Equations on monotone graphs
This paper studies the local analysis of equations on a product U × U of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of U . A prominent example, to which we devote most of the paper, is a system of equations...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 141; číslo 1-2; s. 49 - 101 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2013
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper studies the local analysis of equations on a product
U
×
U
of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of
U
. A prominent example, to which we devote most of the paper, is a system of equations whose variables lie in the graph of a maximal monotone operator. This general formulation covers many specific problems of interest, and our objective is to understand the local behavior of solutions of such equations when they depend on parameters. We analyze this local behavior in stages, the first stage being to apply a tailored implicit-function theorem to an abstract formulation of the problem, thereby producing a set of results applicable to any particular problem instance. The second stage is to specialize the analysis to a Hilbert space
H
, with the subset mentioned above being the graph of a maximal monotone operator on
H
. This makes the results of the first stage applicable to many variational problems of practical importance. We then develop in detail the analytical steps to apply these results to finite-dimensional variational conditions with constraints of generalized nonlinear-programming type. The conditions thus identified generalize the strong second-order sufficient condition and linear-independence constraint qualification of nonlinear programming. A detailed example brings out some of the issues involved in practical implementation of this method. It also shows that aspects of representation (problem formulation) can strongly influence the feasibility of local analysis. This sensitivity to representation does not seem to be well known. |
|---|---|
| AbstractList | This paper studies the local analysis of equations on a product U U of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of U. A prominent example, to which we devote most of the paper, is a system of equations whose variables lie in the graph of a maximal monotone operator. This general formulation covers many specific problems of interest, and our objective is to understand the local behavior of solutions of such equations when they depend on parameters. We analyze this local behavior in stages, the first stage being to apply a tailored implicit-function theorem to an abstract formulation of the problem, thereby producing a set of results applicable to any particular problem instance. The second stage is to specialize the analysis to a Hilbert space H, with the subset mentioned above being the graph of a maximal monotone operator on H. This makes the results of the first stage applicable to many variational problems of practical importance. We then develop in detail the analytical steps to apply these results to finite-dimensional variational conditions with constraints of generalized nonlinear-programming type. The conditions thus identified generalize the strong second-order sufficient condition and linear-independence constraint qualification of nonlinear programming. A detailed example brings out some of the issues involved in practical implementation of this method. It also shows that aspects of representation (problem formulation) can strongly influence the feasibility of local analysis. This sensitivity to representation does not seem to be well known. This paper studies the local analysis of equations on a product U × U of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of U. A prominent example, to which we devote most of the paper, is a system of equations whose variables lie in the graph of a maximal monotone operator. This general formulation covers many specific problems of interest, and our objective is to understand the local behavior of solutions of such equations when they depend on parameters. We analyze this local behavior in stages, the first stage being to apply a tailored implicit-function theorem to an abstract formulation of the problem, thereby producing a set of results applicable to any particular problem instance. The second stage is to specialize the analysis to a Hilbert space H, with the subset mentioned above being the graph of a maximal monotone operator on H. This makes the results of the first stage applicable to many variational problems of practical importance. We then develop in detail the analytical steps to apply these results to finite-dimensional variational conditions with constraints of generalized nonlinear-programming type. The conditions thus identified generalize the strong second-order sufficient condition and linear-independence constraint qualification of nonlinear programming. A detailed example brings out some of the issues involved in practical implementation of this method. It also shows that aspects of representation (problem formulation) can strongly influence the feasibility of local analysis. This sensitivity to representation does not seem to be well known.[PUBLICATION ABSTRACT] This paper studies the local analysis of equations on a product U × U of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of U . A prominent example, to which we devote most of the paper, is a system of equations whose variables lie in the graph of a maximal monotone operator. This general formulation covers many specific problems of interest, and our objective is to understand the local behavior of solutions of such equations when they depend on parameters. We analyze this local behavior in stages, the first stage being to apply a tailored implicit-function theorem to an abstract formulation of the problem, thereby producing a set of results applicable to any particular problem instance. The second stage is to specialize the analysis to a Hilbert space H , with the subset mentioned above being the graph of a maximal monotone operator on H . This makes the results of the first stage applicable to many variational problems of practical importance. We then develop in detail the analytical steps to apply these results to finite-dimensional variational conditions with constraints of generalized nonlinear-programming type. The conditions thus identified generalize the strong second-order sufficient condition and linear-independence constraint qualification of nonlinear programming. A detailed example brings out some of the issues involved in practical implementation of this method. It also shows that aspects of representation (problem formulation) can strongly influence the feasibility of local analysis. This sensitivity to representation does not seem to be well known. |
| Author | Robinson, Stephen M. |
| Author_xml | – sequence: 1 givenname: Stephen M. surname: Robinson fullname: Robinson, Stephen M. email: smrobins@wisc.edu organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison |
| BookMark | eNp9kD1PwzAQhi1UJErhByAxVGJhMdzFF9sZUVU-pEosMFtJ6pRUrd3aycC_xyUMqBLohlue573Te85GzjvL2BXCHQKo-4iAoDggcsih4HTCxkhCcpIkR2wMkOU8lwhn7DzGNQCg0HrMruf7vuxa7-LUu-nWO9-l4OkqlLuPeMFOm3IT7eXPnrD3x_nb7JkvXp9eZg8LXgsqOo6FrUGQljavoMpzLTPAWlsiq6TUQkFVL7M0uigyK5VsaEmVoqbRWZlJKybsdsjdBb_vbezMto213WxKZ30fDRJphSlWJ_TmCF37Prj0XaKEAKmIVKJwoOrgYwy2MbvQbsvwaRDMoS8z9GVSX-bQl6HkqCOnbrvvarpQtpt_zWwwY7riVjb8-ulP6QvTeX2P |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1287_moor_2014_0672 crossref_primary_10_1007_s11228_018_0474_7 crossref_primary_10_1007_s10589_015_9796_7 crossref_primary_10_1007_s12532_019_00156_4 crossref_primary_10_1007_s10107_012_0624_x crossref_primary_10_1137_15M1020770 |
| Cites_doi | 10.1214/aos/1176347146 10.1287/moor.26.1.105.10600 10.1007/BFb0121018 10.1137/S1052623495284029 10.1007/978-1-4899-1358-6_20 10.1007/BF01584073 10.1016/0022-247X(67)90163-1 10.1016/B978-0-12-590240-3.50009-4 10.1007/BF00940933 10.1137/S036301299935211X 10.1214/aos/1176351052 10.1287/moor.5.1.43 10.1137/0112033 10.1287/moor.17.3.691 10.1080/02331931003667583 10.1016/0024-3795(72)90019-5 10.1017/CBO9780511983658 10.1007/978-0-387-87821-8 10.1137/0510117 10.1287/moor.28.2.201.14480 10.1137/S0363012992241673 10.1287/moor.18.1.148 10.1137/0129056 10.1137/0122030 10.1007/b97544 10.1023/B:SVAN.0000023405.22464.78 10.1007/s10107-007-0161-1 10.1016/0024-3795(87)90339-9 10.1016/0024-3795(90)90052-E 10.1007/978-1-4612-1394-9 10.1007/s11228-008-0077-9 10.1016/0024-3795(74)90066-4 10.1023/A:1005051314227 10.1215/S0012-7094-62-02933-2 10.1016/0362-546X(94)90066-3 10.1016/j.na.2011.07.040 10.1016/0024-3795(94)00337-8 10.1515/9781400873173 10.1007/BF00941302 10.1006/jmaa.1994.1431 10.1287/moor.16.2.292 10.1016/j.na.2008.02.073 |
| ContentType | Journal Article |
| Copyright | Springer and Mathematical Optimization Society 2012 Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013 |
| Copyright_xml | – notice: Springer and Mathematical Optimization Society 2012 – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-011-0509-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 101 |
| ExternalDocumentID | 3073663911 10_1007_s10107_011_0509_4 |
| Genre | Feature |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c349t-19ec03486e5b0b5586201c8e44e7668370bcd2d2d8992e676f4d4b74ff82a26e3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324232100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Fri Sep 05 07:12:17 EDT 2025 Thu Sep 25 00:46:20 EDT 2025 Tue Nov 18 21:43:46 EST 2025 Sat Nov 29 05:49:02 EST 2025 Fri Feb 21 02:32:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 90C31 Variational condition Normal manifold Normal map Complementarity 49J53 Variational inequality 49K40 49J40 90C33 Monotone graph Implicit function |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-19ec03486e5b0b5586201c8e44e7668370bcd2d2d8992e676f4d4b74ff82a26e3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 1433067447 |
| PQPubID | 25307 |
| PageCount | 53 |
| ParticipantIDs | proquest_miscellaneous_1448718628 proquest_journals_1433067447 crossref_primary_10_1007_s10107_011_0509_4 crossref_citationtrail_10_1007_s10107_011_0509_4 springer_journals_10_1007_s10107_011_0509_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20131000 2013-10-00 20131001 |
| PublicationDateYYYYMMDD | 2013-10-01 |
| PublicationDate_xml | – month: 10 year: 2013 text: 20131000 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2013 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research. Springer-Verlag, New York (2003). Published in two volumes, paginated continuously RobinsonS.M.GiannessiF.MaugeriA.Sensitivity analysis of variational inequalities by normal-map techniquesVariational Inequalities and Network Equilibrium Problems1995New YorkPlenum Press25726910.1007/978-1-4899-1358-6_20 Drusvyatskiy, D., Lewis, A.S.: Semi-algebraic functions have small subdifferentials. Available online at http://arxiv.org/abs/1004.0368 (submitted 2010, revised 2011) KojimaM.RobinsonS.M.Strongly stable stationary solutions in nonlinear programsAnalysis and Computation of Fixed Points1980New YorkAcademic Press93138 ShapiroA.Asymptotic properties of statistical estimators in stochastic programmingAnn. Stat.19891784185810.1214/aos/11763471460688.62025 GolubG.H.Van LoanC.F.Matrix Computations19963BaltimoreThe Johns Hopkins University Press0865.65009 EavesB.C.On the basic theorem of complementarityMath. Program.19711687528790110.1007/BF015840730227.90044 LuoZ.Q.PangJ.S.RalphD.Mathematical Programs with Equilibrium Constraints1996CambridgeCambridge University Press10.1017/CBO9780511983658 ShapiroA.On concepts of directional differentiabilityJ. Optim. Theory Appl.199066477487108025910.1007/BF009409330682.49015 MurtyK.G.On the number of solutions to the complementarity problem and spanning properties of complementary conesLinear Algebra Appl.197256510810.1016/0024-3795(72)90019-50241.90046 RockafellarR.T.WetsR.J.Variational Analysis, No. 317 in Grundlehren der mathematischen Wissenschaften1998BerlinSpringer SamelsonH.ThrallR.M.WeslerO.A partition theorem for Euclidean spaceProc. Am. Math. Soc.19589805807970250117.37901 RobinsonS.M.A point-of-attraction result for Newton’s method with point-based approximationsOptimization2011608999Published online 2010 KlatteD.KummerB.Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications2002DordrechtKluwer MintyG.J.Monotone (nonlinear) operators in Hilbert spaceDuke Math. J.19622934134616906410.1215/S0012-7094-62-02933-20111.31202 MangasarianO.L.FromovitzS.The Fritz John necessary optimality conditions in the presence of equality and inequality constraintsJ. Math. Anal. Appl.196717374720744810.1016/0022-247X(67)90163-10149.16701 KojimaM.SaigalR.A study of PC1 homeomorphisms on subdivided polyhedronsSIAM J. Math. Anal.1979101299131254781510.1137/0510117 RobinsonS.M.Normal maps induced by linear transformationsMath. Oper. Res.199217691714117773110.1287/moor.17.3.6910777.90063 LöwenR.Branching numbers for Euclidean projections onto polyhedraGeometriae Dedicata19987299103164415910.1023/A:10050513142271035.52004 PangJ.S.YaoJ.C.On a generalization of a normal map and equationSIAM J. Control Optim.199533168184131166510.1137/S03630129922416730827.90131 LevyA.B.Lipschitzian multifunctions and a Lipschitzian inverse mapping theoremMath. Oper. Res.2001261105118182183210.1287/moor.26.1.105.106001073.90553 RobinsonS.M.Strongly regular generalized equationsMath. Oper. Res.19805436256115310.1287/moor.5.1.430437.90094 StampacchiaG.Formes bilinéaires coercitives sur les ensembles convexesComptes Rendus de l’Académie des Sciences de Paris1964258441344161665910124.06401 CottleR.W.Manifestations of the Schur complementLinear Algebra Appl.1974818921135472710.1016/0024-3795(74)90066-40284.15005 RobinsonS.M.An implicit-function theorem for a class of nonsmooth functionsMath. Oper. Res.199116292309110680310.1287/moor.16.2.2920746.46039 KummerB.Lipschitzian inverse functions, directional derivatives, and applications in C1,1 optimizationJ. Optim. Theory Appl.199170561582112477810.1007/BF009413020795.49012 Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer Monographs in Mathematics. Springer, New York (2009). ISBN-13: 978-0-387-87820-1 RalphD.ScholtesS.Sensitivity analysis of composite piecewise smooth equationsMath. Program.19977659361214339730871.90094 EavesB.C.RothblumU.G.Relationships of properties of piecewise affine maps over ordered fieldsLinear Algebra Appl.1990132163105809010.1016/0024-3795(90)90052-E0706.15017 MordukhovichB.S.Failure of metric regularity for major classes of variational systemsNonlinear Anal.200869918924242876410.1016/j.na.2008.02.0731143.49014 RalphD.On branching numbers of normal manifoldsNonlinear Anal. Theory Methods Appl.19942210411050127759910.1016/0362-546X(94)90066-30830.57014 LemkeC.E.HowsonJ.T.JrEquilibrium points of bimatrix gamesJ. Soc. Ind. Appl. Math.19641241342317355610.1137/01120330128.14804 DontchevA.L.RockafellarR.T.Robinson’s implicit function theorem and its extensionsMath. Program.2009117129147242130210.1007/s10107-007-0161-11172.49013 KingA.J.RockafellarR.T.Asymptotic theory for solutions in statistical estimation and stochastic programmingMath. Oper. Res.199318148162125011110.1287/moor.18.1.1480798.90115 LemkeC.E.DantzigG.B.VeinottA.F.JrOn complementary pivot theoryMathematics of the Decision Sciences, Part 1, no. 11 in Lectures in Applied Mathematics1968Providence, RIAmerican Mathematical Society95114 ScholtesS.A proof of the branching number bound for normal manifoldsLinear Algebra Appl.19962468395140766010.1016/0024-3795(94)00337-80868.52003 KuntzL.ScholtesS.Structural analysis of nonsmooth mappings, inverse functions, and metric projectionsJ. Math. Anal. Appl.1994188346386130545410.1006/jmaa.1994.14310809.49014 RheinboldtW.C.VandergraftJ.S.On piecewise affine mappings in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}SIAM J. Appl. Math.19752968068942937410.1137/01290560322.65028 Scholtes, S.: Introduction to piecewise differentiable equations. Habilitationsschrift, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Fridericiana Karlsruhe, Karlsruhe, Germany (1994). Preprint No. 53/1994 Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research. Springer, New York (2006). ISBN-13: 978-0387-30303-1 Demir, M.C.: Asymptotics and Confidence Regions for Stochastic Variational Inequalities. Ph.D. Dissertation, Department of Industrial Engineering, University of Wisconsin-Madison, Madison (2000) Robinson, S.M.: Localized normal maps and the stability of variational conditions. Set Valued Anal. 12, 259–274 (2004). Errata, Set Valued Anal. 14, 207 (2006) LuS.RobinsonS.M.Normal fans of polyhedral convex sets: structures and connectionsSet Valued Anal.200816281305239920710.1007/s11228-008-0077-91144.52008 RobinsonS.M.Constraint nondegeneracy in variational analysisMath. Oper. Res.200328201232198066010.1287/moor.28.2.201.144801082.90116 RobinsonS.M.Local structure of feasible sets in nonlinear programming, part II: nondegeneracyMath. Program. Stud.19842221723010.1007/BFb01210180573.90075 BonnansJ.F.ShapiroA.Perturbation Analysis of Optimization Problems. Springer Series in Operations Research2000New YorkSpringer FujisawaT.KuhE.S.Piecewise-linear theory of nonlinear networksSIAM J. Appl. Math.19722230732845329710.1137/01220300239.94033 Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. No. 5 in North-Holland Mathematics Studies. North-Holland, Amsterdam (1973) DupačováJ.WetsR.Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problemsAnn. Stat.1988161517154910.1214/aos/11763510520667.62018 KuhnD.LöwenR.Piecewise affine bijections of Rn and the equation Sx+ − Tx− = yLinear Algebra Appl.19879610912991098910.1016/0024-3795(87)90339-90625.90089 Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: The dimension of semialgebraic subdifferential graphs. Nonlinear Anal. Theory Methods Appl. (2011). Published online with doi:10.1016/j.na.2011.07.040 LevyA.B.Solution sensitivity from general principlesSIAM J. Control Optim.2001401138185530310.1137/S036301299935211X0985.90085 DontchevA.L.RockafellarR.T.Characterizations of strong regularity for variational inequalities over polyhedral convex setsSIAM J. Optim.1996610871105141653010.1137/S10526234952840290899.49004 Householder, A.S.: The Theory of Matrices in Numerical Analysis. Dover, New York (1975). Originally published 1964 by Blaisdell Publishing Co. RockafellarR.T.Convex Analysis1970PrincetonPrinceton University Press0193.18401 509_CR2 G.H. Golub (509_CR15) 1996 L. Kuntz (509_CR23) 1994; 188 509_CR6 509_CR51 509_CR4 A.L. Dontchev (509_CR7) 2009; 117 T. Fujisawa (509_CR14) 1972; 22 A.L. Dontchev (509_CR5) 1996; 6 D. Ralph (509_CR38) 1997; 76 509_CR8 509_CR9 S.M. Robinson (509_CR44) 1995 M. Kojima (509_CR20) 1979; 10 G.J. Minty (509_CR32) 1962; 29 A. Shapiro (509_CR54) 1990; 66 509_CR13 S. Scholtes (509_CR52) 1996; 246 509_CR16 A.B. Levy (509_CR26) 2001; 26 K.G. Murty (509_CR34) 1972; 5 S.M. Robinson (509_CR43) 1992; 17 S. Lu (509_CR29) 2008; 16 J. Dupačová (509_CR10) 1988; 16 A.B. Levy (509_CR27) 2001; 40 G. Stampacchia (509_CR55) 1964; 258 B. Kummer (509_CR22) 1991; 70 509_CR46 O.L. Mangasarian (509_CR31) 1967; 17 509_CR47 H. Samelson (509_CR50) 1958; 9 B.C. Eaves (509_CR12) 1990; 132 R.W. Cottle (509_CR3) 1974; 8 B.C. Eaves (509_CR11) 1971; 1 D. Kuhn (509_CR21) 1987; 96 S.M. Robinson (509_CR41) 1984; 22 M. Kojima (509_CR19) 1980 J.F. Bonnans (509_CR1) 2000 C.E. Lemke (509_CR25) 1964; 12 R.T. Rockafellar (509_CR48) 1970 C.E. Lemke (509_CR24) 1968 B.S. Mordukhovich (509_CR33) 2008; 69 509_CR35 S.M. Robinson (509_CR45) 2003; 28 J.S. Pang (509_CR36) 1995; 33 Z.Q. Luo (509_CR30) 1996 R.T. Rockafellar (509_CR49) 1998 W.C. Rheinboldt (509_CR39) 1975; 29 A. Shapiro (509_CR53) 1989; 17 R. Löwen (509_CR28) 1998; 72 D. Klatte (509_CR18) 2002 A.J. King (509_CR17) 1993; 18 S.M. Robinson (509_CR40) 1980; 5 D. Ralph (509_CR37) 1994; 22 S.M. Robinson (509_CR42) 1991; 16 |
| References_xml | – reference: StampacchiaG.Formes bilinéaires coercitives sur les ensembles convexesComptes Rendus de l’Académie des Sciences de Paris1964258441344161665910124.06401 – reference: Drusvyatskiy, D., Lewis, A.S.: Semi-algebraic functions have small subdifferentials. Available online at http://arxiv.org/abs/1004.0368 (submitted 2010, revised 2011) – reference: LemkeC.E.HowsonJ.T.JrEquilibrium points of bimatrix gamesJ. Soc. Ind. Appl. Math.19641241342317355610.1137/01120330128.14804 – reference: LuS.RobinsonS.M.Normal fans of polyhedral convex sets: structures and connectionsSet Valued Anal.200816281305239920710.1007/s11228-008-0077-91144.52008 – reference: Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: The dimension of semialgebraic subdifferential graphs. Nonlinear Anal. Theory Methods Appl. (2011). Published online with doi:10.1016/j.na.2011.07.040 – reference: KuhnD.LöwenR.Piecewise affine bijections of Rn and the equation Sx+ − Tx− = yLinear Algebra Appl.19879610912991098910.1016/0024-3795(87)90339-90625.90089 – reference: RobinsonS.M.Normal maps induced by linear transformationsMath. Oper. Res.199217691714117773110.1287/moor.17.3.6910777.90063 – reference: RockafellarR.T.Convex Analysis1970PrincetonPrinceton University Press0193.18401 – reference: Demir, M.C.: Asymptotics and Confidence Regions for Stochastic Variational Inequalities. Ph.D. Dissertation, Department of Industrial Engineering, University of Wisconsin-Madison, Madison (2000) – reference: Robinson, S.M.: Localized normal maps and the stability of variational conditions. Set Valued Anal. 12, 259–274 (2004). Errata, Set Valued Anal. 14, 207 (2006) – reference: Scholtes, S.: Introduction to piecewise differentiable equations. Habilitationsschrift, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Fridericiana Karlsruhe, Karlsruhe, Germany (1994). Preprint No. 53/1994 – reference: LevyA.B.Lipschitzian multifunctions and a Lipschitzian inverse mapping theoremMath. Oper. Res.2001261105118182183210.1287/moor.26.1.105.106001073.90553 – reference: LöwenR.Branching numbers for Euclidean projections onto polyhedraGeometriae Dedicata19987299103164415910.1023/A:10050513142271035.52004 – reference: DontchevA.L.RockafellarR.T.Characterizations of strong regularity for variational inequalities over polyhedral convex setsSIAM J. Optim.1996610871105141653010.1137/S10526234952840290899.49004 – reference: KingA.J.RockafellarR.T.Asymptotic theory for solutions in statistical estimation and stochastic programmingMath. Oper. Res.199318148162125011110.1287/moor.18.1.1480798.90115 – reference: KummerB.Lipschitzian inverse functions, directional derivatives, and applications in C1,1 optimizationJ. Optim. Theory Appl.199170561582112477810.1007/BF009413020795.49012 – reference: RobinsonS.M.A point-of-attraction result for Newton’s method with point-based approximationsOptimization2011608999Published online 2010 – reference: KojimaM.RobinsonS.M.Strongly stable stationary solutions in nonlinear programsAnalysis and Computation of Fixed Points1980New YorkAcademic Press93138 – reference: PangJ.S.YaoJ.C.On a generalization of a normal map and equationSIAM J. Control Optim.199533168184131166510.1137/S03630129922416730827.90131 – reference: LuoZ.Q.PangJ.S.RalphD.Mathematical Programs with Equilibrium Constraints1996CambridgeCambridge University Press10.1017/CBO9780511983658 – reference: Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research. Springer, New York (2006). ISBN-13: 978-0387-30303-1 – reference: RobinsonS.M.GiannessiF.MaugeriA.Sensitivity analysis of variational inequalities by normal-map techniquesVariational Inequalities and Network Equilibrium Problems1995New YorkPlenum Press25726910.1007/978-1-4899-1358-6_20 – reference: Householder, A.S.: The Theory of Matrices in Numerical Analysis. Dover, New York (1975). Originally published 1964 by Blaisdell Publishing Co. – reference: Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. No. 5 in North-Holland Mathematics Studies. North-Holland, Amsterdam (1973) – reference: KlatteD.KummerB.Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications2002DordrechtKluwer – reference: CottleR.W.Manifestations of the Schur complementLinear Algebra Appl.1974818921135472710.1016/0024-3795(74)90066-40284.15005 – reference: RalphD.On branching numbers of normal manifoldsNonlinear Anal. Theory Methods Appl.19942210411050127759910.1016/0362-546X(94)90066-30830.57014 – reference: RobinsonS.M.An implicit-function theorem for a class of nonsmooth functionsMath. Oper. Res.199116292309110680310.1287/moor.16.2.2920746.46039 – reference: DontchevA.L.RockafellarR.T.Robinson’s implicit function theorem and its extensionsMath. Program.2009117129147242130210.1007/s10107-007-0161-11172.49013 – reference: MurtyK.G.On the number of solutions to the complementarity problem and spanning properties of complementary conesLinear Algebra Appl.197256510810.1016/0024-3795(72)90019-50241.90046 – reference: RheinboldtW.C.VandergraftJ.S.On piecewise affine mappings in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}SIAM J. Appl. Math.19752968068942937410.1137/01290560322.65028 – reference: KuntzL.ScholtesS.Structural analysis of nonsmooth mappings, inverse functions, and metric projectionsJ. Math. Anal. Appl.1994188346386130545410.1006/jmaa.1994.14310809.49014 – reference: ScholtesS.A proof of the branching number bound for normal manifoldsLinear Algebra Appl.19962468395140766010.1016/0024-3795(94)00337-80868.52003 – reference: MordukhovichB.S.Failure of metric regularity for major classes of variational systemsNonlinear Anal.200869918924242876410.1016/j.na.2008.02.0731143.49014 – reference: RobinsonS.M.Strongly regular generalized equationsMath. Oper. Res.19805436256115310.1287/moor.5.1.430437.90094 – reference: RockafellarR.T.WetsR.J.Variational Analysis, No. 317 in Grundlehren der mathematischen Wissenschaften1998BerlinSpringer – reference: SamelsonH.ThrallR.M.WeslerO.A partition theorem for Euclidean spaceProc. Am. Math. Soc.19589805807970250117.37901 – reference: LevyA.B.Solution sensitivity from general principlesSIAM J. Control Optim.2001401138185530310.1137/S036301299935211X0985.90085 – reference: MangasarianO.L.FromovitzS.The Fritz John necessary optimality conditions in the presence of equality and inequality constraintsJ. Math. Anal. Appl.196717374720744810.1016/0022-247X(67)90163-10149.16701 – reference: DupačováJ.WetsR.Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problemsAnn. Stat.1988161517154910.1214/aos/11763510520667.62018 – reference: ShapiroA.On concepts of directional differentiabilityJ. Optim. Theory Appl.199066477487108025910.1007/BF009409330682.49015 – reference: ShapiroA.Asymptotic properties of statistical estimators in stochastic programmingAnn. Stat.19891784185810.1214/aos/11763471460688.62025 – reference: Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer Monographs in Mathematics. Springer, New York (2009). ISBN-13: 978-0-387-87820-1 – reference: EavesB.C.RothblumU.G.Relationships of properties of piecewise affine maps over ordered fieldsLinear Algebra Appl.1990132163105809010.1016/0024-3795(90)90052-E0706.15017 – reference: GolubG.H.Van LoanC.F.Matrix Computations19963BaltimoreThe Johns Hopkins University Press0865.65009 – reference: EavesB.C.On the basic theorem of complementarityMath. Program.19711687528790110.1007/BF015840730227.90044 – reference: FujisawaT.KuhE.S.Piecewise-linear theory of nonlinear networksSIAM J. Appl. Math.19722230732845329710.1137/01220300239.94033 – reference: RobinsonS.M.Constraint nondegeneracy in variational analysisMath. Oper. Res.200328201232198066010.1287/moor.28.2.201.144801082.90116 – reference: KojimaM.SaigalR.A study of PC1 homeomorphisms on subdivided polyhedronsSIAM J. Math. Anal.1979101299131254781510.1137/0510117 – reference: LemkeC.E.DantzigG.B.VeinottA.F.JrOn complementary pivot theoryMathematics of the Decision Sciences, Part 1, no. 11 in Lectures in Applied Mathematics1968Providence, RIAmerican Mathematical Society95114 – reference: Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research. Springer-Verlag, New York (2003). Published in two volumes, paginated continuously – reference: RalphD.ScholtesS.Sensitivity analysis of composite piecewise smooth equationsMath. Program.19977659361214339730871.90094 – reference: RobinsonS.M.Local structure of feasible sets in nonlinear programming, part II: nondegeneracyMath. Program. Stud.19842221723010.1007/BFb01210180573.90075 – reference: MintyG.J.Monotone (nonlinear) operators in Hilbert spaceDuke Math. J.19622934134616906410.1215/S0012-7094-62-02933-20111.31202 – reference: BonnansJ.F.ShapiroA.Perturbation Analysis of Optimization Problems. Springer Series in Operations Research2000New YorkSpringer – volume: 17 start-page: 841 year: 1989 ident: 509_CR53 publication-title: Ann. Stat. doi: 10.1214/aos/1176347146 – volume: 26 start-page: 105 issue: 1 year: 2001 ident: 509_CR26 publication-title: Math. Oper. Res. doi: 10.1287/moor.26.1.105.10600 – volume: 22 start-page: 217 year: 1984 ident: 509_CR41 publication-title: Math. Program. Stud. doi: 10.1007/BFb0121018 – volume: 6 start-page: 1087 year: 1996 ident: 509_CR5 publication-title: SIAM J. Optim. doi: 10.1137/S1052623495284029 – start-page: 257 volume-title: Variational Inequalities and Network Equilibrium Problems year: 1995 ident: 509_CR44 doi: 10.1007/978-1-4899-1358-6_20 – volume: 1 start-page: 68 year: 1971 ident: 509_CR11 publication-title: Math. Program. doi: 10.1007/BF01584073 – volume: 17 start-page: 37 year: 1967 ident: 509_CR31 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(67)90163-1 – ident: 509_CR9 – start-page: 93 volume-title: Analysis and Computation of Fixed Points year: 1980 ident: 509_CR19 doi: 10.1016/B978-0-12-590240-3.50009-4 – volume: 66 start-page: 477 year: 1990 ident: 509_CR54 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940933 – volume: 40 start-page: 1 issue: 1 year: 2001 ident: 509_CR27 publication-title: SIAM J. Control Optim. doi: 10.1137/S036301299935211X – ident: 509_CR2 – volume: 16 start-page: 1517 year: 1988 ident: 509_CR10 publication-title: Ann. Stat. doi: 10.1214/aos/1176351052 – volume: 5 start-page: 43 year: 1980 ident: 509_CR40 publication-title: Math. Oper. Res. doi: 10.1287/moor.5.1.43 – ident: 509_CR51 – volume: 12 start-page: 413 year: 1964 ident: 509_CR25 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0112033 – volume: 17 start-page: 691 year: 1992 ident: 509_CR43 publication-title: Math. Oper. Res. doi: 10.1287/moor.17.3.691 – ident: 509_CR47 doi: 10.1080/02331931003667583 – volume: 5 start-page: 65 year: 1972 ident: 509_CR34 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(72)90019-5 – volume: 76 start-page: 593 year: 1997 ident: 509_CR38 publication-title: Math. Program. – start-page: 95 volume-title: Mathematics of the Decision Sciences, Part 1, no. 11 in Lectures in Applied Mathematics year: 1968 ident: 509_CR24 – volume-title: Mathematical Programs with Equilibrium Constraints year: 1996 ident: 509_CR30 doi: 10.1017/CBO9780511983658 – ident: 509_CR6 doi: 10.1007/978-0-387-87821-8 – volume: 258 start-page: 4413 year: 1964 ident: 509_CR55 publication-title: Comptes Rendus de l’Académie des Sciences de Paris – volume: 10 start-page: 1299 year: 1979 ident: 509_CR20 publication-title: SIAM J. Math. Anal. doi: 10.1137/0510117 – volume: 28 start-page: 201 year: 2003 ident: 509_CR45 publication-title: Math. Oper. Res. doi: 10.1287/moor.28.2.201.14480 – volume: 33 start-page: 168 year: 1995 ident: 509_CR36 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012992241673 – ident: 509_CR16 – volume: 18 start-page: 148 year: 1993 ident: 509_CR17 publication-title: Math. Oper. Res. doi: 10.1287/moor.18.1.148 – volume-title: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications year: 2002 ident: 509_CR18 – volume: 29 start-page: 680 year: 1975 ident: 509_CR39 publication-title: SIAM J. Appl. Math. doi: 10.1137/0129056 – volume: 22 start-page: 307 year: 1972 ident: 509_CR14 publication-title: SIAM J. Appl. Math. doi: 10.1137/0122030 – volume-title: Matrix Computations year: 1996 ident: 509_CR15 – ident: 509_CR13 doi: 10.1007/b97544 – ident: 509_CR46 doi: 10.1023/B:SVAN.0000023405.22464.78 – volume: 117 start-page: 129 year: 2009 ident: 509_CR7 publication-title: Math. Program. doi: 10.1007/s10107-007-0161-1 – volume: 96 start-page: 109 year: 1987 ident: 509_CR21 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(87)90339-9 – volume: 132 start-page: 1 year: 1990 ident: 509_CR12 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(90)90052-E – volume-title: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research year: 2000 ident: 509_CR1 doi: 10.1007/978-1-4612-1394-9 – volume: 16 start-page: 281 year: 2008 ident: 509_CR29 publication-title: Set Valued Anal. doi: 10.1007/s11228-008-0077-9 – volume-title: Variational Analysis, No. 317 in Grundlehren der mathematischen Wissenschaften year: 1998 ident: 509_CR49 – volume: 9 start-page: 805 year: 1958 ident: 509_CR50 publication-title: Proc. Am. Math. Soc. – volume: 8 start-page: 189 year: 1974 ident: 509_CR3 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(74)90066-4 – volume: 72 start-page: 99 year: 1998 ident: 509_CR28 publication-title: Geometriae Dedicata doi: 10.1023/A:1005051314227 – volume: 29 start-page: 341 year: 1962 ident: 509_CR32 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-62-02933-2 – ident: 509_CR4 – volume: 22 start-page: 1041 year: 1994 ident: 509_CR37 publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/0362-546X(94)90066-3 – ident: 509_CR8 doi: 10.1016/j.na.2011.07.040 – volume: 246 start-page: 83 year: 1996 ident: 509_CR52 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(94)00337-8 – volume-title: Convex Analysis year: 1970 ident: 509_CR48 doi: 10.1515/9781400873173 – ident: 509_CR35 – volume: 70 start-page: 561 year: 1991 ident: 509_CR22 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00941302 – volume: 188 start-page: 346 year: 1994 ident: 509_CR23 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1994.1431 – volume: 16 start-page: 292 year: 1991 ident: 509_CR42 publication-title: Math. Oper. Res. doi: 10.1287/moor.16.2.292 – volume: 69 start-page: 918 year: 2008 ident: 509_CR33 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2008.02.073 |
| SSID | ssj0001388 |
| Score | 2.1012466 |
| Snippet | This paper studies the local analysis of equations on a product
U
×
U
of Banach spaces, whose variables lie in a subset having the special property that it is... This paper studies the local analysis of equations on a product U × U of Banach spaces, whose variables lie in a subset having the special property that it is... This paper studies the local analysis of equations on a product U U of Banach spaces, whose variables lie in a subset having the special property that it is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 49 |
| SubjectTerms | Banach space Calculus of Variations and Optimal Control; Optimization Combinatorics Feasibility Full Length Paper Graphs Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematics Mathematics and Statistics Mathematics of Computing Nonlinear programming Numerical Analysis Operators Representations Studies Theoretical Vector space |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTKRV8UgJtkqbpo8iGDzrEj7G30qQpCNLpuvn3e-mabooKSh9K6SVpL5fcHXf5HcAZE0yoKOUkCzNGuAkConIVk5xRjdpeqLiCFBrcRP2-HA7ju_ocd-my3V1IstqpFw67BVWaJLq_oS2NtgwreJe2XsP9w6DZfgMmpavTao0DF8r8rovPymhuYX4Jila6prf5r6_cgo3atPQuZ7KwDUum2IH1BcBBfLptUFrLXeh032ZA36U3KjyUx5FF5vYqDOtyD5563cera1JXSyCa8XhCgthon3EpTKh8FYboqviBloZzEwlhMW6Uzihe6GFRIyKR84yriOe5pCkVhu1Dq8BRDsCjmVAplX6qleC-SpVmfi5NGOuQ4-bJ2-A7tiW6hhK3FS1ekjkIsmVDgmxILBsSbHLeNHmd4Wj8Rtxxc5HUS6pEH4VZ94bzqA2nzWtcDDbCkRZmNLU06H8F-OeyDRdufha6-GnAwz9RH8EatUUxqpS-DrQm46k5hlX9PnkuxyeVNH4A-NHVKg priority: 102 providerName: Springer Nature |
| Title | Equations on monotone graphs |
| URI | https://link.springer.com/article/10.1007/s10107-011-0509-4 https://www.proquest.com/docview/1433067447 https://www.proquest.com/docview/1448718628 |
| Volume | 141 |
| WOSCitedRecordID | wos000324232100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_U-aAPfovTOSr4pATbJE3SJ9ExEXRj-K0vpUlTEGSbdvr3e-naTQV9kcJBaD7aa5K7y11_B7DPBBNaJpykYcoIt0FAdKYjkjFqUNoLHRWQQneXsttVDw9Rrzxwy8uwympPLDbqdGDcGfkRynWn3XIuj4evxGWNct7VMoXGLNRQswlcSFeH9iY7ccCUqlK2Oj2h8mqOf50LiqBLNKZDl2jtu1yaKps__KOF2Dlb_u8Dr8BSqXB6J-MZsgoztr8Gi19gCLHUmWC35uvQaL-O4b9zb9D3sJeBw-v2CmTrfANuz9o3rXNS5lAghvFoRILIGp9xJWyofR2GaMD4gVGWcyuFcMg32qQUL7S7qBVSZDzlWvIsUzShwrJNmOvjKFvg0VTohCo_MVpwXyfaMD9TNoxMyHFL5XXwKw7GpgQYd3kuXuIpNLJjeoxMjx3TY2xyMGkyHKNr_FW5UTE6LhdaHk-5XIe9yW1cIs7vkfTt4N3VQasswDdXdTisPueXLn4bcPvvAXdggbrcGEVkXwPmRm_vdhfmzcfoOX9rwqy8f2xC7bTd7V1h6UISpB2_1SzmqKPyGmkvfEJ6dX33CbRt50g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gXrwLa6uWkEvSrFN0jQ9iIgPFNfFg4q32qQpCLK72lXxT_kbnWm3uyrozYP0VJpXO5N5dCbfAGxyyaUOE-GmQcpdYX3f1ZmO3Iwzg9pe6qiAFLpphM2mur2NLofgvToLQ2mVlUwsBHXaNvSPfBf1Olm3QoT7nUeXqkZRdLUqoVGyxbl9e0WXLd87O0L6bjF2cnx1eOr2qgq4houo6_qRNR4XStpAezoI0KT3fKOsEDaUkrBgtEkZXuiJMCtDmYlU6FBkmWIJk5bjuMMwKghZjFIF2WVf8vtcqapELNklVRS1PKrnF0me6LwHVNjtqx4cGLff4rGFmjuZ_m8faAamega1c1DugFkYsq05mPwEs4h3F31s2nwe6sePJbx57rRbDq66TXjkToHcnS_A9Z8sdhFGWjjLEjgslTphykuMlsLTiTbcy5QNIhMIVBmiBl5Fsdj0ANSpjsdDPIB-JiLHSOSYiBxjl-1-l06JHvJb43pF2LgnSPJ4QNUabPQfowiguE7Ssu1naoNep49vrmqwU7HPpyF-mnD59wnXYfz06qIRN86a5yswwagOSJHFWIeR7tOzXYUx89K9z5_Wil3gwN1fc9UHznU7MQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-J0agWflLI0SdP0UXRDcY6BOnwrTZqCIN1cO_9-k35tigoifSrNVy-XXH7c5XcAZ4QRJryQ2pEbEZsqx7FFLHw7Jlhqa8-En1MKDXtev8-fn_1Bmec0raLdK5dkcafBsDQlWXscxe25i29OHjKpobBr0qQtwhI1cfQGrj8M663YIZxXOVvNQaFya37XxGfDNDttfnGQ5nanu_HvEW_CennktC4LHdmCBZVsw9ocEaF-u6_ZW9MdaHXeCgLw1BolltbTkWHstnJu63QXnrqdx6sbu8yiYEtC_cx2fCURoZwpVyDhuhrCIEdyRanyGDPcN0JGWD8aeWHFPBbTiAqPxjHHIWaK7EEj0b3sg4UjJkLMUSgFo0iEQhIUc-X60qV6U6VNQJUIA1lSjJtMF6_BjBzZiCHQYgiMGAJd5byuMi74NX4r3KrmJSiXWqqxCzGwh1KvCaf1Z71IjOcjTNRoaspoXOboP-dNuKjmaq6Jnzo8-FPpE1gZXHeD3m3_7hBWscmbkUf9taCRTabqCJble_aSTo5zJf0A72Hg8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equations+on+monotone+graphs&rft.jtitle=Mathematical+programming&rft.au=Robinson%2C+Stephen+M&rft.date=2013-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=141&rft.issue=1-2&rft.spage=49&rft_id=info:doi/10.1007%2Fs10107-011-0509-4&rft.externalDocID=3073663911 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |