Equations on monotone graphs

This paper studies the local analysis of equations on a product U ×  U of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of U . A prominent example, to which we devote most of the paper, is a system of equations...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 141; číslo 1-2; s. 49 - 101
Hlavní autor: Robinson, Stephen M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2013
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper studies the local analysis of equations on a product U ×  U of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of U . A prominent example, to which we devote most of the paper, is a system of equations whose variables lie in the graph of a maximal monotone operator. This general formulation covers many specific problems of interest, and our objective is to understand the local behavior of solutions of such equations when they depend on parameters. We analyze this local behavior in stages, the first stage being to apply a tailored implicit-function theorem to an abstract formulation of the problem, thereby producing a set of results applicable to any particular problem instance. The second stage is to specialize the analysis to a Hilbert space H , with the subset mentioned above being the graph of a maximal monotone operator on H . This makes the results of the first stage applicable to many variational problems of practical importance. We then develop in detail the analytical steps to apply these results to finite-dimensional variational conditions with constraints of generalized nonlinear-programming type. The conditions thus identified generalize the strong second-order sufficient condition and linear-independence constraint qualification of nonlinear programming. A detailed example brings out some of the issues involved in practical implementation of this method. It also shows that aspects of representation (problem formulation) can strongly influence the feasibility of local analysis. This sensitivity to representation does not seem to be well known.
AbstractList This paper studies the local analysis of equations on a product U U of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of U. A prominent example, to which we devote most of the paper, is a system of equations whose variables lie in the graph of a maximal monotone operator. This general formulation covers many specific problems of interest, and our objective is to understand the local behavior of solutions of such equations when they depend on parameters. We analyze this local behavior in stages, the first stage being to apply a tailored implicit-function theorem to an abstract formulation of the problem, thereby producing a set of results applicable to any particular problem instance. The second stage is to specialize the analysis to a Hilbert space H, with the subset mentioned above being the graph of a maximal monotone operator on H. This makes the results of the first stage applicable to many variational problems of practical importance. We then develop in detail the analytical steps to apply these results to finite-dimensional variational conditions with constraints of generalized nonlinear-programming type. The conditions thus identified generalize the strong second-order sufficient condition and linear-independence constraint qualification of nonlinear programming. A detailed example brings out some of the issues involved in practical implementation of this method. It also shows that aspects of representation (problem formulation) can strongly influence the feasibility of local analysis. This sensitivity to representation does not seem to be well known.
This paper studies the local analysis of equations on a product U × U of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of U. A prominent example, to which we devote most of the paper, is a system of equations whose variables lie in the graph of a maximal monotone operator. This general formulation covers many specific problems of interest, and our objective is to understand the local behavior of solutions of such equations when they depend on parameters. We analyze this local behavior in stages, the first stage being to apply a tailored implicit-function theorem to an abstract formulation of the problem, thereby producing a set of results applicable to any particular problem instance. The second stage is to specialize the analysis to a Hilbert space H, with the subset mentioned above being the graph of a maximal monotone operator on H. This makes the results of the first stage applicable to many variational problems of practical importance. We then develop in detail the analytical steps to apply these results to finite-dimensional variational conditions with constraints of generalized nonlinear-programming type. The conditions thus identified generalize the strong second-order sufficient condition and linear-independence constraint qualification of nonlinear programming. A detailed example brings out some of the issues involved in practical implementation of this method. It also shows that aspects of representation (problem formulation) can strongly influence the feasibility of local analysis. This sensitivity to representation does not seem to be well known.[PUBLICATION ABSTRACT]
This paper studies the local analysis of equations on a product U ×  U of Banach spaces, whose variables lie in a subset having the special property that it is locally Lipschitz-homeomorphic to an open subset of U . A prominent example, to which we devote most of the paper, is a system of equations whose variables lie in the graph of a maximal monotone operator. This general formulation covers many specific problems of interest, and our objective is to understand the local behavior of solutions of such equations when they depend on parameters. We analyze this local behavior in stages, the first stage being to apply a tailored implicit-function theorem to an abstract formulation of the problem, thereby producing a set of results applicable to any particular problem instance. The second stage is to specialize the analysis to a Hilbert space H , with the subset mentioned above being the graph of a maximal monotone operator on H . This makes the results of the first stage applicable to many variational problems of practical importance. We then develop in detail the analytical steps to apply these results to finite-dimensional variational conditions with constraints of generalized nonlinear-programming type. The conditions thus identified generalize the strong second-order sufficient condition and linear-independence constraint qualification of nonlinear programming. A detailed example brings out some of the issues involved in practical implementation of this method. It also shows that aspects of representation (problem formulation) can strongly influence the feasibility of local analysis. This sensitivity to representation does not seem to be well known.
Author Robinson, Stephen M.
Author_xml – sequence: 1
  givenname: Stephen M.
  surname: Robinson
  fullname: Robinson, Stephen M.
  email: smrobins@wisc.edu
  organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison
BookMark eNp9kD1PwzAQhi1UJErhByAxVGJhMdzFF9sZUVU-pEosMFtJ6pRUrd3aycC_xyUMqBLohlue573Te85GzjvL2BXCHQKo-4iAoDggcsih4HTCxkhCcpIkR2wMkOU8lwhn7DzGNQCg0HrMruf7vuxa7-LUu-nWO9-l4OkqlLuPeMFOm3IT7eXPnrD3x_nb7JkvXp9eZg8LXgsqOo6FrUGQljavoMpzLTPAWlsiq6TUQkFVL7M0uigyK5VsaEmVoqbRWZlJKybsdsjdBb_vbezMto213WxKZ30fDRJphSlWJ_TmCF37Prj0XaKEAKmIVKJwoOrgYwy2MbvQbsvwaRDMoS8z9GVSX-bQl6HkqCOnbrvvarpQtpt_zWwwY7riVjb8-ulP6QvTeX2P
CODEN MHPGA4
CitedBy_id crossref_primary_10_1287_moor_2014_0672
crossref_primary_10_1007_s11228_018_0474_7
crossref_primary_10_1007_s10589_015_9796_7
crossref_primary_10_1007_s12532_019_00156_4
crossref_primary_10_1007_s10107_012_0624_x
crossref_primary_10_1137_15M1020770
Cites_doi 10.1214/aos/1176347146
10.1287/moor.26.1.105.10600
10.1007/BFb0121018
10.1137/S1052623495284029
10.1007/978-1-4899-1358-6_20
10.1007/BF01584073
10.1016/0022-247X(67)90163-1
10.1016/B978-0-12-590240-3.50009-4
10.1007/BF00940933
10.1137/S036301299935211X
10.1214/aos/1176351052
10.1287/moor.5.1.43
10.1137/0112033
10.1287/moor.17.3.691
10.1080/02331931003667583
10.1016/0024-3795(72)90019-5
10.1017/CBO9780511983658
10.1007/978-0-387-87821-8
10.1137/0510117
10.1287/moor.28.2.201.14480
10.1137/S0363012992241673
10.1287/moor.18.1.148
10.1137/0129056
10.1137/0122030
10.1007/b97544
10.1023/B:SVAN.0000023405.22464.78
10.1007/s10107-007-0161-1
10.1016/0024-3795(87)90339-9
10.1016/0024-3795(90)90052-E
10.1007/978-1-4612-1394-9
10.1007/s11228-008-0077-9
10.1016/0024-3795(74)90066-4
10.1023/A:1005051314227
10.1215/S0012-7094-62-02933-2
10.1016/0362-546X(94)90066-3
10.1016/j.na.2011.07.040
10.1016/0024-3795(94)00337-8
10.1515/9781400873173
10.1007/BF00941302
10.1006/jmaa.1994.1431
10.1287/moor.16.2.292
10.1016/j.na.2008.02.073
ContentType Journal Article
Copyright Springer and Mathematical Optimization Society 2012
Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013
Copyright_xml – notice: Springer and Mathematical Optimization Society 2012
– notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-011-0509-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 101
ExternalDocumentID 3073663911
10_1007_s10107_011_0509_4
Genre Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c349t-19ec03486e5b0b5586201c8e44e7668370bcd2d2d8992e676f4d4b74ff82a26e3
IEDL.DBID M2P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324232100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Fri Sep 05 07:12:17 EDT 2025
Thu Sep 25 00:46:20 EDT 2025
Tue Nov 18 21:43:46 EST 2025
Sat Nov 29 05:49:02 EST 2025
Fri Feb 21 02:32:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 90C31
Variational condition
Normal manifold
Normal map
Complementarity
49J53
Variational inequality
49K40
49J40
90C33
Monotone graph
Implicit function
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-19ec03486e5b0b5586201c8e44e7668370bcd2d2d8992e676f4d4b74ff82a26e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1433067447
PQPubID 25307
PageCount 53
ParticipantIDs proquest_miscellaneous_1448718628
proquest_journals_1433067447
crossref_primary_10_1007_s10107_011_0509_4
crossref_citationtrail_10_1007_s10107_011_0509_4
springer_journals_10_1007_s10107_011_0509_4
PublicationCentury 2000
PublicationDate 20131000
2013-10-00
20131001
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 20131000
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research. Springer-Verlag, New York (2003). Published in two volumes, paginated continuously
RobinsonS.M.GiannessiF.MaugeriA.Sensitivity analysis of variational inequalities by normal-map techniquesVariational Inequalities and Network Equilibrium Problems1995New YorkPlenum Press25726910.1007/978-1-4899-1358-6_20
Drusvyatskiy, D., Lewis, A.S.: Semi-algebraic functions have small subdifferentials. Available online at http://arxiv.org/abs/1004.0368 (submitted 2010, revised 2011)
KojimaM.RobinsonS.M.Strongly stable stationary solutions in nonlinear programsAnalysis and Computation of Fixed Points1980New YorkAcademic Press93138
ShapiroA.Asymptotic properties of statistical estimators in stochastic programmingAnn. Stat.19891784185810.1214/aos/11763471460688.62025
GolubG.H.Van LoanC.F.Matrix Computations19963BaltimoreThe Johns Hopkins University Press0865.65009
EavesB.C.On the basic theorem of complementarityMath. Program.19711687528790110.1007/BF015840730227.90044
LuoZ.Q.PangJ.S.RalphD.Mathematical Programs with Equilibrium Constraints1996CambridgeCambridge University Press10.1017/CBO9780511983658
ShapiroA.On concepts of directional differentiabilityJ. Optim. Theory Appl.199066477487108025910.1007/BF009409330682.49015
MurtyK.G.On the number of solutions to the complementarity problem and spanning properties of complementary conesLinear Algebra Appl.197256510810.1016/0024-3795(72)90019-50241.90046
RockafellarR.T.WetsR.J.Variational Analysis, No. 317 in Grundlehren der mathematischen Wissenschaften1998BerlinSpringer
SamelsonH.ThrallR.M.WeslerO.A partition theorem for Euclidean spaceProc. Am. Math. Soc.19589805807970250117.37901
RobinsonS.M.A point-of-attraction result for Newton’s method with point-based approximationsOptimization2011608999Published online 2010
KlatteD.KummerB.Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications2002DordrechtKluwer
MintyG.J.Monotone (nonlinear) operators in Hilbert spaceDuke Math. J.19622934134616906410.1215/S0012-7094-62-02933-20111.31202
MangasarianO.L.FromovitzS.The Fritz John necessary optimality conditions in the presence of equality and inequality constraintsJ. Math. Anal. Appl.196717374720744810.1016/0022-247X(67)90163-10149.16701
KojimaM.SaigalR.A study of PC1 homeomorphisms on subdivided polyhedronsSIAM J. Math. Anal.1979101299131254781510.1137/0510117
RobinsonS.M.Normal maps induced by linear transformationsMath. Oper. Res.199217691714117773110.1287/moor.17.3.6910777.90063
LöwenR.Branching numbers for Euclidean projections onto polyhedraGeometriae Dedicata19987299103164415910.1023/A:10050513142271035.52004
PangJ.S.YaoJ.C.On a generalization of a normal map and equationSIAM J. Control Optim.199533168184131166510.1137/S03630129922416730827.90131
LevyA.B.Lipschitzian multifunctions and a Lipschitzian inverse mapping theoremMath. Oper. Res.2001261105118182183210.1287/moor.26.1.105.106001073.90553
RobinsonS.M.Strongly regular generalized equationsMath. Oper. Res.19805436256115310.1287/moor.5.1.430437.90094
StampacchiaG.Formes bilinéaires coercitives sur les ensembles convexesComptes Rendus de l’Académie des Sciences de Paris1964258441344161665910124.06401
CottleR.W.Manifestations of the Schur complementLinear Algebra Appl.1974818921135472710.1016/0024-3795(74)90066-40284.15005
RobinsonS.M.An implicit-function theorem for a class of nonsmooth functionsMath. Oper. Res.199116292309110680310.1287/moor.16.2.2920746.46039
KummerB.Lipschitzian inverse functions, directional derivatives, and applications in C1,1 optimizationJ. Optim. Theory Appl.199170561582112477810.1007/BF009413020795.49012
Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer Monographs in Mathematics. Springer, New York (2009). ISBN-13: 978-0-387-87820-1
RalphD.ScholtesS.Sensitivity analysis of composite piecewise smooth equationsMath. Program.19977659361214339730871.90094
EavesB.C.RothblumU.G.Relationships of properties of piecewise affine maps over ordered fieldsLinear Algebra Appl.1990132163105809010.1016/0024-3795(90)90052-E0706.15017
MordukhovichB.S.Failure of metric regularity for major classes of variational systemsNonlinear Anal.200869918924242876410.1016/j.na.2008.02.0731143.49014
RalphD.On branching numbers of normal manifoldsNonlinear Anal. Theory Methods Appl.19942210411050127759910.1016/0362-546X(94)90066-30830.57014
LemkeC.E.HowsonJ.T.JrEquilibrium points of bimatrix gamesJ. Soc. Ind. Appl. Math.19641241342317355610.1137/01120330128.14804
DontchevA.L.RockafellarR.T.Robinson’s implicit function theorem and its extensionsMath. Program.2009117129147242130210.1007/s10107-007-0161-11172.49013
KingA.J.RockafellarR.T.Asymptotic theory for solutions in statistical estimation and stochastic programmingMath. Oper. Res.199318148162125011110.1287/moor.18.1.1480798.90115
LemkeC.E.DantzigG.B.VeinottA.F.JrOn complementary pivot theoryMathematics of the Decision Sciences, Part 1, no. 11 in Lectures in Applied Mathematics1968Providence, RIAmerican Mathematical Society95114
ScholtesS.A proof of the branching number bound for normal manifoldsLinear Algebra Appl.19962468395140766010.1016/0024-3795(94)00337-80868.52003
KuntzL.ScholtesS.Structural analysis of nonsmooth mappings, inverse functions, and metric projectionsJ. Math. Anal. Appl.1994188346386130545410.1006/jmaa.1994.14310809.49014
RheinboldtW.C.VandergraftJ.S.On piecewise affine mappings in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}SIAM J. Appl. Math.19752968068942937410.1137/01290560322.65028
Scholtes, S.: Introduction to piecewise differentiable equations. Habilitationsschrift, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Fridericiana Karlsruhe, Karlsruhe, Germany (1994). Preprint No. 53/1994
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research. Springer, New York (2006). ISBN-13: 978-0387-30303-1
Demir, M.C.: Asymptotics and Confidence Regions for Stochastic Variational Inequalities. Ph.D. Dissertation, Department of Industrial Engineering, University of Wisconsin-Madison, Madison (2000)
Robinson, S.M.: Localized normal maps and the stability of variational conditions. Set Valued Anal. 12, 259–274 (2004). Errata, Set Valued Anal. 14, 207 (2006)
LuS.RobinsonS.M.Normal fans of polyhedral convex sets: structures and connectionsSet Valued Anal.200816281305239920710.1007/s11228-008-0077-91144.52008
RobinsonS.M.Constraint nondegeneracy in variational analysisMath. Oper. Res.200328201232198066010.1287/moor.28.2.201.144801082.90116
RobinsonS.M.Local structure of feasible sets in nonlinear programming, part II: nondegeneracyMath. Program. Stud.19842221723010.1007/BFb01210180573.90075
BonnansJ.F.ShapiroA.Perturbation Analysis of Optimization Problems. Springer Series in Operations Research2000New YorkSpringer
FujisawaT.KuhE.S.Piecewise-linear theory of nonlinear networksSIAM J. Appl. Math.19722230732845329710.1137/01220300239.94033
Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. No. 5 in North-Holland Mathematics Studies. North-Holland, Amsterdam (1973)
DupačováJ.WetsR.Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problemsAnn. Stat.1988161517154910.1214/aos/11763510520667.62018
KuhnD.LöwenR.Piecewise affine bijections of Rn and the equation Sx+ − Tx− =  yLinear Algebra Appl.19879610912991098910.1016/0024-3795(87)90339-90625.90089
Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: The dimension of semialgebraic subdifferential graphs. Nonlinear Anal. Theory Methods Appl. (2011). Published online with doi:10.1016/j.na.2011.07.040
LevyA.B.Solution sensitivity from general principlesSIAM J. Control Optim.2001401138185530310.1137/S036301299935211X0985.90085
DontchevA.L.RockafellarR.T.Characterizations of strong regularity for variational inequalities over polyhedral convex setsSIAM J. Optim.1996610871105141653010.1137/S10526234952840290899.49004
Householder, A.S.: The Theory of Matrices in Numerical Analysis. Dover, New York (1975). Originally published 1964 by Blaisdell Publishing Co.
RockafellarR.T.Convex Analysis1970PrincetonPrinceton University Press0193.18401
509_CR2
G.H. Golub (509_CR15) 1996
L. Kuntz (509_CR23) 1994; 188
509_CR6
509_CR51
509_CR4
A.L. Dontchev (509_CR7) 2009; 117
T. Fujisawa (509_CR14) 1972; 22
A.L. Dontchev (509_CR5) 1996; 6
D. Ralph (509_CR38) 1997; 76
509_CR8
509_CR9
S.M. Robinson (509_CR44) 1995
M. Kojima (509_CR20) 1979; 10
G.J. Minty (509_CR32) 1962; 29
A. Shapiro (509_CR54) 1990; 66
509_CR13
S. Scholtes (509_CR52) 1996; 246
509_CR16
A.B. Levy (509_CR26) 2001; 26
K.G. Murty (509_CR34) 1972; 5
S.M. Robinson (509_CR43) 1992; 17
S. Lu (509_CR29) 2008; 16
J. Dupačová (509_CR10) 1988; 16
A.B. Levy (509_CR27) 2001; 40
G. Stampacchia (509_CR55) 1964; 258
B. Kummer (509_CR22) 1991; 70
509_CR46
O.L. Mangasarian (509_CR31) 1967; 17
509_CR47
H. Samelson (509_CR50) 1958; 9
B.C. Eaves (509_CR12) 1990; 132
R.W. Cottle (509_CR3) 1974; 8
B.C. Eaves (509_CR11) 1971; 1
D. Kuhn (509_CR21) 1987; 96
S.M. Robinson (509_CR41) 1984; 22
M. Kojima (509_CR19) 1980
J.F. Bonnans (509_CR1) 2000
C.E. Lemke (509_CR25) 1964; 12
R.T. Rockafellar (509_CR48) 1970
C.E. Lemke (509_CR24) 1968
B.S. Mordukhovich (509_CR33) 2008; 69
509_CR35
S.M. Robinson (509_CR45) 2003; 28
J.S. Pang (509_CR36) 1995; 33
Z.Q. Luo (509_CR30) 1996
R.T. Rockafellar (509_CR49) 1998
W.C. Rheinboldt (509_CR39) 1975; 29
A. Shapiro (509_CR53) 1989; 17
R. Löwen (509_CR28) 1998; 72
D. Klatte (509_CR18) 2002
A.J. King (509_CR17) 1993; 18
S.M. Robinson (509_CR40) 1980; 5
D. Ralph (509_CR37) 1994; 22
S.M. Robinson (509_CR42) 1991; 16
References_xml – reference: StampacchiaG.Formes bilinéaires coercitives sur les ensembles convexesComptes Rendus de l’Académie des Sciences de Paris1964258441344161665910124.06401
– reference: Drusvyatskiy, D., Lewis, A.S.: Semi-algebraic functions have small subdifferentials. Available online at http://arxiv.org/abs/1004.0368 (submitted 2010, revised 2011)
– reference: LemkeC.E.HowsonJ.T.JrEquilibrium points of bimatrix gamesJ. Soc. Ind. Appl. Math.19641241342317355610.1137/01120330128.14804
– reference: LuS.RobinsonS.M.Normal fans of polyhedral convex sets: structures and connectionsSet Valued Anal.200816281305239920710.1007/s11228-008-0077-91144.52008
– reference: Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: The dimension of semialgebraic subdifferential graphs. Nonlinear Anal. Theory Methods Appl. (2011). Published online with doi:10.1016/j.na.2011.07.040
– reference: KuhnD.LöwenR.Piecewise affine bijections of Rn and the equation Sx+ − Tx− =  yLinear Algebra Appl.19879610912991098910.1016/0024-3795(87)90339-90625.90089
– reference: RobinsonS.M.Normal maps induced by linear transformationsMath. Oper. Res.199217691714117773110.1287/moor.17.3.6910777.90063
– reference: RockafellarR.T.Convex Analysis1970PrincetonPrinceton University Press0193.18401
– reference: Demir, M.C.: Asymptotics and Confidence Regions for Stochastic Variational Inequalities. Ph.D. Dissertation, Department of Industrial Engineering, University of Wisconsin-Madison, Madison (2000)
– reference: Robinson, S.M.: Localized normal maps and the stability of variational conditions. Set Valued Anal. 12, 259–274 (2004). Errata, Set Valued Anal. 14, 207 (2006)
– reference: Scholtes, S.: Introduction to piecewise differentiable equations. Habilitationsschrift, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Fridericiana Karlsruhe, Karlsruhe, Germany (1994). Preprint No. 53/1994
– reference: LevyA.B.Lipschitzian multifunctions and a Lipschitzian inverse mapping theoremMath. Oper. Res.2001261105118182183210.1287/moor.26.1.105.106001073.90553
– reference: LöwenR.Branching numbers for Euclidean projections onto polyhedraGeometriae Dedicata19987299103164415910.1023/A:10050513142271035.52004
– reference: DontchevA.L.RockafellarR.T.Characterizations of strong regularity for variational inequalities over polyhedral convex setsSIAM J. Optim.1996610871105141653010.1137/S10526234952840290899.49004
– reference: KingA.J.RockafellarR.T.Asymptotic theory for solutions in statistical estimation and stochastic programmingMath. Oper. Res.199318148162125011110.1287/moor.18.1.1480798.90115
– reference: KummerB.Lipschitzian inverse functions, directional derivatives, and applications in C1,1 optimizationJ. Optim. Theory Appl.199170561582112477810.1007/BF009413020795.49012
– reference: RobinsonS.M.A point-of-attraction result for Newton’s method with point-based approximationsOptimization2011608999Published online 2010
– reference: KojimaM.RobinsonS.M.Strongly stable stationary solutions in nonlinear programsAnalysis and Computation of Fixed Points1980New YorkAcademic Press93138
– reference: PangJ.S.YaoJ.C.On a generalization of a normal map and equationSIAM J. Control Optim.199533168184131166510.1137/S03630129922416730827.90131
– reference: LuoZ.Q.PangJ.S.RalphD.Mathematical Programs with Equilibrium Constraints1996CambridgeCambridge University Press10.1017/CBO9780511983658
– reference: Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research. Springer, New York (2006). ISBN-13: 978-0387-30303-1
– reference: RobinsonS.M.GiannessiF.MaugeriA.Sensitivity analysis of variational inequalities by normal-map techniquesVariational Inequalities and Network Equilibrium Problems1995New YorkPlenum Press25726910.1007/978-1-4899-1358-6_20
– reference: Householder, A.S.: The Theory of Matrices in Numerical Analysis. Dover, New York (1975). Originally published 1964 by Blaisdell Publishing Co.
– reference: Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. No. 5 in North-Holland Mathematics Studies. North-Holland, Amsterdam (1973)
– reference: KlatteD.KummerB.Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications2002DordrechtKluwer
– reference: CottleR.W.Manifestations of the Schur complementLinear Algebra Appl.1974818921135472710.1016/0024-3795(74)90066-40284.15005
– reference: RalphD.On branching numbers of normal manifoldsNonlinear Anal. Theory Methods Appl.19942210411050127759910.1016/0362-546X(94)90066-30830.57014
– reference: RobinsonS.M.An implicit-function theorem for a class of nonsmooth functionsMath. Oper. Res.199116292309110680310.1287/moor.16.2.2920746.46039
– reference: DontchevA.L.RockafellarR.T.Robinson’s implicit function theorem and its extensionsMath. Program.2009117129147242130210.1007/s10107-007-0161-11172.49013
– reference: MurtyK.G.On the number of solutions to the complementarity problem and spanning properties of complementary conesLinear Algebra Appl.197256510810.1016/0024-3795(72)90019-50241.90046
– reference: RheinboldtW.C.VandergraftJ.S.On piecewise affine mappings in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}SIAM J. Appl. Math.19752968068942937410.1137/01290560322.65028
– reference: KuntzL.ScholtesS.Structural analysis of nonsmooth mappings, inverse functions, and metric projectionsJ. Math. Anal. Appl.1994188346386130545410.1006/jmaa.1994.14310809.49014
– reference: ScholtesS.A proof of the branching number bound for normal manifoldsLinear Algebra Appl.19962468395140766010.1016/0024-3795(94)00337-80868.52003
– reference: MordukhovichB.S.Failure of metric regularity for major classes of variational systemsNonlinear Anal.200869918924242876410.1016/j.na.2008.02.0731143.49014
– reference: RobinsonS.M.Strongly regular generalized equationsMath. Oper. Res.19805436256115310.1287/moor.5.1.430437.90094
– reference: RockafellarR.T.WetsR.J.Variational Analysis, No. 317 in Grundlehren der mathematischen Wissenschaften1998BerlinSpringer
– reference: SamelsonH.ThrallR.M.WeslerO.A partition theorem for Euclidean spaceProc. Am. Math. Soc.19589805807970250117.37901
– reference: LevyA.B.Solution sensitivity from general principlesSIAM J. Control Optim.2001401138185530310.1137/S036301299935211X0985.90085
– reference: MangasarianO.L.FromovitzS.The Fritz John necessary optimality conditions in the presence of equality and inequality constraintsJ. Math. Anal. Appl.196717374720744810.1016/0022-247X(67)90163-10149.16701
– reference: DupačováJ.WetsR.Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problemsAnn. Stat.1988161517154910.1214/aos/11763510520667.62018
– reference: ShapiroA.On concepts of directional differentiabilityJ. Optim. Theory Appl.199066477487108025910.1007/BF009409330682.49015
– reference: ShapiroA.Asymptotic properties of statistical estimators in stochastic programmingAnn. Stat.19891784185810.1214/aos/11763471460688.62025
– reference: Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer Monographs in Mathematics. Springer, New York (2009). ISBN-13: 978-0-387-87820-1
– reference: EavesB.C.RothblumU.G.Relationships of properties of piecewise affine maps over ordered fieldsLinear Algebra Appl.1990132163105809010.1016/0024-3795(90)90052-E0706.15017
– reference: GolubG.H.Van LoanC.F.Matrix Computations19963BaltimoreThe Johns Hopkins University Press0865.65009
– reference: EavesB.C.On the basic theorem of complementarityMath. Program.19711687528790110.1007/BF015840730227.90044
– reference: FujisawaT.KuhE.S.Piecewise-linear theory of nonlinear networksSIAM J. Appl. Math.19722230732845329710.1137/01220300239.94033
– reference: RobinsonS.M.Constraint nondegeneracy in variational analysisMath. Oper. Res.200328201232198066010.1287/moor.28.2.201.144801082.90116
– reference: KojimaM.SaigalR.A study of PC1 homeomorphisms on subdivided polyhedronsSIAM J. Math. Anal.1979101299131254781510.1137/0510117
– reference: LemkeC.E.DantzigG.B.VeinottA.F.JrOn complementary pivot theoryMathematics of the Decision Sciences, Part 1, no. 11 in Lectures in Applied Mathematics1968Providence, RIAmerican Mathematical Society95114
– reference: Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research. Springer-Verlag, New York (2003). Published in two volumes, paginated continuously
– reference: RalphD.ScholtesS.Sensitivity analysis of composite piecewise smooth equationsMath. Program.19977659361214339730871.90094
– reference: RobinsonS.M.Local structure of feasible sets in nonlinear programming, part II: nondegeneracyMath. Program. Stud.19842221723010.1007/BFb01210180573.90075
– reference: MintyG.J.Monotone (nonlinear) operators in Hilbert spaceDuke Math. J.19622934134616906410.1215/S0012-7094-62-02933-20111.31202
– reference: BonnansJ.F.ShapiroA.Perturbation Analysis of Optimization Problems. Springer Series in Operations Research2000New YorkSpringer
– volume: 17
  start-page: 841
  year: 1989
  ident: 509_CR53
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176347146
– volume: 26
  start-page: 105
  issue: 1
  year: 2001
  ident: 509_CR26
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.26.1.105.10600
– volume: 22
  start-page: 217
  year: 1984
  ident: 509_CR41
  publication-title: Math. Program. Stud.
  doi: 10.1007/BFb0121018
– volume: 6
  start-page: 1087
  year: 1996
  ident: 509_CR5
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623495284029
– start-page: 257
  volume-title: Variational Inequalities and Network Equilibrium Problems
  year: 1995
  ident: 509_CR44
  doi: 10.1007/978-1-4899-1358-6_20
– volume: 1
  start-page: 68
  year: 1971
  ident: 509_CR11
  publication-title: Math. Program.
  doi: 10.1007/BF01584073
– volume: 17
  start-page: 37
  year: 1967
  ident: 509_CR31
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(67)90163-1
– ident: 509_CR9
– start-page: 93
  volume-title: Analysis and Computation of Fixed Points
  year: 1980
  ident: 509_CR19
  doi: 10.1016/B978-0-12-590240-3.50009-4
– volume: 66
  start-page: 477
  year: 1990
  ident: 509_CR54
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940933
– volume: 40
  start-page: 1
  issue: 1
  year: 2001
  ident: 509_CR27
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S036301299935211X
– ident: 509_CR2
– volume: 16
  start-page: 1517
  year: 1988
  ident: 509_CR10
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176351052
– volume: 5
  start-page: 43
  year: 1980
  ident: 509_CR40
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.5.1.43
– ident: 509_CR51
– volume: 12
  start-page: 413
  year: 1964
  ident: 509_CR25
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0112033
– volume: 17
  start-page: 691
  year: 1992
  ident: 509_CR43
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.17.3.691
– ident: 509_CR47
  doi: 10.1080/02331931003667583
– volume: 5
  start-page: 65
  year: 1972
  ident: 509_CR34
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(72)90019-5
– volume: 76
  start-page: 593
  year: 1997
  ident: 509_CR38
  publication-title: Math. Program.
– start-page: 95
  volume-title: Mathematics of the Decision Sciences, Part 1, no. 11 in Lectures in Applied Mathematics
  year: 1968
  ident: 509_CR24
– volume-title: Mathematical Programs with Equilibrium Constraints
  year: 1996
  ident: 509_CR30
  doi: 10.1017/CBO9780511983658
– ident: 509_CR6
  doi: 10.1007/978-0-387-87821-8
– volume: 258
  start-page: 4413
  year: 1964
  ident: 509_CR55
  publication-title: Comptes Rendus de l’Académie des Sciences de Paris
– volume: 10
  start-page: 1299
  year: 1979
  ident: 509_CR20
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0510117
– volume: 28
  start-page: 201
  year: 2003
  ident: 509_CR45
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.201.14480
– volume: 33
  start-page: 168
  year: 1995
  ident: 509_CR36
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012992241673
– ident: 509_CR16
– volume: 18
  start-page: 148
  year: 1993
  ident: 509_CR17
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.1.148
– volume-title: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications
  year: 2002
  ident: 509_CR18
– volume: 29
  start-page: 680
  year: 1975
  ident: 509_CR39
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0129056
– volume: 22
  start-page: 307
  year: 1972
  ident: 509_CR14
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0122030
– volume-title: Matrix Computations
  year: 1996
  ident: 509_CR15
– ident: 509_CR13
  doi: 10.1007/b97544
– ident: 509_CR46
  doi: 10.1023/B:SVAN.0000023405.22464.78
– volume: 117
  start-page: 129
  year: 2009
  ident: 509_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0161-1
– volume: 96
  start-page: 109
  year: 1987
  ident: 509_CR21
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(87)90339-9
– volume: 132
  start-page: 1
  year: 1990
  ident: 509_CR12
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(90)90052-E
– volume-title: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research
  year: 2000
  ident: 509_CR1
  doi: 10.1007/978-1-4612-1394-9
– volume: 16
  start-page: 281
  year: 2008
  ident: 509_CR29
  publication-title: Set Valued Anal.
  doi: 10.1007/s11228-008-0077-9
– volume-title: Variational Analysis, No. 317 in Grundlehren der mathematischen Wissenschaften
  year: 1998
  ident: 509_CR49
– volume: 9
  start-page: 805
  year: 1958
  ident: 509_CR50
  publication-title: Proc. Am. Math. Soc.
– volume: 8
  start-page: 189
  year: 1974
  ident: 509_CR3
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(74)90066-4
– volume: 72
  start-page: 99
  year: 1998
  ident: 509_CR28
  publication-title: Geometriae Dedicata
  doi: 10.1023/A:1005051314227
– volume: 29
  start-page: 341
  year: 1962
  ident: 509_CR32
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-62-02933-2
– ident: 509_CR4
– volume: 22
  start-page: 1041
  year: 1994
  ident: 509_CR37
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/0362-546X(94)90066-3
– ident: 509_CR8
  doi: 10.1016/j.na.2011.07.040
– volume: 246
  start-page: 83
  year: 1996
  ident: 509_CR52
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(94)00337-8
– volume-title: Convex Analysis
  year: 1970
  ident: 509_CR48
  doi: 10.1515/9781400873173
– ident: 509_CR35
– volume: 70
  start-page: 561
  year: 1991
  ident: 509_CR22
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00941302
– volume: 188
  start-page: 346
  year: 1994
  ident: 509_CR23
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1994.1431
– volume: 16
  start-page: 292
  year: 1991
  ident: 509_CR42
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.16.2.292
– volume: 69
  start-page: 918
  year: 2008
  ident: 509_CR33
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2008.02.073
SSID ssj0001388
Score 2.1012466
Snippet This paper studies the local analysis of equations on a product U ×  U of Banach spaces, whose variables lie in a subset having the special property that it is...
This paper studies the local analysis of equations on a product U × U of Banach spaces, whose variables lie in a subset having the special property that it is...
This paper studies the local analysis of equations on a product U U of Banach spaces, whose variables lie in a subset having the special property that it is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Banach space
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Feasibility
Full Length Paper
Graphs
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematics
Mathematics and Statistics
Mathematics of Computing
Nonlinear programming
Numerical Analysis
Operators
Representations
Studies
Theoretical
Vector space
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTKRV8UgJtkqbpo8iGDzrEj7G30qQpCNLpuvn3e-mabooKSh9K6SVpL5fcHXf5HcAZE0yoKOUkCzNGuAkConIVk5xRjdpeqLiCFBrcRP2-HA7ju_ocd-my3V1IstqpFw67BVWaJLq_oS2NtgwreJe2XsP9w6DZfgMmpavTao0DF8r8rovPymhuYX4Jila6prf5r6_cgo3atPQuZ7KwDUum2IH1BcBBfLptUFrLXeh032ZA36U3KjyUx5FF5vYqDOtyD5563cera1JXSyCa8XhCgthon3EpTKh8FYboqviBloZzEwlhMW6Uzihe6GFRIyKR84yriOe5pCkVhu1Dq8BRDsCjmVAplX6qleC-SpVmfi5NGOuQ4-bJ2-A7tiW6hhK3FS1ekjkIsmVDgmxILBsSbHLeNHmd4Wj8Rtxxc5HUS6pEH4VZ94bzqA2nzWtcDDbCkRZmNLU06H8F-OeyDRdufha6-GnAwz9RH8EatUUxqpS-DrQm46k5hlX9PnkuxyeVNH4A-NHVKg
  priority: 102
  providerName: Springer Nature
Title Equations on monotone graphs
URI https://link.springer.com/article/10.1007/s10107-011-0509-4
https://www.proquest.com/docview/1433067447
https://www.proquest.com/docview/1448718628
Volume 141
WOSCitedRecordID wos000324232100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_U-aAPfovTOSr4pATbJE3SJ9ExEXRj-K0vpUlTEGSbdvr3e-naTQV9kcJBaD7aa5K7y11_B7DPBBNaJpykYcoIt0FAdKYjkjFqUNoLHRWQQneXsttVDw9Rrzxwy8uwympPLDbqdGDcGfkRynWn3XIuj4evxGWNct7VMoXGLNRQswlcSFeH9iY7ccCUqlK2Oj2h8mqOf50LiqBLNKZDl2jtu1yaKps__KOF2Dlb_u8Dr8BSqXB6J-MZsgoztr8Gi19gCLHUmWC35uvQaL-O4b9zb9D3sJeBw-v2CmTrfANuz9o3rXNS5lAghvFoRILIGp9xJWyofR2GaMD4gVGWcyuFcMg32qQUL7S7qBVSZDzlWvIsUzShwrJNmOvjKFvg0VTohCo_MVpwXyfaMD9TNoxMyHFL5XXwKw7GpgQYd3kuXuIpNLJjeoxMjx3TY2xyMGkyHKNr_FW5UTE6LhdaHk-5XIe9yW1cIs7vkfTt4N3VQasswDdXdTisPueXLn4bcPvvAXdggbrcGEVkXwPmRm_vdhfmzcfoOX9rwqy8f2xC7bTd7V1h6UISpB2_1SzmqKPyGmkvfEJ6dX33CbRt50g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gXrwLa6uWkEvSrFN0jQ9iIgPFNfFg4q32qQpCLK72lXxT_kbnWm3uyrozYP0VJpXO5N5dCbfAGxyyaUOE-GmQcpdYX3f1ZmO3Iwzg9pe6qiAFLpphM2mur2NLofgvToLQ2mVlUwsBHXaNvSPfBf1Olm3QoT7nUeXqkZRdLUqoVGyxbl9e0WXLd87O0L6bjF2cnx1eOr2qgq4houo6_qRNR4XStpAezoI0KT3fKOsEDaUkrBgtEkZXuiJMCtDmYlU6FBkmWIJk5bjuMMwKghZjFIF2WVf8vtcqapELNklVRS1PKrnF0me6LwHVNjtqx4cGLff4rGFmjuZ_m8faAamega1c1DugFkYsq05mPwEs4h3F31s2nwe6sePJbx57rRbDq66TXjkToHcnS_A9Z8sdhFGWjjLEjgslTphykuMlsLTiTbcy5QNIhMIVBmiBl5Fsdj0ANSpjsdDPIB-JiLHSOSYiBxjl-1-l06JHvJb43pF2LgnSPJ4QNUabPQfowiguE7Ssu1naoNep49vrmqwU7HPpyF-mnD59wnXYfz06qIRN86a5yswwagOSJHFWIeR7tOzXYUx89K9z5_Wil3gwN1fc9UHznU7MQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-J0agWflLI0SdP0UXRDcY6BOnwrTZqCIN1cO_9-k35tigoifSrNVy-XXH7c5XcAZ4QRJryQ2pEbEZsqx7FFLHw7Jlhqa8-En1MKDXtev8-fn_1Bmec0raLdK5dkcafBsDQlWXscxe25i29OHjKpobBr0qQtwhI1cfQGrj8M663YIZxXOVvNQaFya37XxGfDNDttfnGQ5nanu_HvEW_CennktC4LHdmCBZVsw9ocEaF-u6_ZW9MdaHXeCgLw1BolltbTkWHstnJu63QXnrqdx6sbu8yiYEtC_cx2fCURoZwpVyDhuhrCIEdyRanyGDPcN0JGWD8aeWHFPBbTiAqPxjHHIWaK7EEj0b3sg4UjJkLMUSgFo0iEQhIUc-X60qV6U6VNQJUIA1lSjJtMF6_BjBzZiCHQYgiMGAJd5byuMi74NX4r3KrmJSiXWqqxCzGwh1KvCaf1Z71IjOcjTNRoaspoXOboP-dNuKjmaq6Jnzo8-FPpE1gZXHeD3m3_7hBWscmbkUf9taCRTabqCJble_aSTo5zJf0A72Hg8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equations+on+monotone+graphs&rft.jtitle=Mathematical+programming&rft.au=Robinson%2C+Stephen+M&rft.date=2013-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=141&rft.issue=1-2&rft.spage=49&rft_id=info:doi/10.1007%2Fs10107-011-0509-4&rft.externalDocID=3073663911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon