Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons

Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis, agricultural practices and hydro-power generation. However, the dynamicity, stochasticity and inherent complexities present in the temporal evolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management Jg. 32; H. 5; S. 1883 - 1899
Hauptverfasser: Yaseen, Zaher Mundher, Fu, Minglei, Wang, Chen, Mohtar, Wan Hanna Melini Wan, Deo, Ravinesh C., El-shafie, Ahmed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.03.2018
Springer Nature B.V
Schlagworte:
ISSN:0920-4741, 1573-1650
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis, agricultural practices and hydro-power generation. However, the dynamicity, stochasticity and inherent complexities present in the temporal evolution of streamflow could hinder the accurate and reliable forecasting of this important hydrological parameter. In this study, the uncertainty and nonstationary characteristics of streamflow data has been treated using a set of coupled data pre-processing methods before being considered as input for an artificial neural network algorithm namely; rolling mechanism (RM) and grey models (GM). The rolling mechanism method is applied to smooth out the dataset based on the antecedent values of the model inputs before being applied to the GM algorithm. The optimization of the input datasets selection was performed using auto-correlation (ACF) and partial auto-correlation (PACF) functions. The pre-processed data was then integrated with two artificial neural network models, the back propagation (RMGM-BP) and Elman Recurrent Neural Network (RMGM-ERNN). The development, training, testing and evaluation of the proposed hybrid models were undertaken using streamflow data for two tropical hydrological basins (Johor and Kelantan Rivers). The hybrid RMGM-ERNN was found to provide better results than the hybrid RMGM-BP model. Relatively good performance of the proposed hybrid models with a data pre-processing approach provides a successful alternative to achieve better accuracy in streamflow forecasting compared to the traditional artificial neural network approach without a data pre-processing scheme.
AbstractList Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis, agricultural practices and hydro-power generation. However, the dynamicity, stochasticity and inherent complexities present in the temporal evolution of streamflow could hinder the accurate and reliable forecasting of this important hydrological parameter. In this study, the uncertainty and nonstationary characteristics of streamflow data has been treated using a set of coupled data pre-processing methods before being considered as input for an artificial neural network algorithm namely; rolling mechanism (RM) and grey models (GM). The rolling mechanism method is applied to smooth out the dataset based on the antecedent values of the model inputs before being applied to the GM algorithm. The optimization of the input datasets selection was performed using auto-correlation (ACF) and partial auto-correlation (PACF) functions. The pre-processed data was then integrated with two artificial neural network models, the back propagation (RMGM-BP) and Elman Recurrent Neural Network (RMGM-ERNN). The development, training, testing and evaluation of the proposed hybrid models were undertaken using streamflow data for two tropical hydrological basins (Johor and Kelantan Rivers). The hybrid RMGM-ERNN was found to provide better results than the hybrid RMGM-BP model. Relatively good performance of the proposed hybrid models with a data pre-processing approach provides a successful alternative to achieve better accuracy in streamflow forecasting compared to the traditional artificial neural network approach without a data pre-processing scheme.
Author Yaseen, Zaher Mundher
Deo, Ravinesh C.
Wang, Chen
Fu, Minglei
Mohtar, Wan Hanna Melini Wan
El-shafie, Ahmed
Author_xml – sequence: 1
  givenname: Zaher Mundher
  surname: Yaseen
  fullname: Yaseen, Zaher Mundher
  email: yaseen@tdt.edu.vn
  organization: Faculty of Civil Engineering, Ton Duc Thang University
– sequence: 2
  givenname: Minglei
  surname: Fu
  fullname: Fu, Minglei
  organization: College of Science, Zhejiang University of Technology
– sequence: 3
  givenname: Chen
  surname: Wang
  fullname: Wang, Chen
  organization: College of Science, Zhejiang University of Technology
– sequence: 4
  givenname: Wan Hanna Melini Wan
  surname: Mohtar
  fullname: Mohtar, Wan Hanna Melini Wan
  organization: Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM
– sequence: 5
  givenname: Ravinesh C.
  surname: Deo
  fullname: Deo, Ravinesh C.
  organization: School of Agricultural Computational and Environmental Sciences, International Centre of Applied Climate Science (ICACS), University of Southern Queensland
– sequence: 6
  givenname: Ahmed
  surname: El-shafie
  fullname: El-shafie, Ahmed
  organization: Civil Engineering Department, Faculty of Engineering, University of Malaya
BookMark eNp9kctuEzEUhi1UJNLCA7CzxIbNgC9zsZdRRC9SQyUoa8vxnElcPPZge4jC6_CidRoWqBKszub7jv5z_nN05oMHhN5S8oES0n1MlLJWVoSKikoiq-YFWtCm4xVtG3KGFkQyUtVdTV-h85QeCCmWJAv0ezlNzhqdbfA4DDjvAF8fNtH2eBmzHayx2uHPMMenkfchfserME8Oery3eYe_BOes3-I1mJ32No1Y-x5fRTjgdejB4aXbhljIMeEhRPw1R9Dj4MIeX4YIRqd81O9-QsTr2WVbVuN7O5YcRfsVfHqNXg7aJXjzZ16gb5ef7lfX1e3d1c1qeVsZXstcLtW83xApKOs2tDddQ7jUnLctNJQPm1a3HaNCsnoA0XPeDcIYoTVrG0E4AX6B3p_2TjH8mCFlNdpkwDntIcxJMVI3gnZMsIK-e4Y-hDn6kk5RKTnjomF1oboTZWJIKcKgjM1Pr85RW6coUcfy1Kk8VcpTx_JUU0z6zJyiHXU8_NdhJycV1m8h_pXpn9IjzmKvhA
CitedBy_id crossref_primary_10_1007_s11269_022_03063_x
crossref_primary_10_1016_j_jhydrol_2023_130320
crossref_primary_10_1088_1755_1315_1032_1_012016
crossref_primary_10_1007_s00366_019_00741_0
crossref_primary_10_1016_j_psep_2018_07_021
crossref_primary_10_7717_peerj_7183
crossref_primary_10_1155_2020_6514236
crossref_primary_10_1016_j_jhydrol_2019_124141
crossref_primary_10_1016_j_jclepro_2018_08_176
crossref_primary_10_1109_ACCESS_2025_3557910
crossref_primary_10_1007_s11600_019_00330_1
crossref_primary_10_1016_j_jclepro_2022_135522
crossref_primary_10_1061_JHYEFF_HEENG_5920
crossref_primary_10_3390_w10111654
crossref_primary_10_1007_s11269_020_02529_0
crossref_primary_10_3390_w10091124
crossref_primary_10_1016_j_asoc_2019_03_046
crossref_primary_10_1007_s40808_020_00817_7
crossref_primary_10_1016_j_neucom_2022_03_014
crossref_primary_10_3390_w12113032
crossref_primary_10_1016_j_chemolab_2024_105135
crossref_primary_10_1016_j_jhydrol_2019_03_004
crossref_primary_10_1007_s11269_023_03492_2
crossref_primary_10_1016_j_jhydrol_2019_124293
crossref_primary_10_1155_2019_2782715
crossref_primary_10_1155_2022_1587274
crossref_primary_10_3390_atmos16010106
crossref_primary_10_3390_w11010009
crossref_primary_10_1016_j_jhydrol_2025_133465
crossref_primary_10_1109_ACCESS_2020_2974406
crossref_primary_10_2166_wcc_2025_055
crossref_primary_10_2166_nh_2019_060
crossref_primary_10_1007_s40808_019_00581_3
crossref_primary_10_1080_02626667_2019_1632460
crossref_primary_10_1088_1742_6596_2271_1_012019
crossref_primary_10_1080_02626667_2024_2394639
crossref_primary_10_1016_j_dt_2019_05_006
crossref_primary_10_1109_ACCESS_2020_2965303
crossref_primary_10_1007_s00477_022_02276_1
crossref_primary_10_1155_2022_5991311
crossref_primary_10_1016_j_eswa_2024_124728
crossref_primary_10_1016_j_jhydrol_2025_134303
crossref_primary_10_1155_2020_1341047
crossref_primary_10_3390_hydrology11040048
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1109_ACCESS_2023_3238717
crossref_primary_10_1016_j_watcyc_2024_09_001
crossref_primary_10_3390_w10060807
crossref_primary_10_1016_j_jhydrol_2021_126152
crossref_primary_10_1007_s00500_022_07077_w
crossref_primary_10_1016_j_asoc_2022_109739
crossref_primary_10_1016_j_jenvman_2023_118697
crossref_primary_10_1007_s00477_021_01984_4
crossref_primary_10_1016_j_jhydrol_2019_124115
crossref_primary_10_1016_j_jhydrol_2019_124511
crossref_primary_10_1016_j_jhydrol_2021_126794
crossref_primary_10_1007_s11269_019_02273_0
crossref_primary_10_1007_s11269_020_02484_w
crossref_primary_10_1016_j_advwatres_2020_103656
crossref_primary_10_1007_s12204_019_2152_9
crossref_primary_10_1109_ACCESS_2021_3092074
crossref_primary_10_1109_ACCESS_2020_2995187
crossref_primary_10_1080_19475705_2024_2361807
crossref_primary_10_1080_02626667_2021_1937631
crossref_primary_10_7717_peerj_8043
crossref_primary_10_1016_j_engappai_2025_112396
crossref_primary_10_1080_02626667_2019_1601727
crossref_primary_10_1109_ACCESS_2019_2961115
Cites_doi 10.1016/j.jhydrol.2008.01.023
10.1016/j.jhydrol.2009.03.038
10.1016/j.eswa.2014.09.062
10.1007/s00477-014-0967-3
10.1016/j.eswa.2011.04.114
10.2166/hydro.2010.040
10.1016/j.jhydrol.2014.03.057
10.1007/s40710-015-0064-8
10.5194/hess-15-1835-2011
10.1002/2015WR017049
10.1007/s11269-014-0767-z
10.1029/2010WR009945
10.1016/j.jhydrol.2010.11.030
10.1002/hyp.1313
10.1007/s11269-006-9027-1
10.1016/S1364-8152(98)00019-X
10.1016/j.jhydrol.2015.10.038
10.1177/0309133312444943
10.1016/j.cageo.2014.04.015
10.1016/j.jhydrol.2005.07.048
10.1007/s11269-006-9070-y
10.1029/2007WR006737
10.1016/j.omega.2011.10.003
10.1007/s11269-014-0824-7
10.1016/j.jhydrol.2015.10.056
10.1016/j.energy.2009.12.021
10.1080/02626667.2012.754102
10.1016/j.jhydrol.2011.10.039
10.1016/j.neucom.2005.12.122
10.1016/S0167-6911(82)80025-X
10.1007/s12205-012-1519-3
10.1016/j.jhydrol.2009.06.019
10.1007/s11269-014-0516-3
10.1007/s00521-015-1853-8
10.1016/j.eswa.2009.07.064
10.1007/s40710-015-0081-7
10.1016/S0165-1684(97)00203-X
10.1016/S1364-8152(99)00007-9
10.1007/s00521-015-1952-6
10.1007/s11269-015-1107-7
10.1007/s11269-015-1188-3
10.2478/johh-2013-0015
10.1007/s00477-015-1153-y
10.1029/2001WR000795
10.5194/hessd-7-8179-2010
ContentType Journal Article
Copyright Springer Science+Business Media B.V., part of Springer Nature 2018
Water Resources Management is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media B.V., part of Springer Nature 2018
– notice: Water Resources Management is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-018-1909-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Science Database (subscription)
Biological Science Database
Engineering Database (subscription)
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 1899
ExternalDocumentID 10_1007_s11269_018_1909_5
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c349t-16a3db098127b1dc75039a3366e513fb6a67218924fe8d337f8cc8aa2658030e3
IEDL.DBID 7WY
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425155400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-4741
IngestDate Sun Nov 09 11:39:13 EST 2025
Tue Nov 04 23:07:56 EST 2025
Sat Nov 29 02:11:46 EST 2025
Tue Nov 18 19:39:50 EST 2025
Fri Feb 21 02:26:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Rolling mechanism
Artificial neural network
Multiple time scales
Streamflow
Grey model
Tropical environment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-16a3db098127b1dc75039a3366e513fb6a67218924fe8d337f8cc8aa2658030e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1993238524
PQPubID 54174
PageCount 17
ParticipantIDs proquest_miscellaneous_2045817282
proquest_journals_1993238524
crossref_citationtrail_10_1007_s11269_018_1909_5
crossref_primary_10_1007_s11269_018_1909_5
springer_journals_10_1007_s11269_018_1909_5
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Awchi (CR4) 2014; 28
Nourani, Hosseini Baghanam, Adamowski, Kisi (CR31) 2014; 514
Wei, Yang, Song (CR42) 2013; 58
Sharma, Srivastava, Fang, Kalin (CR37) 2015; 42
Wu, Chau, Li (CR44) 2009; 372
Guo, Zhou, Qin (CR18) 2011; 38
Turan, Yurdusev (CR38) 2014; 28
Bayazit (CR5) 2015; 2
Yaseen, El-shafie, Jaafar (CR46) 2015; 530
CR19
Ahmed, Sarma (CR3) 2007; 21
CR14
Pramanik, Panda, Singh (CR34) 2010; 13
Karunasinghe, Liong (CR23) 2006; 323
Samsudin, Saad, Shabri (CR36) 2011; 15
Wu, Chau, Li (CR43) 2009; 45
Maier, Dandy (CR27) 1998; 13
Parmar, Bhardwaj (CR33) 2014; 29
Rasouli, Hsieh, Cannon (CR35) 2012; 414–415
Narsimlu, Gosain, Chahar (CR30) 2015; 2
Wang, Chau, Cheng, Qiu (CR41) 2009; 374
Adamowski, Fung Chan, Prasher (CR2) 2012; 48
Yu (CR47) 2006; 70
Vignesh, Jothiprakash, Sivakumar (CR39) 2015; 531
Deng (CR13) 1982; 1
CR9
Fu, Wang, Le, Khorram (CR16) 2015; 26
Dehghani, Saghafian, Rivaz, Khodadadi (CR12) 2015; 29
Maier, Dandy (CR28) 2000; 15
CR25
CR45
Chua, Wong (CR10) 2011; 397
CR22
CR21
Furundzic (CR17) 1998; 64
Kayacan, Ulutas, Kaynak (CR24) 2010; 37
Box, Jenkins (CR6) 1970
El-Shafie, Taha, Noureldin (CR15) 2007; 21
Bruins (CR7) 1990
Makkeasorn, Chang, Zhou (CR29) 2008; 352
Kumar, Jain (CR26) 2010; 35
Chang, Chang, Chiang (CR8) 2004; 18
Zhao, Wang, Zhao, Su (CR48) 2012; 40
Abrahart, Anctil, Coulibaly (CR1) 2012; 36
Hwang, Ham, Kim (CR20) 2012; 16
Danandeh Mehr, Kahya, Yerdelen (CR11) 2014; 70
Okkan, Ali Serbes (CR32) 2013; 61
Vogel, Lall, Cai (CR40) 2015; 51
HJ Bruins (1909_CR7) 1990
HR Maier (1909_CR27) 1998; 13
K Rasouli (1909_CR35) 2012; 414–415
W Yu (1909_CR47) 2006; 70
1909_CR25
J Deng (1909_CR13) 1982; 1
S Sharma (1909_CR37) 2015; 42
R Vignesh (1909_CR39) 2015; 531
WC Wang (1909_CR41) 2009; 374
1909_CR9
DSK Karunasinghe (1909_CR23) 2006; 323
CL Wu (1909_CR43) 2009; 45
R Samsudin (1909_CR36) 2011; 15
A Makkeasorn (1909_CR29) 2008; 352
J Guo (1909_CR18) 2011; 38
KS Parmar (1909_CR33) 2014; 29
CL Wu (1909_CR44) 2009; 372
S Wei (1909_CR42) 2013; 58
V Nourani (1909_CR31) 2014; 514
ME Turan (1909_CR38) 2014; 28
N Pramanik (1909_CR34) 2010; 13
LC Chang (1909_CR8) 2004; 18
GEP Box (1909_CR6) 1970
A Danandeh Mehr (1909_CR11) 2014; 70
B Narsimlu (1909_CR30) 2015; 2
U Okkan (1909_CR32) 2013; 61
1909_CR19
TA Awchi (1909_CR4) 2014; 28
1909_CR14
RM Vogel (1909_CR40) 2015; 51
E Kayacan (1909_CR24) 2010; 37
M Dehghani (1909_CR12) 2015; 29
J Adamowski (1909_CR2) 2012; 48
JA Ahmed (1909_CR3) 2007; 21
LHC Chua (1909_CR10) 2011; 397
D Furundzic (1909_CR17) 1998; 64
Z Zhao (1909_CR48) 2012; 40
A El-Shafie (1909_CR15) 2007; 21
HR Maier (1909_CR28) 2000; 15
M Bayazit (1909_CR5) 2015; 2
SH Hwang (1909_CR20) 2012; 16
ZM Yaseen (1909_CR46) 2015; 530
1909_CR22
1909_CR21
U Kumar (1909_CR26) 2010; 35
1909_CR45
M Fu (1909_CR16) 2015; 26
RJ Abrahart (1909_CR1) 2012; 36
References_xml – ident: CR45
– ident: CR22
– volume: 352
  start-page: 336
  year: 2008
  end-page: 354
  ident: CR29
  article-title: Short-term streamflow forecasting with global climate change implications - a comparative study between genetic programming and neural network models
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2008.01.023
– volume: 372
  start-page: 80
  year: 2009
  end-page: 93
  ident: CR44
  article-title: Methods to improve neural network performance in daily flows prediction
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.03.038
– volume: 61
  start-page: 112
  year: 2013
  end-page: 119
  ident: CR32
  article-title: The combined use of wavelet transform and black box models in reservoir inflow modeling
  publication-title: J Hydrosci Hydraul
– volume: 42
  start-page: 2213
  year: 2015
  end-page: 2223
  ident: CR37
  article-title: Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.09.062
– volume: 29
  start-page: 861
  year: 2015
  end-page: 874
  ident: CR12
  article-title: Monthly stream flow forecasting via dynamic spatio-temporal models
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-014-0967-3
– volume: 38
  start-page: 13073
  year: 2011
  end-page: 13081
  ident: CR18
  article-title: Monthly streamflow forecasting based on improved support vector machine model
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.114
– ident: CR14
– volume: 13
  start-page: 49
  year: 2010
  ident: CR34
  article-title: Daily river flow forecasting using wavelet ANN hybrid models
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2010.040
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: CR31
  article-title: Applications of hybrid wavelet–artificial Intelligence models in hydrology: a review
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 2
  start-page: 79
  year: 2015
  end-page: 95
  ident: CR30
  article-title: SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting
  publication-title: Environ Process
  doi: 10.1007/s40710-015-0064-8
– volume: 15
  start-page: 1835
  year: 2011
  end-page: 1852
  ident: CR36
  article-title: River flow time series using least squares support vector machines
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-15-1835-2011
– volume: 51
  start-page: 4409
  year: 2015
  end-page: 4430
  ident: CR40
  article-title: Hydrology: the interdisciplinary science of water
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017049
– volume: 28
  start-page: 4685
  year: 2014
  end-page: 4697
  ident: CR38
  article-title: Predicting monthly river flows by genetic fuzzy systems
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0767-z
– volume: 48
  start-page: 1
  year: 2012
  end-page: 14
  ident: CR2
  article-title: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada
  publication-title: Water Resour Res
  doi: 10.1029/2010WR009945
– ident: CR25
– volume: 397
  start-page: 191
  year: 2011
  end-page: 201
  ident: CR10
  article-title: Runoff forecasting for an asphalt plane by artificial neural networks and comparisons with kinematic wave and autoregressive moving average models
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.11.030
– volume: 18
  start-page: 81
  year: 2004
  end-page: 92
  ident: CR8
  article-title: A two-step-ahead recurrent neural network for stream-flow forecasting
  publication-title: Hydrol Process
  doi: 10.1002/hyp.1313
– ident: CR21
– volume: 21
  start-page: 533
  year: 2007
  end-page: 556
  ident: CR15
  article-title: A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-9027-1
– ident: CR19
– volume: 13
  start-page: 179
  year: 1998
  end-page: 191
  ident: CR27
  article-title: Understanding the behaviour and optimising the performance of back-propagation neural networks: an empirical study
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(98)00019-X
– volume: 530
  start-page: 829
  year: 2015
  end-page: 844
  ident: CR46
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.10.038
– volume: 36
  start-page: 480
  year: 2012
  end-page: 513
  ident: CR1
  article-title: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
  publication-title: Prog Phys Geogr
  doi: 10.1177/0309133312444943
– volume: 70
  start-page: 63
  year: 2014
  end-page: 72
  ident: CR11
  article-title: Linear genetic programming application for successive-station monthly streamflow prediction
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2014.04.015
– volume: 323
  start-page: 92
  year: 2006
  end-page: 105
  ident: CR23
  article-title: Chaotic time series prediction with a global model: artificial neural network
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.07.048
– volume: 21
  start-page: 1015
  year: 2007
  end-page: 1029
  ident: CR3
  article-title: Artificial neural network model for synthetic streamflow generation
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-9070-y
– volume: 45
  start-page: 1
  year: 2009
  end-page: 23
  ident: CR43
  article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
  publication-title: Water Resour Res
  doi: 10.1029/2007WR006737
– volume: 40
  start-page: 525
  year: 2012
  end-page: 532
  ident: CR48
  article-title: Using a grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China
  publication-title: Omega
  doi: 10.1016/j.omega.2011.10.003
– volume: 29
  start-page: 17
  year: 2014
  end-page: 33
  ident: CR33
  article-title: River water prediction modeling using neural networks, fuzzy and wavelet coupled model
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0824-7
– volume: 531
  start-page: 706
  year: 2015
  end-page: 715
  ident: CR39
  article-title: Streamflow variability and classification using false nearest neighbor method
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.10.056
– volume: 35
  start-page: 1709
  year: 2010
  end-page: 1716
  ident: CR26
  article-title: Time series models (Grey-Markov, grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.021
– volume: 58
  start-page: 374
  year: 2013
  end-page: 389
  ident: CR42
  article-title: A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2012.754102
– volume: 414–415
  start-page: 284
  year: 2012
  end-page: 293
  ident: CR35
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.10.039
– ident: CR9
– volume: 70
  start-page: 430
  year: 2006
  end-page: 444
  ident: CR47
  article-title: Multiple recurrent neural networks for stable adaptive control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.122
– volume: 1
  start-page: 288
  year: 1982
  end-page: 294
  ident: CR13
  article-title: Control problems of grey systems
  publication-title: Syst Control Lett
  doi: 10.1016/S0167-6911(82)80025-X
– year: 1970
  ident: CR6
  publication-title: Time series analysis, forecasting and control, 1st edition
– volume: 16
  start-page: 870
  year: 2012
  end-page: 882
  ident: CR20
  article-title: Forecasting performance of LS-SVM for nonlinear hydrological time series
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-012-1519-3
– volume: 374
  start-page: 294
  year: 2009
  end-page: 306
  ident: CR41
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.06.019
– volume: 28
  start-page: 1
  year: 2014
  end-page: 14
  ident: CR4
  article-title: River discharges forecasting in Northern Iraq using different ANN techniques
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0516-3
– volume: 26
  start-page: 1789
  year: 2015
  end-page: 1797
  ident: CR16
  article-title: Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-015-1853-8
– volume: 37
  start-page: 1784
  year: 2010
  end-page: 1789
  ident: CR24
  article-title: Grey system theory-based models in time series prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.07.064
– year: 1990
  ident: CR7
  publication-title: Water harvesting for plant production
– volume: 2
  start-page: 527
  year: 2015
  end-page: 542
  ident: CR5
  article-title: Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review
  publication-title: Environ Process
  doi: 10.1007/s40710-015-0081-7
– volume: 64
  start-page: 383
  year: 1998
  end-page: 396
  ident: CR17
  article-title: Application example of neural networks for time series analysis: rainfall runoff modeling
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(97)00203-X
– volume: 15
  start-page: 101
  year: 2000
  end-page: 124
  ident: CR28
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 37
  start-page: 1784
  year: 2010
  ident: 1909_CR24
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.07.064
– ident: 1909_CR45
  doi: 10.1007/s00521-015-1952-6
– volume: 13
  start-page: 179
  year: 1998
  ident: 1909_CR27
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(98)00019-X
– volume: 352
  start-page: 336
  year: 2008
  ident: 1909_CR29
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2008.01.023
– volume: 15
  start-page: 101
  year: 2000
  ident: 1909_CR28
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 42
  start-page: 2213
  year: 2015
  ident: 1909_CR37
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.09.062
– volume: 530
  start-page: 829
  year: 2015
  ident: 1909_CR46
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.10.038
– ident: 1909_CR25
  doi: 10.1007/s11269-015-1107-7
– volume: 40
  start-page: 525
  year: 2012
  ident: 1909_CR48
  publication-title: Omega
  doi: 10.1016/j.omega.2011.10.003
– volume: 36
  start-page: 480
  year: 2012
  ident: 1909_CR1
  publication-title: Prog Phys Geogr
  doi: 10.1177/0309133312444943
– volume: 323
  start-page: 92
  year: 2006
  ident: 1909_CR23
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.07.048
– volume: 38
  start-page: 13073
  year: 2011
  ident: 1909_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.114
– volume: 21
  start-page: 1015
  year: 2007
  ident: 1909_CR3
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-9070-y
– volume: 26
  start-page: 1789
  year: 2015
  ident: 1909_CR16
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-015-1853-8
– volume: 64
  start-page: 383
  year: 1998
  ident: 1909_CR17
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(97)00203-X
– volume: 16
  start-page: 870
  year: 2012
  ident: 1909_CR20
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-012-1519-3
– volume: 28
  start-page: 1
  year: 2014
  ident: 1909_CR4
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0516-3
– ident: 1909_CR9
– ident: 1909_CR22
  doi: 10.1007/s11269-015-1188-3
– volume: 29
  start-page: 861
  year: 2015
  ident: 1909_CR12
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-014-0967-3
– volume: 61
  start-page: 112
  year: 2013
  ident: 1909_CR32
  publication-title: J Hydrosci Hydraul
  doi: 10.2478/johh-2013-0015
– volume: 2
  start-page: 79
  year: 2015
  ident: 1909_CR30
  publication-title: Environ Process
  doi: 10.1007/s40710-015-0064-8
– volume: 18
  start-page: 81
  year: 2004
  ident: 1909_CR8
  publication-title: Hydrol Process
  doi: 10.1002/hyp.1313
– volume: 15
  start-page: 1835
  year: 2011
  ident: 1909_CR36
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-15-1835-2011
– volume: 70
  start-page: 430
  year: 2006
  ident: 1909_CR47
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.122
– volume: 531
  start-page: 706
  year: 2015
  ident: 1909_CR39
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.10.056
– volume: 374
  start-page: 294
  year: 2009
  ident: 1909_CR41
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.06.019
– volume: 1
  start-page: 288
  year: 1982
  ident: 1909_CR13
  publication-title: Syst Control Lett
  doi: 10.1016/S0167-6911(82)80025-X
– volume: 35
  start-page: 1709
  year: 2010
  ident: 1909_CR26
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.021
– volume: 414–415
  start-page: 284
  year: 2012
  ident: 1909_CR35
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.10.039
– volume: 21
  start-page: 533
  year: 2007
  ident: 1909_CR15
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-9027-1
– volume: 45
  start-page: 1
  year: 2009
  ident: 1909_CR43
  publication-title: Water Resour Res
  doi: 10.1029/2007WR006737
– volume: 70
  start-page: 63
  year: 2014
  ident: 1909_CR11
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2014.04.015
– ident: 1909_CR14
  doi: 10.1007/s00477-015-1153-y
– volume-title: Water harvesting for plant production
  year: 1990
  ident: 1909_CR7
– ident: 1909_CR19
  doi: 10.1029/2001WR000795
– volume: 28
  start-page: 4685
  year: 2014
  ident: 1909_CR38
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0767-z
– volume: 51
  start-page: 4409
  year: 2015
  ident: 1909_CR40
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017049
– volume: 29
  start-page: 17
  year: 2014
  ident: 1909_CR33
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0824-7
– volume: 372
  start-page: 80
  year: 2009
  ident: 1909_CR44
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.03.038
– volume: 48
  start-page: 1
  year: 2012
  ident: 1909_CR2
  publication-title: Water Resour Res
  doi: 10.1029/2010WR009945
– volume: 397
  start-page: 191
  year: 2011
  ident: 1909_CR10
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.11.030
– volume: 2
  start-page: 527
  year: 2015
  ident: 1909_CR5
  publication-title: Environ Process
  doi: 10.1007/s40710-015-0081-7
– volume-title: Time series analysis, forecasting and control, 1st edition
  year: 1970
  ident: 1909_CR6
– volume: 514
  start-page: 358
  year: 2014
  ident: 1909_CR31
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 13
  start-page: 49
  year: 2010
  ident: 1909_CR34
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2010.040
– ident: 1909_CR21
  doi: 10.5194/hessd-7-8179-2010
– volume: 58
  start-page: 374
  year: 2013
  ident: 1909_CR42
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2012.754102
SSID ssj0010090
Score 2.4634979
Snippet Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1883
SubjectTerms Agricultural practices
Algorithms
Artificial neural networks
Atmospheric Sciences
Autocorrelation
Back propagation networks
Basins
Civil Engineering
Correlation
Data
data collection
Data processing
Earth and Environmental Science
Earth Sciences
Electric power generation
Environment
Evaluation
Flood control
Flood forecasting
Flood management
Forecasting
Geotechnical Engineering & Applied Earth Sciences
Hydroelectric power
Hydrogeology
Hydrologic data
Hydrologic models
Hydrology
Hydrology/Water Resources
Mathematical models
Neural networks
Parameter uncertainty
Recurrent neural networks
River water
Rivers
Rolling (ship motion)
Stochasticity
Stream discharge
Stream flow
Streamflow forecasting
Training
Tropical climate
uncertainty
Water flow
water power
SummonAdditionalLinks – databaseName: Springer Journals New Starts & Take-Overs Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VlgM9QHlUXVqqQeIEipTEiWMfq6plL31IPNRb5NgOqrSbVJtdEPwd_igz3mS3IEBqTznEj8iZsb_xzHwD8MZnyrtEqij2iY8yp2ykCZhEhclzV2lSdVeHYhPF-bm6utKXfR53N0S7Dy7JsFOvk92SVHJsD1k9OtZR_gC2ciabYRP9w-eV64BAQ7hY0WQXZXReDq7Mvw3x-2G0Rph_OEXDWXP65F5fuQOPe2iJR0tZeAobvnkG27cIB5_Dz6O1vxrbGgn94fg7J22Fbks2CWTCjvAIEeJ43C5uJt4hX9liT-KNZ55Thq-7KZrG4XsSCOSyajT95Es7o5bTDgkPI3u9zbSetN-Qq4Ba03GcNV6QBuFZH8yInIeCY-r2g3TgBXw6Pfl4PI76Mg2RFZmeR4k0wlWxJqhQVImz7BnVRggpfZ6IupJGkpmpyNCrvXJCFLWyVhmTEvihLcaLXdhs2sbvARbSyzRzwrJdlPnU-MzGkkBs5XxhnRhBPPyv0vYc5lxKY1Ku2Zd5_Uta_5LXv8xH8HbV5WZJ4PG_xgeDEJS9LnclhzgSsMnTbASvV69JC9m1YhrfLrqSSf0Vl_pKR_BuEIxbQ_xrwpd3ar0Pj1KWrBACdwCb89nCv4KH9uv8upsdBjX4BRYVA5Y
  priority: 102
  providerName: Springer Nature
Title Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons
URI https://link.springer.com/article/10.1007/s11269-018-1909-5
https://www.proquest.com/docview/1993238524
https://www.proquest.com/docview/2045817282
Volume 32
WOSCitedRecordID wos000425155400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMKy2qQOIEikjhx7BNaql16aal2eSynyLEdWKlNyqYFwd_hjzLjOu2CxF64OIoSx5HG4_nGM56PsWcuk84mQkaxS1yUWWkihcAkKnSe20qhqtvak00Uk4k8PVXTsOHWhbTKfk30C7VtDe2Rv6REMzQveZq9WnyNiDWKoquBQuMq20VDnRODQfHx0yaKgPjB77EodJEyNJ19VNMfnUtSQZlC6EOpWEX5n3ZpCzb_io96s3N0639_-Da7GQAnHKxnyB12xTV32Y0LZQjvsV8H2yg2tDUgJoTRDzrK5buta0wAlfHwF583DsN2tZg5C7SRC6G0N4wdHSQ-6-agGwtvcJoAka3h8LPP-G_LL_MOECUDxcL1vJ6134G4QY3uKPsa3qJewTikOAKdToERdvuJmnGfvT86fDccRYG8ITI8U8soEZrbKlYIIIoqsYbipUpzLoTLE15XQgt0PiW6f7WTlvOilsZIrVOERLjwOP6A7TRt4x4yKIQTaWa5IW8pc6l2mYkFQtvKusJYPmBxL7rShMrmRLAxK7c1mUnaJUq7JGmX-YA933RZrMt6XPbyXi_hMmh4V27FO2BPN49RNyngohvXrrqSSv1LIgBLB-xFP48ufOJfAz66fMDH7HpKE9dnwu2xneX5yj1h18y35Vl3vu9VYJ_tvj6cTI_xbhwPqU2n1Bbr9gTb45MPvwGRTRS-
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceCMCBQYJLiALe9de2weEqkJJ1Sb0UKTezGZ3DZUSO9QJVfk73PmNzGzspCDRWw-cfIjXK22-ee08PoDnLs6cjVQWhC5yQWwzE-TkmASpThI7yknUbenJJtLhMDs8zPfX4FfXC8NllZ1O9Ira1obvyF9zoRmZl0TEb6ffAmaN4uxqR6GxgMWuOz2hkK15s_OO_t8XQmy_P9jqBy2rQGBknM-CSGlpR2FOli0dRdZwIi_XUirlkkiWI6UVRUUZxSWly6yUaZkZk2ktyFaTRDhJ370El8mNEKEvFdxfZi3IX_F3OjmFZDGZ6i6L6lv1IqG4MolitjzMg-RPO7hybv_Kx3ozt33zfzugW3CjdahxcyEBt2HNVXfg-pkxi3fh5-YqS491ieTzYv-UW9X8ssUMDeQxJf7h6-Jxq55Px84iX1RjO7ocB44bpY-aCerK4gcSA2QyOdp-_IXOYvZ10iBFAci5fj0px_UJMvep0Q1Xl-NH0hs4aEs4kbtvsE_LfpDk34NPF3JK92G9qiv3ADBVTonYSsPRYOyEdrEJFbnuI-tSY2UPwg4qhWkntzOByLhYzZxmdBWEroLRVSQ9eLlcMl2MLTnv5Y0OUUWrwZpiBacePFv-TLqHE0q6cvW8KZjKIGOCM9GDVx1uz3ziXxs-PH_Dp3C1fzDYK_Z2hruP4JpgofFVfxuwPjueu8dwxXyfHTXHT7z4IXy-aDj_BnzlaII
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFyKM-KQIFBggvIqu211_YBodI2pCoNEQKpN7PeXUOlxA51QtX-Hf4Fv44Zx04KEr31wMmHeL3S5pvXzuMDeG6D2BpPxo5rPesEJtZOQo6JE6kwNFlCom7ymmwiGgzio6NkuAK_2l4YLqtsdWKtqE2p-Y58iwvNyLyEfrCVN2URw93em8l3hxmkONPa0mnMIXJgz04pfKte7-_Sf_3C93t7n3b6TsMw4GgRJFPHk0qYzE3IykWZZzQn9RIlhJQ29ESeSSUpQoopRsltbISI8ljrWCmf7DZJhxX03WuwGgkKejqw-nZvMPy4yGGQ91Lf8CQUoAVkuNucat245_mS65QogkvcxAn_tIpLV_ev7Gxt9Hq3_ufjug3rjauN23PZuAMrtrgLNy8MYLwHP7eX-XsscyRvGPtn3MRWL5tP10AeYFI_6op53Clnk5E1yFfY2Aw1x0PLLdTH1RhVYfAdCQgyzRxtP_pKZzH9Nq6Q4gPkKgA1zkflKTIrqlYV153jB9IoeNgUdyL35WCflp2TTrgPn6_klDagU5SFfQAYSSv9wAjNcWJgfWUD7Upy6jNjI21EF9wWNqluZroztcgoXU6jZqSlhLSUkZaGXXi5WDKZDzS57OXNFl1po9uqdAmtLjxb_ExaiVNNqrDlrEqZ5CBm6jO_C69aDF_4xL82fHj5hk_hBqE4fb8_OHgEaz7LT10OuAmd6cnMPobr-sf0uDp50sgiwperxvNvZBVymg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+Hybrid+Artificial+Neural+Network+Coupled+with+Rolling+Mechanism+and+Grey+Model+Algorithms+for+Streamflow+Forecasting+Over+Multiple+Time+Horizons&rft.jtitle=Water+resources+management&rft.au=Yaseen%2C+Zaher+Mundher&rft.au=Fu%2C+Minglei&rft.au=Wang%2C+Chen&rft.au=Wan+Hanna+Melini+Wan+Mohtar&rft.date=2018-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1007%2Fs11269-018-1909-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon