applications of high-permittivity polymer–matrix composites
  publication-title: Prog. Mater. Sci.
– volume: 179
  start-page: 115
  year: 2019
  end-page: 124
  ident: bib22
  article-title: Poly(vinylidene fluoride) terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application
  publication-title: Compos. Sci. Technol.
– volume: 12
  start-page: 669
  year: 2005
  end-page: 681
  ident: bib48
  article-title: Proposal of a multi-core model for polymer nanocomposite dielectrics
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 127
  year: 2020
  ident: bib12
  article-title: Advanced polymer dielectrics for high temperature capacitive energy storage
  publication-title: J. Appl. Phys.
– volume: 5
  year: 2018
  ident: bib38
  article-title: Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces
  publication-title: Adv. Mater. Interfaces
– volume: 10
  year: 2020
  ident: bib35
  article-title: Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1939
  year: 2002
  end-page: 1942
  ident: bib3
  article-title: Status quo and future prospects for metallized polypropylene energy storage capacitors
  publication-title: IEEE Trans. Plasma Sci.
– volume: 9
  year: 2019
  ident: bib34
  article-title: High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 137
  year: 2017
  end-page: 144
  ident: bib28
  article-title: Construction of a 3D-BaTiO
  publication-title: Energy Environ. Sci.
– volume: 151
  start-page: 25
  year: 2017
  end-page: 33
  ident: bib25
  article-title: Polymer-based nanocomposites employing Bi
  publication-title: Compos. Sci. Technol.
– volume: 2
  start-page: 389
  year: 2020
  end-page: 400
  ident: bib19
  article-title: Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors
  publication-title: InfoMat
– volume: 7
  start-page: 748
  year: 2018
  end-page: 757
  ident: bib23
  article-title: Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films
  publication-title: ACS Sustain. Chem. Eng.
– volume: 55
  start-page: 1497
  year: 2017
  end-page: 1515
  ident: bib7
  article-title: Evaluation of poly(4-methyl-1-pentene) as a dielectric capacitor film for high-temperature energy storage applications
  publication-title: J. Polym. Sci. Part B
– volume: 29
  year: 2017
  ident: bib32
  article-title: High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials
  publication-title: Adv. Mater.
– volume: 523
  start-page: 576
  year: 2015
  end-page: 579
  ident: bib14
  article-title: Flexible high-temperature dielectric materials from polymer nanocomposites
  publication-title: Nature
– volume: 48
  start-page: 4424
  year: 2019
  end-page: 4465
  ident: bib37
  article-title: Interface design for high energy density polymer nanocomposites
  publication-title: Chem. Soc. Rev.
– start-page: 206
  year: 1983
  end-page: 210
  ident: bib17
  article-title: Polyetherimide: high temperature, melt processable insulation
  publication-title: IEEE Electr. Insul, Conf. (EIC)
– volume: 10
  start-page: 29189
  year: 2018
  end-page: 29218
  ident: bib9
  article-title: Polymer capacitor dielectrics for high temperature applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 68
  year: 2020
  ident: bib27
  article-title: BaTiO
  publication-title: Nano Energy
– volume: 2
  year: 2018
  ident: bib1
  article-title: Nanostructured ferroelectric-polymer composites for capacitive energy storage
  publication-title: Small Methods
– volume: 7
  start-page: 2965
  year: 2019
  end-page: 2980
  ident: bib29
  article-title: Multilayered hierarchical polymer composites for high energy density capacitors
  publication-title: J. Mater. Chem. A
– volume: 188
  year: 2020
  ident: bib36
  article-title: Enhanced energy storage capability of P(VDF-HFP) nanodielectrics by HfO
  publication-title: Compos. Sci. Technol.
– volume: 116
  start-page: 4260
  year: 2016
  end-page: 4317
  ident: bib49
  article-title: Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects
  publication-title: Chem. Rev.
– volume: 43
  start-page: 4569
  year: 2014
  end-page: 4575
  ident: bib10
  article-title: High-temperature capacitor polymer films
  publication-title: J. Electron. Mater.
– volume: 5
  start-page: 3677
  year: 2014
  end-page: 3687
  ident: bib2
  article-title: Exploring strategies for high dielectric constant and low loss polymer dielectrics
  publication-title: J. Phys. Chem. Lett.
– volume: 18
  start-page: 1785
  year: 2000
  end-page: 1791
  ident: bib50
  article-title: Band offsets of wide-band-gap oxides and implications for future electronic devices
  publication-title: J. Vac. Sci. Technol. B
– volume: 9
  start-page: 10106
  year: 2017
  end-page: 10119
  ident: bib42
  article-title: The role of field electron emission in polypropylene/aluminum nanodielectrics under high electric fields
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 1279
  year: 2020
  end-page: 1286
  ident: bib45
  article-title: Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency
  publication-title: Energy Environ. Sci.
– volume: 110
  year: 2017
  ident: bib46
  article-title: Reducing conduction losses in high energy density polymer using nanocomposites
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 1286
  year: 2010
  end-page: 1289
  ident: bib11
  article-title: High-temperature poly (phthalazinone ether ketone) thin films for dielectric energy storage
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 364
  year: 2018
  end-page: 370
  ident: bib21
  article-title: Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization
  publication-title: Nano Energy
– volume: 30
  start-page: 1805672
  year: 2018
  ident: bib5
  article-title: A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures
  publication-title: Adv. Mater.
– volume: 195
  year: 2020
  ident: bib24
  article-title: Ultrahigh breakdown strength and energy density of polymer nanocomposite containing surface insulated BCZT@ BN nanofibers
  publication-title: Compos. Sci. Technol.
– volume: 5
  start-page: 365
  year: 2020
  end-page: 376
  ident: bib31
  article-title: Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors
  publication-title: High Volt.
– volume: 137
  year: 2020
  ident: bib39
  article-title: Core-shell TiO
  publication-title: Compos. Part A
– volume: 1
  start-page: 817
  year: 2008
  end-page: 821
  ident: bib18
  article-title: Development of high temperature capacitors for high density, high temperature applications
  publication-title: SAE Int. J. Aerosp.
– volume: 24
  start-page: 3083
  year: 2017
  end-page: 3091
  ident: bib43
  article-title: Dielectric relaxation and carrier transport in epoxy resin and its microcomposite
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– start-page: 486
  year: 2016
  end-page: 489
  ident: bib8
  article-title: Large area DC dielectric breakdown voltage measurement of BOPP and PTFE thin films
  publication-title: IEEE Conf. Electl. Insul. Dielectr. Phen. (CEIDP)
– volume: 19
  start-page: 990
  year: 2012
  end-page: 995
  ident: bib41
  article-title: High field conduction in biaxially oriented polypropylene at elevated temperature
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 48
  start-page: 219
  year: 2018
  end-page: 243
  ident: bib6
  article-title: High-temperature dielectric materials for electrical energy storage
  publication-title: Annu. Rev. Mater. Res.
– volume: 30
  year: 2018
  ident: bib26
  article-title: Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions
  publication-title: Adv. Mater.
– volume: 188
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib36
  article-title: Enhanced energy storage capability of P(VDF-HFP) nanodielectrics by HfO2 passivation layer: preparation, performance and simulation
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107968
– volume: 30
  start-page: 1939
  issue: 5
  year: 2002
  ident: 10.1016/j.compscitech.2020.108528_bib3
  article-title: Status quo and future prospects for metallized polypropylene energy storage capacitors
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2002.805318
– volume: 44
  start-page: 364
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib21
  article-title: Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.018
– volume: 7
  start-page: 2965
  issue: 7
  year: 2019
  ident: 10.1016/j.compscitech.2020.108528_bib29
  article-title: Multilayered hierarchical polymer composites for high energy density capacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11392K
– volume: 29
  issue: 35
  year: 2017
  ident: 10.1016/j.compscitech.2020.108528_bib32
  article-title: High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701864
– volume: 12
  start-page: 669
  issue: 4
  year: 2005
  ident: 10.1016/j.compscitech.2020.108528_bib48
  article-title: Proposal of a multi-core model for polymer nanocomposite dielectrics
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2005.1511092
– volume: 19
  start-page: 990
  issue: 3
  year: 2012
  ident: 10.1016/j.compscitech.2020.108528_bib41
  article-title: High field conduction in biaxially oriented polypropylene at elevated temperature
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2012.6215104
– volume: 151
  start-page: 25
  year: 2017
  ident: 10.1016/j.compscitech.2020.108528_bib25
  article-title: Polymer-based nanocomposites employing Bi2S3@ SiO2 nanorods for high dielectric performance: understanding the role of interfacial polarization in semiconductor-insulator core-shell nanostructure
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.08.006
– volume: 26
  start-page: 722
  issue: 3
  year: 2019
  ident: 10.1016/j.compscitech.2020.108528_bib16
  article-title: High-performance insulation materials from poly(ether imide)/boron nitride nanosheets with enhanced DC breakdown strength and thermal stability
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2018.007637
– volume: 57
  start-page: 60
  issue: 4
  year: 2012
  ident: 10.1016/j.compscitech.2020.108528_bib4
  article-title: Fundamentals, processes and applications of high-permittivity polymer–matrix composites
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2011.08.001
– volume: 18
  start-page: 1785
  issue: 3
  year: 2000
  ident: 10.1016/j.compscitech.2020.108528_bib50
  article-title: Band offsets of wide-band-gap oxides and implications for future electronic devices
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.591472
– volume: 5
  issue: 11
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib38
  article-title: Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800096
– volume: 7
  start-page: 748
  issue: 1
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib23
  article-title: Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04370
– volume: 164
  start-page: 214
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib20
  article-title: Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO3 nanofibers
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.05.052
– volume: 10
  start-page: 29189
  issue: 35
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib9
  article-title: Polymer capacitor dielectrics for high temperature applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07705
– volume: 110
  issue: 12
  year: 2017
  ident: 10.1016/j.compscitech.2020.108528_bib46
  article-title: Reducing conduction losses in high energy density polymer using nanocomposites
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4979040
– volume: 30
  issue: 16
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib26
  article-title: Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707269
– volume: 389
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib33
  article-title: Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124443
– volume: 24
  start-page: 3083
  issue: 5
  year: 2017
  ident: 10.1016/j.compscitech.2020.108528_bib43
  article-title: Dielectric relaxation and carrier transport in epoxy resin and its microcomposite
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2017.006163
– volume: 2
  issue: 6
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib1
  article-title: Nanostructured ferroelectric-polymer composites for capacitive energy storage
  publication-title: Small Methods
  doi: 10.1002/smtd.201700399
– volume: 8
  issue: 6
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib30
  article-title: Improvements of dielectric properties and energy storage performances in BaTiO3/PVDF nanocomposites by employing a thermal treatment process
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X18500431
– start-page: 486
  year: 2016
  ident: 10.1016/j.compscitech.2020.108528_bib8
  article-title: Large area DC dielectric breakdown voltage measurement of BOPP and PTFE thin films
  publication-title: IEEE Conf. Electl. Insul. Dielectr. Phen. (CEIDP)
– volume: 130
  start-page: 1544
  issue: 6
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib44
  article-title: High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2, 6-dimethyl-1, 4-phenylene oxide)
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201710474
– volume: 31
  start-page: 1900875
  issue: 23
  year: 2019
  ident: 10.1016/j.compscitech.2020.108528_bib15
  article-title: Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900875
– volume: 55
  start-page: 1497
  issue: 20
  year: 2017
  ident: 10.1016/j.compscitech.2020.108528_bib7
  article-title: Evaluation of poly(4-methyl-1-pentene) as a dielectric capacitor film for high-temperature energy storage applications
  publication-title: J. Polym. Sci. Part B
  doi: 10.1002/polb.24399
– volume: 13
  start-page: 1279
  issue: 4
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib45
  article-title: Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03603B
– volume: 2
  start-page: 389
  issue: 2
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib19
  article-title: Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors
  publication-title: InfoMat
  doi: 10.1002/inf2.12043
– volume: 195
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib24
  article-title: Ultrahigh breakdown strength and energy density of polymer nanocomposite containing surface insulated BCZT@ BN nanofibers
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2020.108209
– volume: 137
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib39
  article-title: Core-shell TiO2@ HfO2 nanowire arrays with designable shell thicknesses for improved permittivity and energy density in polymer nanocomposites
  publication-title: Compos. Part A
  doi: 10.1016/j.compositesa.2020.106012
– volume: 43
  start-page: 4569
  issue: 12
  year: 2014
  ident: 10.1016/j.compscitech.2020.108528_bib10
  article-title: High-temperature capacitor polymer films
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-014-3440-7
– volume: 9
  year: 2019
  ident: 10.1016/j.compscitech.2020.108528_bib34
  article-title: High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901826
– volume: 2
  start-page: 1286
  issue: 5
  year: 2010
  ident: 10.1016/j.compscitech.2020.108528_bib11
  article-title: High-temperature poly (phthalazinone ether ketone) thin films for dielectric energy storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100146u
– volume: 5
  start-page: 365
  issue: 4
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib31
  article-title: Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors
  publication-title: High Volt.
  doi: 10.1049/hve.2020.0076
– volume: 48
  start-page: 219
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib6
  article-title: High-temperature dielectric materials for electrical energy storage
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070317-124435
– volume: 523
  start-page: 576
  issue: 7562
  year: 2015
  ident: 10.1016/j.compscitech.2020.108528_bib14
  article-title: Flexible high-temperature dielectric materials from polymer nanocomposites
  publication-title: Nature
  doi: 10.1038/nature14647
– volume: 48
  start-page: 4424
  issue: 16
  year: 2019
  ident: 10.1016/j.compscitech.2020.108528_bib37
  article-title: Interface design for high energy density polymer nanocomposites
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00043G
– volume: 9
  start-page: 10106
  issue: 11
  year: 2017
  ident: 10.1016/j.compscitech.2020.108528_bib42
  article-title: The role of field electron emission in polypropylene/aluminum nanodielectrics under high electric fields
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00095
– volume: 127
  issue: 24
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib12
  article-title: Advanced polymer dielectrics for high temperature capacitive energy storage
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0009650
– start-page: 206
  year: 1983
  ident: 10.1016/j.compscitech.2020.108528_bib17
  article-title: Polyetherimide: high temperature, melt processable insulation
  publication-title: IEEE Electr. Insul, Conf. (EIC)
– volume: 68
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib27
  article-title: BaTiO3 internally decorated hollow porous carbon hybrids as fillers enhancing dielectric and energy storage performance of sandwich-structured polymer composite
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104351
– volume: 54
  start-page: 288
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib47
  article-title: Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.028
– volume: 5
  start-page: 3677
  issue: 21
  year: 2014
  ident: 10.1016/j.compscitech.2020.108528_bib2
  article-title: Exploring strategies for high dielectric constant and low loss polymer dielectrics
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501831q
– volume: 10
  start-page: 137
  issue: 1
  year: 2017
  ident: 10.1016/j.compscitech.2020.108528_bib28
  article-title: Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03190K
– volume: 190
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib40
  article-title: Improved breakdown strength of Poly (vinylidene fluoride)-based composites by using all ball-milled hexagonal boron nitride sheets without centrifugation
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2020.108046
– volume: 10
  issue: 16
  year: 2020
  ident: 10.1016/j.compscitech.2020.108528_bib35
  article-title: Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903881
– volume: 179
  start-page: 115
  year: 2019
  ident: 10.1016/j.compscitech.2020.108528_bib22
  article-title: Poly(vinylidene fluoride) terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.04.035
– volume: 30
  start-page: 1805672
  issue: 49
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib5
  article-title: A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805672
– volume: 1
  start-page: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.compscitech.2020.108528_bib13
  article-title: Dielectric materials for high-temperature capacitors
  publication-title: IET Nanodielectr.
  doi: 10.1049/iet-nde.2018.0002
– volume: 116
  start-page: 4260
  issue: 7
  year: 2016
  ident: 10.1016/j.compscitech.2020.108528_bib49
  article-title: Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00495
– volume: 1
  start-page: 817
  issue: 1
  year: 2008
  ident: 10.1016/j.compscitech.2020.108528_bib18
  article-title: Development of high temperature capacitors for high density, high temperature applications
  publication-title: SAE Int. J. Aerosp.
  doi: 10.4271/2008-01-2851
SSID ssj0007592
Score 2.6802728
Snippet Polymer dielectrics are preferred materials for high-energy-density capacitive energy storage. In particular, high-temperature dielectrics that can withstand...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108528
SubjectTerms Dielectric properties
Dielectrics
Electric power systems
Energy storage
Flux density
Hafnium oxide
Hafnium oxide nanoparticles
High temperature
Leakage current
Nanocomposites
Nanoparticles
Permittivity
Polyetherimides
Polymer matrix composites
Polymer nanocomposites
Polymers
Title Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors
URI https://dx.doi.org/10.1016/j.compscitech.2020.108528
https://www.proquest.com/docview/2487168703
Volume 201
WOSCitedRecordID wos000596316100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007592
  issn: 0266-3538
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFkE5ICigFgpaJMQlclW_vRKXqkpVkJUilKLcVvZ6V3XkOiaPqvlD_E5mvGs7LRSFAxcr2WQ3tr_PM7OTeRDywQ4i5jiJsEAqZpanIt9iUqSWK6STRQrTQb262UQ4HEbjMfva6_1scmGui7Aso5sbVv1XqGEMwMbU2X-Au10UBuA1gA5HgB2OGwEfY2x3serL8lL_u5_lutdNLjAaq8JAal1ptpoWqys5q8PKMXZLmlS3M3Xu9MukhP20CZurgxGxsrGFpaxMHWas6XTVF6BtRY49e9bt3JNuySZxqA7V_M2R_02LvXhZLFsBZFzYcT5ZttTtHNv5qv1mrFtuy3XXhWPXrgu_86e1OTXf16QeWAyW6-uSL4dSS-UoZKAvdIXaRmw7xgmiBa_9R3WgPRMTRLOCq8WLPIQTqSMrfZOUfqsE9_Ccn17EMR8NxqOP1Q8Lu5PhzTKtWh6QbSf0GUjP7ePPg_GXVufDoKO9efrkH5H3XSThPb9-nyV0xyaoDZ3RM_LU7FDosYb-OenJcpc8bhLY57vkyVoNyxdkZfhGG77Rjm-04xudKmr4Rju-UeQbRb7RW3yjwDd6l28U-UY7vr0kF6eD0cmZZfp5WML12MKyUy9QnkpT2FREqe0mMvSFqxQwg6XS9dNUphE2ODjKggz2JVkCCiKB_UHCwkTAm1dkq5yWco9QxlQA1qZiSZJ4DJY8yhRODWQQgRXv7pOoubdcmGL32HOl4E1U44SvwcIRFq5h2SdOO7XSFV82mfSpAZCbx0qbpByouMn0gwZ0bkTJnDseOjNAn7qv__7xG7LTPV0HZGsxW8q35KG4XuTz2TtD1V9_nMxt
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Largely+enhanced+dielectric+properties+of+polymer+composites+with+HfO2+nanoparticles+for+high-temperature+film+capacitors&rft.jtitle=Composites+science+and+technology&rft.au=Ren%2C+Lulu&rft.au=Yang%2C+Lijun&rft.au=Zhang%2C+Siyu&rft.au=Li%2C+He&rft.date=2021-01-05&rft.pub=Elsevier+BV&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=201&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compscitech.2020.108528&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon