An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor

Goal: For healthcare and clinical use, ambulatory gait monitoring systems using inertial sensors have been developed to estimate the user gait parameters, such as walking speed, stride time, and stride length. However, to adapt the systems effectively to daily-life activities, they need to be able t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering Vol. 65; no. 4; pp. 885 - 893
Main Authors: Song, Minsu, Kim, Jonghyun
Format: Journal Article
Language:English
Published: United States IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9294, 1558-2531, 1558-2531
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Goal: For healthcare and clinical use, ambulatory gait monitoring systems using inertial sensors have been developed to estimate the user gait parameters, such as walking speed, stride time, and stride length. However, to adapt the systems effectively to daily-life activities, they need to be able to classify the gait activities of daily-life to obtain the parameters for each activity. In this study, we propose a simple classification algorithm based on a single inertial sensor for ease of use, which classifies three major gait activities: leveled walk, ramp walk, and stair walk. Method: The classification can be performed with gait parameter estimation simultaneously. The developed system that includes classification and parameter estimation algorithms was evaluated with eight healthy subjects within a gait lab and on an outdoor daily-life walking course. Results: The results showed that the estimated gait parameters were comparable to existing studies (range of walking speed root mean square error: 0.059-0.129 m/s), and the classification accuracy was sufficiently high for all three gait activities: 98.5% for the indoor gait lab experiment and 95.5% for the outdoor complex daily-life walking course experiment. Conclusion: The proposed system is simple and effective for daily-life gait analysis, including gait activity classification and gait parameter estimation for each activity.
AbstractList For healthcare and clinical use, ambulatory gait monitoring systems using inertial sensors have been developed to estimate the user gait parameters, such as walking speed, stride time, and stride length. However, to adapt the systems effectively to daily-life activities, they need to be able to classify the gait activities of daily-life to obtain the parameters for each activity. In this study, we propose a simple classification algorithm based on a single inertial sensor for ease of use, which classifies three major gait activities: leveled walk, ramp walk, and stair walk.GOALFor healthcare and clinical use, ambulatory gait monitoring systems using inertial sensors have been developed to estimate the user gait parameters, such as walking speed, stride time, and stride length. However, to adapt the systems effectively to daily-life activities, they need to be able to classify the gait activities of daily-life to obtain the parameters for each activity. In this study, we propose a simple classification algorithm based on a single inertial sensor for ease of use, which classifies three major gait activities: leveled walk, ramp walk, and stair walk.The classification can be performed with gait parameter estimation simultaneously. The developed system that includes classification and parameter estimation algorithms was evaluated with eight healthy subjects within a gait lab and on an outdoor daily-life walking course.METHODThe classification can be performed with gait parameter estimation simultaneously. The developed system that includes classification and parameter estimation algorithms was evaluated with eight healthy subjects within a gait lab and on an outdoor daily-life walking course.The results showed that the estimated gait parameters were comparable to existing studies (range of walking speed root mean square error: 0.059-0.129 m/s), and the classification accuracy was sufficiently high for all three gait activities: 98.5% for the indoor gait lab experiment and 95.5% for the outdoor complex daily-life walking course experiment.RESULTSThe results showed that the estimated gait parameters were comparable to existing studies (range of walking speed root mean square error: 0.059-0.129 m/s), and the classification accuracy was sufficiently high for all three gait activities: 98.5% for the indoor gait lab experiment and 95.5% for the outdoor complex daily-life walking course experiment.The proposed system is simple and effective for daily-life gait analysis, including gait activity classification and gait parameter estimation for each activity.CONCLUSIONThe proposed system is simple and effective for daily-life gait analysis, including gait activity classification and gait parameter estimation for each activity.
For healthcare and clinical use, ambulatory gait monitoring systems using inertial sensors have been developed to estimate the user gait parameters, such as walking speed, stride time, and stride length. However, to adapt the systems effectively to daily-life activities, they need to be able to classify the gait activities of daily-life to obtain the parameters for each activity. In this study, we propose a simple classification algorithm based on a single inertial sensor for ease of use, which classifies three major gait activities: leveled walk, ramp walk, and stair walk. The classification can be performed with gait parameter estimation simultaneously. The developed system that includes classification and parameter estimation algorithms was evaluated with eight healthy subjects within a gait lab and on an outdoor daily-life walking course. The results showed that the estimated gait parameters were comparable to existing studies (range of walking speed root mean square error: 0.059-0.129 m/s), and the classification accuracy was sufficiently high for all three gait activities: 98.5% for the indoor gait lab experiment and 95.5% for the outdoor complex daily-life walking course experiment. The proposed system is simple and effective for daily-life gait analysis, including gait activity classification and gait parameter estimation for each activity.
Goal: For healthcare and clinical use, ambulatory gait monitoring systems using inertial sensors have been developed to estimate the user gait parameters, such as walking speed, stride time, and stride length. However, to adapt the systems effectively to daily-life activities, they need to be able to classify the gait activities of daily-life to obtain the parameters for each activity. In this study, we propose a simple classification algorithm based on a single inertial sensor for ease of use, which classifies three major gait activities: leveled walk, ramp walk, and stair walk. Method: The classification can be performed with gait parameter estimation simultaneously. The developed system that includes classification and parameter estimation algorithms was evaluated with eight healthy subjects within a gait lab and on an outdoor daily-life walking course. Results: The results showed that the estimated gait parameters were comparable to existing studies (range of walking speed root mean square error: 0.059-0.129 m/s), and the classification accuracy was sufficiently high for all three gait activities: 98.5% for the indoor gait lab experiment and 95.5% for the outdoor complex daily-life walking course experiment. Conclusion: The proposed system is simple and effective for daily-life gait analysis, including gait activity classification and gait parameter estimation for each activity.
Author Song, Minsu
Kim, Jonghyun
Author_xml – sequence: 1
  givenname: Minsu
  surname: Song
  fullname: Song, Minsu
  email: sms160@dgist.ac.kr
  organization: Department of Robotics EngineeringDGIST (Daegu Gyeongbuk Institute of Science and Technology)
– sequence: 2
  givenname: Jonghyun
  orcidid: 0000-0002-0380-7446
  surname: Kim
  fullname: Kim, Jonghyun
  email: jhkim@dgist.ac.kr
  organization: Department of Robotics Engineering, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28708542$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFr3DAQhUVJaTZpf0ApFEEvuXgrybJHOm6WJA0ktLB7F2NbbhVsKZW0LfsL-rdjdzc95NDTMMz3HsN7Z-TEB28Jec_ZknOmP28v76-WgnFYChCykuUrsuBVpQpRlfyELBjjqtBCy1NyltLDtEol6zfkVChgqpJiQf6sPF2NzW7AHOKe3qDL9D54N23Of6ebfcp2pL9d_kFXbXa_XN7T9YApud61mF3wFH130H3DiKPNNtI1Du1sOZ8vMdmOzhzdTJaDpdchZHrrbcwOB7qxPoX4lrzucUj23XGek-311Xb9pbj7enO7Xt0VbSl1LrjuQEIHJaKqpQRoygYQUQDDntXa2qphZa0arXrLGbQaoeOthEZJ1YjynFwcbB9j-LmzKZvRpdYOA3obdslwPcWpFQM5oZ9eoA9hF_30nBEcpNQKRD1RH4_UrhltZx6jGzHuzXPCEwAHoI0hpWh707r8N5kc0Q2GMzN3aeYuzdylOXY5KfkL5bP5_zQfDhpnrf3Hg4a6BFY-AS9iqaM
CODEN IEBEAX
CitedBy_id crossref_primary_10_1049_iet_smt_2018_5246
crossref_primary_10_1016_j_arthro_2024_01_042
crossref_primary_10_1155_2021_1589716
crossref_primary_10_1002_admt_202100566
crossref_primary_10_1002_aisy_202300328
crossref_primary_10_3390_s20226417
crossref_primary_10_1016_j_heliyon_2023_e21720
crossref_primary_10_1186_s12938_018_0488_2
crossref_primary_10_1109_JSEN_2023_3282171
crossref_primary_10_1109_JBHI_2024_3524398
crossref_primary_10_3390_s19081925
crossref_primary_10_1109_TIM_2022_3201947
crossref_primary_10_1109_TNSRE_2024_3502511
crossref_primary_10_1007_s00500_021_06125_1
crossref_primary_10_3390_s23187872
crossref_primary_10_1109_JSEN_2022_3164057
crossref_primary_10_1016_j_gaitpost_2023_10_006
crossref_primary_10_1016_j_birob_2023_100089
crossref_primary_10_3390_s25144302
crossref_primary_10_1109_TBME_2019_2907322
crossref_primary_10_3390_s25030853
crossref_primary_10_12677_AIRR_2023_122012
crossref_primary_10_1109_JIOT_2021_3119328
crossref_primary_10_1109_JSEN_2019_2910105
crossref_primary_10_3390_s21196559
crossref_primary_10_1109_JSEN_2024_3410402
crossref_primary_10_1371_journal_pone_0293691
crossref_primary_10_1186_s12984_018_0472_x
Cites_doi 10.1109/TBME.2012.2227317
10.1109/TBME.2016.2523512
10.1109/IEMBS.2011.6090941
10.1016/0268-0033(95)92043-L
10.1186/s12984-016-0146-5
10.1186/1743-0003-9-9
10.1108/02602281311294342
10.1088/0967-3334/35/3/399
10.1109/TBME.2004.840727
10.1016/j.gaitpost.2013.05.012
10.1007/s00221-006-0676-3
10.1109/TBME.2011.2149521
10.1016/j.patcog.2014.10.012
10.1111/ggi.12191
10.1242/jeb.026153
10.1109/IROS.2009.5354111
10.1109/TNSRE.2013.2291907
10.1109/TBME.2012.2216263
10.1249/mss.0b013e3181590bc2
10.1016/j.gaitpost.2005.12.017
10.1109/ICRA.2013.6631337
10.1097/01.TGR.0000270184.98402.ef
10.1053/apmr.2001.9396
10.1016/j.gaitpost.2012.07.012
10.1016/j.sna.2005.03.052
10.1109/TBME.2012.2223465
10.1007/s12603-009-0246-z
10.1016/j.jbiomech.2012.08.028
10.1109/TBME.2014.2368211
10.1682/JRRD.2013.06.0148
10.1016/j.gaitpost.2011.06.019
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2017.2724543
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 893
ExternalDocumentID 28708542
10_1109_TBME_2017_2724543
7976370
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Korea Government, Ministry of Science
  grantid: 2017R1C1B2010284
– fundername: DGIST R&D Program of the Ministry of Science, ICT, and Future Planning
  grantid: 17-BD-0401
– fundername: National Research Foundation of Korea
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-19d747d73aa864477b3b7aaa270af069ee5b0368b98fe107c9a7d1c47b848b23
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428526000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Thu Oct 02 05:47:31 EDT 2025
Mon Jun 30 08:27:23 EDT 2025
Mon Jul 21 05:48:01 EDT 2025
Sat Nov 29 05:34:21 EST 2025
Tue Nov 18 22:20:17 EST 2025
Wed Aug 27 02:53:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-19d747d73aa864477b3b7aaa270af069ee5b0368b98fe107c9a7d1c47b848b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0380-7446
PMID 28708542
PQID 2174498726
PQPubID 85474
PageCount 9
ParticipantIDs proquest_journals_2174498726
crossref_citationtrail_10_1109_TBME_2017_2724543
pubmed_primary_28708542
crossref_primary_10_1109_TBME_2017_2724543
ieee_primary_7976370
proquest_miscellaneous_1920198074
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref28) 2014
ref29
ref8
ref7
ref9
ref4
watson (ref3) 2014; 65
ref6
ref5
inman (ref31) 1981
john (ref27) 2008
References_xml – ident: ref8
  doi: 10.1109/TBME.2012.2227317
– ident: ref35
  doi: 10.1109/TBME.2016.2523512
– ident: ref6
  doi: 10.1109/IEMBS.2011.6090941
– ident: ref11
  doi: 10.1016/0268-0033(95)92043-L
– ident: ref32
  doi: 10.1186/s12984-016-0146-5
– ident: ref5
  doi: 10.1186/1743-0003-9-9
– ident: ref23
  doi: 10.1108/02602281311294342
– ident: ref25
  doi: 10.1088/0967-3334/35/3/399
– start-page: 12
  year: 2014
  ident: ref28
– ident: ref10
  doi: 10.1109/TBME.2004.840727
– volume: 65
  start-page: 1093
  year: 2014
  ident: ref3
  article-title: Executive function, memory, and gait speed decline in well-functioning older adults
  publication-title: J Gerontol Series A Biol Sci Med Sci
– ident: ref13
  doi: 10.1016/j.gaitpost.2013.05.012
– ident: ref33
  doi: 10.1007/s00221-006-0676-3
– ident: ref34
  doi: 10.1109/TBME.2011.2149521
– ident: ref15
  doi: 10.1016/j.patcog.2014.10.012
– ident: ref2
  doi: 10.1111/ggi.12191
– ident: ref20
  doi: 10.1242/jeb.026153
– ident: ref14
  doi: 10.1109/IROS.2009.5354111
– ident: ref29
  doi: 10.1109/TNSRE.2013.2291907
– ident: ref26
  doi: 10.1109/TBME.2012.2216263
– ident: ref4
  doi: 10.1249/mss.0b013e3181590bc2
– ident: ref19
  doi: 10.1016/j.gaitpost.2005.12.017
– ident: ref24
  doi: 10.1109/ICRA.2013.6631337
– ident: ref16
  doi: 10.1097/01.TGR.0000270184.98402.ef
– start-page: 41
  year: 2008
  ident: ref27
  publication-title: Introduction to Robotics Mechanics and Control
– ident: ref17
  doi: 10.1053/apmr.2001.9396
– ident: ref30
  doi: 10.1016/j.gaitpost.2012.07.012
– ident: ref18
  doi: 10.1016/j.sna.2005.03.052
– ident: ref7
  doi: 10.1109/TBME.2012.2223465
– ident: ref1
  doi: 10.1007/s12603-009-0246-z
– ident: ref22
  doi: 10.1016/j.jbiomech.2012.08.028
– ident: ref9
  doi: 10.1109/TBME.2014.2368211
– year: 1981
  ident: ref31
  publication-title: Human Walking
– ident: ref12
  doi: 10.1682/JRRD.2013.06.0148
– ident: ref21
  doi: 10.1016/j.gaitpost.2011.06.019
SSID ssj0014846
Score 2.4049306
Snippet Goal: For healthcare and clinical use, ambulatory gait monitoring systems using inertial sensors have been developed to estimate the user gait parameters, such...
For healthcare and clinical use, ambulatory gait monitoring systems using inertial sensors have been developed to estimate the user gait parameters, such as...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 885
SubjectTerms Acceleration
Accelerometry - instrumentation
Adult
Algorithms
Classification
Classification algorithms
Female
Foot
Foot - physiology
Gait
Gait - physiology
gait activity classification
Gait analysis
Gait recognition
Human Activities - classification
Humans
inertial measurement unit
Inertial sensing devices
Legged locomotion
Male
Monitoring
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Parameter estimation
ramp walk
Signal Processing, Computer-Assisted - instrumentation
stair walk
System effectiveness
Three-dimensional displays
Walking
Walking - physiology
Wearable Electronic Devices
Young Adult
Title An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor
URI https://ieeexplore.ieee.org/document/7976370
https://www.ncbi.nlm.nih.gov/pubmed/28708542
https://www.proquest.com/docview/2174498726
https://www.proquest.com/docview/1920198074
Volume 65
WOSCitedRecordID wos000428526000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SUEp76CPpw20aVOip1Ikty5Z03IRs20NCIHvYm5FkGQIbu-x6C_0F_dudsbSmhbbQm8EjWfDNMDOe0XwA722VWye4S02JMAhndWrwwGlmpGnbEpeVgWxCXl2p5VJf78HH6S6M935sPvMn9DjW8pvebelX2alE31lITNDvSVmFu1pTxUCocCkny9GAuRaxgpln-nRxdnlBTVzyhEsuSkHcOVTfU6Xgv7mjkV_l76Hm6HLmT_7vsE_hcQwt2SzowjPY890BPPpl4OABPLiMpfRD-DHr2OzOEntXv_7OPpnbgQUDJ1EWJpkz-k3LZi5QTLCRQZN6i0Y4memasO7aUIsXIsTOzcpFQjB2hg6yYSTHbnDLlWfzvh_Yl45aufGgN5hB9-vnsJhfLM4_p5GVIXWF0EOa6wZTkEYWxigMpqS0hZXGGC4z02aV9r606BaV1ar1mFw6bWSTOyGtEsry4gXsd33nXwErKkPD94VVTopWZ7ZwTWUNpUhlq5oigWyHTe3ixHIizljVY-aS6ZqQrQnZOiKbwIdpydcwruNfwocE2yQYEUvgaKcAdTToTU2Zm9BK8iqBd9NrNEWqr5jO99tNjcEyBsw0XSiBl0Fxpr13-vb6z998Aw85ae7YEnQE-8N669_CffdtuN2sj1Hfl-p41Pefz7n6sA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBfE48GgLBAoYiRMireM4sX3cVl1a0V1V6h56i2zHkSotCdrNIvEL-Nt4Ym8EEiBxi5SxY-mb0cxkxvMBvDdlZixnNtWFh4Fbo1LtD5xSLXTTFH5ZEcgmxHwub27U1Q58HO_COOeG5jN3hI9DLb_u7AZ_lR0L7ztz4RP0OwXnjIbbWmPNgMtwLYdm3oSZ4rGGmVF1vDiZnWEblzhigvGCI3sOVvhkwdlvDmlgWPl7sDk4nenj_zvuE3gUg0syCdrwFHZcuwcPfxk5uAf3ZrGYvg8_Ji2ZfDHI39WtvpNP-rYnwcRRlIRZ5gR_1JKJDSQTZODQxO6iAVCi2zqsu9LY5OUxIqd6aSMlGDnxLrImKEeu_ZZLR6Zd15OLFpu5_UGvfQ7drQ5gMT1bnJ6nkZchtTlXfZqp2ichtci1lj6cEsLkRmitmaC6oaVyrjDeMUqjZON8emmVFnVmuTCSS8PyZ7Dbdq17ASQvNY7f50ZawRtFTW7r0mhMkopG1nkCdItNZePMcqTOWFZD7kJVhchWiGwVkU3gw7jkaxjY8S_hfYRtFIyIJXC4VYAqmvS6wtyNKylYmcC78bU3Rqyw6NZ1m3Xlw2UfMuN8oQSeB8UZ997q28s_f_Mt3D9fzC6ry4v551fwgKEWDw1Ch7DbrzbuNdy13_rb9erNoPU_ARSA_Q8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ambulatory+Gait+Monitoring+System+with+Activity+Classification+and+Gait+Parameter+Calculation+Based+on+a+Single+Foot+Inertial+Sensor&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Song%2C+Minsu&rft.au=Kim%2C+Jonghyun&rft.date=2018-04-01&rft.eissn=1558-2531&rft.volume=65&rft.issue=4&rft.spage=885&rft_id=info:doi/10.1109%2FTBME.2017.2724543&rft_id=info%3Apmid%2F28708542&rft.externalDocID=28708542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon