Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons
Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis, agricultural practices and hydro-power generation. However, the dynamicity, stochasticity and inherent complexities present in the temporal evolution...
Gespeichert in:
| Veröffentlicht in: | Water resources management Jg. 32; H. 5; S. 1883 - 1899 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.03.2018
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0920-4741, 1573-1650 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis, agricultural practices and hydro-power generation. However, the dynamicity, stochasticity and inherent complexities present in the temporal evolution of streamflow could hinder the accurate and reliable forecasting of this important hydrological parameter. In this study, the uncertainty and nonstationary characteristics of streamflow data has been treated using a set of coupled data pre-processing methods before being considered as input for an artificial neural network algorithm namely; rolling mechanism (RM) and grey models (GM). The rolling mechanism method is applied to smooth out the dataset based on the antecedent values of the model inputs before being applied to the GM algorithm. The optimization of the input datasets selection was performed using auto-correlation (ACF) and partial auto-correlation (PACF) functions. The pre-processed data was then integrated with two artificial neural network models, the back propagation (RMGM-BP) and Elman Recurrent Neural Network (RMGM-ERNN). The development, training, testing and evaluation of the proposed hybrid models were undertaken using streamflow data for two tropical hydrological basins (Johor and Kelantan Rivers). The hybrid RMGM-ERNN was found to provide better results than the hybrid RMGM-BP model. Relatively good performance of the proposed hybrid models with a data pre-processing approach provides a successful alternative to achieve better accuracy in streamflow forecasting compared to the traditional artificial neural network approach without a data pre-processing scheme. |
|---|---|
| AbstractList | Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis, agricultural practices and hydro-power generation. However, the dynamicity, stochasticity and inherent complexities present in the temporal evolution of streamflow could hinder the accurate and reliable forecasting of this important hydrological parameter. In this study, the uncertainty and nonstationary characteristics of streamflow data has been treated using a set of coupled data pre-processing methods before being considered as input for an artificial neural network algorithm namely; rolling mechanism (RM) and grey models (GM). The rolling mechanism method is applied to smooth out the dataset based on the antecedent values of the model inputs before being applied to the GM algorithm. The optimization of the input datasets selection was performed using auto-correlation (ACF) and partial auto-correlation (PACF) functions. The pre-processed data was then integrated with two artificial neural network models, the back propagation (RMGM-BP) and Elman Recurrent Neural Network (RMGM-ERNN). The development, training, testing and evaluation of the proposed hybrid models were undertaken using streamflow data for two tropical hydrological basins (Johor and Kelantan Rivers). The hybrid RMGM-ERNN was found to provide better results than the hybrid RMGM-BP model. Relatively good performance of the proposed hybrid models with a data pre-processing approach provides a successful alternative to achieve better accuracy in streamflow forecasting compared to the traditional artificial neural network approach without a data pre-processing scheme. |
| Author | Yaseen, Zaher Mundher Deo, Ravinesh C. Wang, Chen Fu, Minglei Mohtar, Wan Hanna Melini Wan El-shafie, Ahmed |
| Author_xml | – sequence: 1 givenname: Zaher Mundher surname: Yaseen fullname: Yaseen, Zaher Mundher email: yaseen@tdt.edu.vn organization: Faculty of Civil Engineering, Ton Duc Thang University – sequence: 2 givenname: Minglei surname: Fu fullname: Fu, Minglei organization: College of Science, Zhejiang University of Technology – sequence: 3 givenname: Chen surname: Wang fullname: Wang, Chen organization: College of Science, Zhejiang University of Technology – sequence: 4 givenname: Wan Hanna Melini Wan surname: Mohtar fullname: Mohtar, Wan Hanna Melini Wan organization: Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM – sequence: 5 givenname: Ravinesh C. surname: Deo fullname: Deo, Ravinesh C. organization: School of Agricultural Computational and Environmental Sciences, International Centre of Applied Climate Science (ICACS), University of Southern Queensland – sequence: 6 givenname: Ahmed surname: El-shafie fullname: El-shafie, Ahmed organization: Civil Engineering Department, Faculty of Engineering, University of Malaya |
| BookMark | eNp9kctuEzEUhi1UJNLCA7CzxIbNgC9zsZdRRC9SQyUoa8vxnElcPPZge4jC6_CidRoWqBKszub7jv5z_nN05oMHhN5S8oES0n1MlLJWVoSKikoiq-YFWtCm4xVtG3KGFkQyUtVdTV-h85QeCCmWJAv0ezlNzhqdbfA4DDjvAF8fNtH2eBmzHayx2uHPMMenkfchfserME8Oery3eYe_BOes3-I1mJ32No1Y-x5fRTjgdejB4aXbhljIMeEhRPw1R9Dj4MIeX4YIRqd81O9-QsTr2WVbVuN7O5YcRfsVfHqNXg7aJXjzZ16gb5ef7lfX1e3d1c1qeVsZXstcLtW83xApKOs2tDddQ7jUnLctNJQPm1a3HaNCsnoA0XPeDcIYoTVrG0E4AX6B3p_2TjH8mCFlNdpkwDntIcxJMVI3gnZMsIK-e4Y-hDn6kk5RKTnjomF1oboTZWJIKcKgjM1Pr85RW6coUcfy1Kk8VcpTx_JUU0z6zJyiHXU8_NdhJycV1m8h_pXpn9IjzmKvhA |
| CitedBy_id | crossref_primary_10_1007_s11269_022_03063_x crossref_primary_10_1016_j_jhydrol_2023_130320 crossref_primary_10_1088_1755_1315_1032_1_012016 crossref_primary_10_1007_s00366_019_00741_0 crossref_primary_10_1016_j_psep_2018_07_021 crossref_primary_10_7717_peerj_7183 crossref_primary_10_1155_2020_6514236 crossref_primary_10_1016_j_jhydrol_2019_124141 crossref_primary_10_1016_j_jclepro_2018_08_176 crossref_primary_10_1109_ACCESS_2025_3557910 crossref_primary_10_1007_s11600_019_00330_1 crossref_primary_10_1016_j_jclepro_2022_135522 crossref_primary_10_1061_JHYEFF_HEENG_5920 crossref_primary_10_3390_w10111654 crossref_primary_10_1007_s11269_020_02529_0 crossref_primary_10_3390_w10091124 crossref_primary_10_1016_j_asoc_2019_03_046 crossref_primary_10_1007_s40808_020_00817_7 crossref_primary_10_1016_j_neucom_2022_03_014 crossref_primary_10_3390_w12113032 crossref_primary_10_1016_j_chemolab_2024_105135 crossref_primary_10_1016_j_jhydrol_2019_03_004 crossref_primary_10_1007_s11269_023_03492_2 crossref_primary_10_1016_j_jhydrol_2019_124293 crossref_primary_10_1155_2019_2782715 crossref_primary_10_1155_2022_1587274 crossref_primary_10_3390_atmos16010106 crossref_primary_10_3390_w11010009 crossref_primary_10_1016_j_jhydrol_2025_133465 crossref_primary_10_1109_ACCESS_2020_2974406 crossref_primary_10_2166_wcc_2025_055 crossref_primary_10_2166_nh_2019_060 crossref_primary_10_1007_s40808_019_00581_3 crossref_primary_10_1080_02626667_2019_1632460 crossref_primary_10_1088_1742_6596_2271_1_012019 crossref_primary_10_1080_02626667_2024_2394639 crossref_primary_10_1016_j_dt_2019_05_006 crossref_primary_10_1109_ACCESS_2020_2965303 crossref_primary_10_1007_s00477_022_02276_1 crossref_primary_10_1155_2022_5991311 crossref_primary_10_1016_j_eswa_2024_124728 crossref_primary_10_1016_j_jhydrol_2025_134303 crossref_primary_10_1155_2020_1341047 crossref_primary_10_3390_hydrology11040048 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_1109_ACCESS_2023_3238717 crossref_primary_10_1016_j_watcyc_2024_09_001 crossref_primary_10_3390_w10060807 crossref_primary_10_1016_j_jhydrol_2021_126152 crossref_primary_10_1007_s00500_022_07077_w crossref_primary_10_1016_j_asoc_2022_109739 crossref_primary_10_1016_j_jenvman_2023_118697 crossref_primary_10_1007_s00477_021_01984_4 crossref_primary_10_1016_j_jhydrol_2019_124115 crossref_primary_10_1016_j_jhydrol_2019_124511 crossref_primary_10_1016_j_jhydrol_2021_126794 crossref_primary_10_1007_s11269_019_02273_0 crossref_primary_10_1007_s11269_020_02484_w crossref_primary_10_1016_j_advwatres_2020_103656 crossref_primary_10_1007_s12204_019_2152_9 crossref_primary_10_1109_ACCESS_2021_3092074 crossref_primary_10_1109_ACCESS_2020_2995187 crossref_primary_10_1080_19475705_2024_2361807 crossref_primary_10_1080_02626667_2021_1937631 crossref_primary_10_7717_peerj_8043 crossref_primary_10_1016_j_engappai_2025_112396 crossref_primary_10_1080_02626667_2019_1601727 crossref_primary_10_1109_ACCESS_2019_2961115 |
| Cites_doi | 10.1016/j.jhydrol.2008.01.023 10.1016/j.jhydrol.2009.03.038 10.1016/j.eswa.2014.09.062 10.1007/s00477-014-0967-3 10.1016/j.eswa.2011.04.114 10.2166/hydro.2010.040 10.1016/j.jhydrol.2014.03.057 10.1007/s40710-015-0064-8 10.5194/hess-15-1835-2011 10.1002/2015WR017049 10.1007/s11269-014-0767-z 10.1029/2010WR009945 10.1016/j.jhydrol.2010.11.030 10.1002/hyp.1313 10.1007/s11269-006-9027-1 10.1016/S1364-8152(98)00019-X 10.1016/j.jhydrol.2015.10.038 10.1177/0309133312444943 10.1016/j.cageo.2014.04.015 10.1016/j.jhydrol.2005.07.048 10.1007/s11269-006-9070-y 10.1029/2007WR006737 10.1016/j.omega.2011.10.003 10.1007/s11269-014-0824-7 10.1016/j.jhydrol.2015.10.056 10.1016/j.energy.2009.12.021 10.1080/02626667.2012.754102 10.1016/j.jhydrol.2011.10.039 10.1016/j.neucom.2005.12.122 10.1016/S0167-6911(82)80025-X 10.1007/s12205-012-1519-3 10.1016/j.jhydrol.2009.06.019 10.1007/s11269-014-0516-3 10.1007/s00521-015-1853-8 10.1016/j.eswa.2009.07.064 10.1007/s40710-015-0081-7 10.1016/S0165-1684(97)00203-X 10.1016/S1364-8152(99)00007-9 10.1007/s00521-015-1952-6 10.1007/s11269-015-1107-7 10.1007/s11269-015-1188-3 10.2478/johh-2013-0015 10.1007/s00477-015-1153-y 10.1029/2001WR000795 10.5194/hessd-7-8179-2010 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media B.V., part of Springer Nature 2018 Water Resources Management is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media B.V., part of Springer Nature 2018 – notice: Water Resources Management is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-018-1909-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Science Database (subscription) Biological Science Database Engineering Database (subscription) Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 1899 |
| ExternalDocumentID | 10_1007_s11269_018_1909_5 |
| GeographicLocations | Malaysia |
| GeographicLocations_xml | – name: Malaysia |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c349t-16a3db098127b1dc75039a3366e513fb6a67218924fe8d337f8cc8aa2658030e3 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425155400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-4741 |
| IngestDate | Sun Nov 09 11:39:13 EST 2025 Tue Nov 04 23:07:56 EST 2025 Sat Nov 29 02:11:46 EST 2025 Tue Nov 18 19:39:50 EST 2025 Fri Feb 21 02:26:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Rolling mechanism Artificial neural network Multiple time scales Streamflow Grey model Tropical environment |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-16a3db098127b1dc75039a3366e513fb6a67218924fe8d337f8cc8aa2658030e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1993238524 |
| PQPubID | 54174 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2045817282 proquest_journals_1993238524 crossref_citationtrail_10_1007_s11269_018_1909_5 crossref_primary_10_1007_s11269_018_1909_5 springer_journals_10_1007_s11269_018_1909_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-01 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2018 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Awchi (CR4) 2014; 28 Nourani, Hosseini Baghanam, Adamowski, Kisi (CR31) 2014; 514 Wei, Yang, Song (CR42) 2013; 58 Sharma, Srivastava, Fang, Kalin (CR37) 2015; 42 Wu, Chau, Li (CR44) 2009; 372 Guo, Zhou, Qin (CR18) 2011; 38 Turan, Yurdusev (CR38) 2014; 28 Bayazit (CR5) 2015; 2 Yaseen, El-shafie, Jaafar (CR46) 2015; 530 CR19 Ahmed, Sarma (CR3) 2007; 21 CR14 Pramanik, Panda, Singh (CR34) 2010; 13 Karunasinghe, Liong (CR23) 2006; 323 Samsudin, Saad, Shabri (CR36) 2011; 15 Wu, Chau, Li (CR43) 2009; 45 Maier, Dandy (CR27) 1998; 13 Parmar, Bhardwaj (CR33) 2014; 29 Rasouli, Hsieh, Cannon (CR35) 2012; 414–415 Narsimlu, Gosain, Chahar (CR30) 2015; 2 Wang, Chau, Cheng, Qiu (CR41) 2009; 374 Adamowski, Fung Chan, Prasher (CR2) 2012; 48 Yu (CR47) 2006; 70 Vignesh, Jothiprakash, Sivakumar (CR39) 2015; 531 Deng (CR13) 1982; 1 CR9 Fu, Wang, Le, Khorram (CR16) 2015; 26 Dehghani, Saghafian, Rivaz, Khodadadi (CR12) 2015; 29 Maier, Dandy (CR28) 2000; 15 CR25 CR45 Chua, Wong (CR10) 2011; 397 CR22 CR21 Furundzic (CR17) 1998; 64 Kayacan, Ulutas, Kaynak (CR24) 2010; 37 Box, Jenkins (CR6) 1970 El-Shafie, Taha, Noureldin (CR15) 2007; 21 Bruins (CR7) 1990 Makkeasorn, Chang, Zhou (CR29) 2008; 352 Kumar, Jain (CR26) 2010; 35 Chang, Chang, Chiang (CR8) 2004; 18 Zhao, Wang, Zhao, Su (CR48) 2012; 40 Abrahart, Anctil, Coulibaly (CR1) 2012; 36 Hwang, Ham, Kim (CR20) 2012; 16 Danandeh Mehr, Kahya, Yerdelen (CR11) 2014; 70 Okkan, Ali Serbes (CR32) 2013; 61 Vogel, Lall, Cai (CR40) 2015; 51 HJ Bruins (1909_CR7) 1990 HR Maier (1909_CR27) 1998; 13 K Rasouli (1909_CR35) 2012; 414–415 W Yu (1909_CR47) 2006; 70 1909_CR25 J Deng (1909_CR13) 1982; 1 S Sharma (1909_CR37) 2015; 42 R Vignesh (1909_CR39) 2015; 531 WC Wang (1909_CR41) 2009; 374 1909_CR9 DSK Karunasinghe (1909_CR23) 2006; 323 CL Wu (1909_CR43) 2009; 45 R Samsudin (1909_CR36) 2011; 15 A Makkeasorn (1909_CR29) 2008; 352 J Guo (1909_CR18) 2011; 38 KS Parmar (1909_CR33) 2014; 29 CL Wu (1909_CR44) 2009; 372 S Wei (1909_CR42) 2013; 58 V Nourani (1909_CR31) 2014; 514 ME Turan (1909_CR38) 2014; 28 N Pramanik (1909_CR34) 2010; 13 LC Chang (1909_CR8) 2004; 18 GEP Box (1909_CR6) 1970 A Danandeh Mehr (1909_CR11) 2014; 70 B Narsimlu (1909_CR30) 2015; 2 U Okkan (1909_CR32) 2013; 61 1909_CR19 TA Awchi (1909_CR4) 2014; 28 1909_CR14 RM Vogel (1909_CR40) 2015; 51 E Kayacan (1909_CR24) 2010; 37 M Dehghani (1909_CR12) 2015; 29 J Adamowski (1909_CR2) 2012; 48 JA Ahmed (1909_CR3) 2007; 21 LHC Chua (1909_CR10) 2011; 397 D Furundzic (1909_CR17) 1998; 64 Z Zhao (1909_CR48) 2012; 40 A El-Shafie (1909_CR15) 2007; 21 HR Maier (1909_CR28) 2000; 15 M Bayazit (1909_CR5) 2015; 2 SH Hwang (1909_CR20) 2012; 16 ZM Yaseen (1909_CR46) 2015; 530 1909_CR22 1909_CR21 U Kumar (1909_CR26) 2010; 35 1909_CR45 M Fu (1909_CR16) 2015; 26 RJ Abrahart (1909_CR1) 2012; 36 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 352 start-page: 336 year: 2008 end-page: 354 ident: CR29 article-title: Short-term streamflow forecasting with global climate change implications - a comparative study between genetic programming and neural network models publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.01.023 – volume: 372 start-page: 80 year: 2009 end-page: 93 ident: CR44 article-title: Methods to improve neural network performance in daily flows prediction publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.03.038 – volume: 61 start-page: 112 year: 2013 end-page: 119 ident: CR32 article-title: The combined use of wavelet transform and black box models in reservoir inflow modeling publication-title: J Hydrosci Hydraul – volume: 42 start-page: 2213 year: 2015 end-page: 2223 ident: CR37 article-title: Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.09.062 – volume: 29 start-page: 861 year: 2015 end-page: 874 ident: CR12 article-title: Monthly stream flow forecasting via dynamic spatio-temporal models publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-014-0967-3 – volume: 38 start-page: 13073 year: 2011 end-page: 13081 ident: CR18 article-title: Monthly streamflow forecasting based on improved support vector machine model publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.114 – ident: CR14 – volume: 13 start-page: 49 year: 2010 ident: CR34 article-title: Daily river flow forecasting using wavelet ANN hybrid models publication-title: J Hydroinf doi: 10.2166/hydro.2010.040 – volume: 514 start-page: 358 year: 2014 end-page: 377 ident: CR31 article-title: Applications of hybrid wavelet–artificial Intelligence models in hydrology: a review publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.03.057 – volume: 2 start-page: 79 year: 2015 end-page: 95 ident: CR30 article-title: SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting publication-title: Environ Process doi: 10.1007/s40710-015-0064-8 – volume: 15 start-page: 1835 year: 2011 end-page: 1852 ident: CR36 article-title: River flow time series using least squares support vector machines publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-15-1835-2011 – volume: 51 start-page: 4409 year: 2015 end-page: 4430 ident: CR40 article-title: Hydrology: the interdisciplinary science of water publication-title: Water Resour Res doi: 10.1002/2015WR017049 – volume: 28 start-page: 4685 year: 2014 end-page: 4697 ident: CR38 article-title: Predicting monthly river flows by genetic fuzzy systems publication-title: Water Resour Manag doi: 10.1007/s11269-014-0767-z – volume: 48 start-page: 1 year: 2012 end-page: 14 ident: CR2 article-title: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada publication-title: Water Resour Res doi: 10.1029/2010WR009945 – ident: CR25 – volume: 397 start-page: 191 year: 2011 end-page: 201 ident: CR10 article-title: Runoff forecasting for an asphalt plane by artificial neural networks and comparisons with kinematic wave and autoregressive moving average models publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.11.030 – volume: 18 start-page: 81 year: 2004 end-page: 92 ident: CR8 article-title: A two-step-ahead recurrent neural network for stream-flow forecasting publication-title: Hydrol Process doi: 10.1002/hyp.1313 – ident: CR21 – volume: 21 start-page: 533 year: 2007 end-page: 556 ident: CR15 article-title: A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam publication-title: Water Resour Manag doi: 10.1007/s11269-006-9027-1 – ident: CR19 – volume: 13 start-page: 179 year: 1998 end-page: 191 ident: CR27 article-title: Understanding the behaviour and optimising the performance of back-propagation neural networks: an empirical study publication-title: Environ Model Softw doi: 10.1016/S1364-8152(98)00019-X – volume: 530 start-page: 829 year: 2015 end-page: 844 ident: CR46 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.10.038 – volume: 36 start-page: 480 year: 2012 end-page: 513 ident: CR1 article-title: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting publication-title: Prog Phys Geogr doi: 10.1177/0309133312444943 – volume: 70 start-page: 63 year: 2014 end-page: 72 ident: CR11 article-title: Linear genetic programming application for successive-station monthly streamflow prediction publication-title: Comput Geosci doi: 10.1016/j.cageo.2014.04.015 – volume: 323 start-page: 92 year: 2006 end-page: 105 ident: CR23 article-title: Chaotic time series prediction with a global model: artificial neural network publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.07.048 – volume: 21 start-page: 1015 year: 2007 end-page: 1029 ident: CR3 article-title: Artificial neural network model for synthetic streamflow generation publication-title: Water Resour Manag doi: 10.1007/s11269-006-9070-y – volume: 45 start-page: 1 year: 2009 end-page: 23 ident: CR43 article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques publication-title: Water Resour Res doi: 10.1029/2007WR006737 – volume: 40 start-page: 525 year: 2012 end-page: 532 ident: CR48 article-title: Using a grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China publication-title: Omega doi: 10.1016/j.omega.2011.10.003 – volume: 29 start-page: 17 year: 2014 end-page: 33 ident: CR33 article-title: River water prediction modeling using neural networks, fuzzy and wavelet coupled model publication-title: Water Resour Manag doi: 10.1007/s11269-014-0824-7 – volume: 531 start-page: 706 year: 2015 end-page: 715 ident: CR39 article-title: Streamflow variability and classification using false nearest neighbor method publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.10.056 – volume: 35 start-page: 1709 year: 2010 end-page: 1716 ident: CR26 article-title: Time series models (Grey-Markov, grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India publication-title: Energy doi: 10.1016/j.energy.2009.12.021 – volume: 58 start-page: 374 year: 2013 end-page: 389 ident: CR42 article-title: A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows publication-title: Hydrol Sci J doi: 10.1080/02626667.2012.754102 – volume: 414–415 start-page: 284 year: 2012 end-page: 293 ident: CR35 article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.10.039 – ident: CR9 – volume: 70 start-page: 430 year: 2006 end-page: 444 ident: CR47 article-title: Multiple recurrent neural networks for stable adaptive control publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.122 – volume: 1 start-page: 288 year: 1982 end-page: 294 ident: CR13 article-title: Control problems of grey systems publication-title: Syst Control Lett doi: 10.1016/S0167-6911(82)80025-X – year: 1970 ident: CR6 publication-title: Time series analysis, forecasting and control, 1st edition – volume: 16 start-page: 870 year: 2012 end-page: 882 ident: CR20 article-title: Forecasting performance of LS-SVM for nonlinear hydrological time series publication-title: KSCE J Civ Eng doi: 10.1007/s12205-012-1519-3 – volume: 374 start-page: 294 year: 2009 end-page: 306 ident: CR41 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.06.019 – volume: 28 start-page: 1 year: 2014 end-page: 14 ident: CR4 article-title: River discharges forecasting in Northern Iraq using different ANN techniques publication-title: Water Resour Manag doi: 10.1007/s11269-014-0516-3 – volume: 26 start-page: 1789 year: 2015 end-page: 1797 ident: CR16 article-title: Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model publication-title: Neural Comput Applic doi: 10.1007/s00521-015-1853-8 – volume: 37 start-page: 1784 year: 2010 end-page: 1789 ident: CR24 article-title: Grey system theory-based models in time series prediction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.07.064 – year: 1990 ident: CR7 publication-title: Water harvesting for plant production – volume: 2 start-page: 527 year: 2015 end-page: 542 ident: CR5 article-title: Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review publication-title: Environ Process doi: 10.1007/s40710-015-0081-7 – volume: 64 start-page: 383 year: 1998 end-page: 396 ident: CR17 article-title: Application example of neural networks for time series analysis: rainfall runoff modeling publication-title: Signal Process doi: 10.1016/S0165-1684(97)00203-X – volume: 15 start-page: 101 year: 2000 end-page: 124 ident: CR28 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 37 start-page: 1784 year: 2010 ident: 1909_CR24 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.07.064 – ident: 1909_CR45 doi: 10.1007/s00521-015-1952-6 – volume: 13 start-page: 179 year: 1998 ident: 1909_CR27 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(98)00019-X – volume: 352 start-page: 336 year: 2008 ident: 1909_CR29 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.01.023 – volume: 15 start-page: 101 year: 2000 ident: 1909_CR28 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 42 start-page: 2213 year: 2015 ident: 1909_CR37 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.09.062 – volume: 530 start-page: 829 year: 2015 ident: 1909_CR46 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.10.038 – ident: 1909_CR25 doi: 10.1007/s11269-015-1107-7 – volume: 40 start-page: 525 year: 2012 ident: 1909_CR48 publication-title: Omega doi: 10.1016/j.omega.2011.10.003 – volume: 36 start-page: 480 year: 2012 ident: 1909_CR1 publication-title: Prog Phys Geogr doi: 10.1177/0309133312444943 – volume: 323 start-page: 92 year: 2006 ident: 1909_CR23 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.07.048 – volume: 38 start-page: 13073 year: 2011 ident: 1909_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.114 – volume: 21 start-page: 1015 year: 2007 ident: 1909_CR3 publication-title: Water Resour Manag doi: 10.1007/s11269-006-9070-y – volume: 26 start-page: 1789 year: 2015 ident: 1909_CR16 publication-title: Neural Comput Applic doi: 10.1007/s00521-015-1853-8 – volume: 64 start-page: 383 year: 1998 ident: 1909_CR17 publication-title: Signal Process doi: 10.1016/S0165-1684(97)00203-X – volume: 16 start-page: 870 year: 2012 ident: 1909_CR20 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-012-1519-3 – volume: 28 start-page: 1 year: 2014 ident: 1909_CR4 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0516-3 – ident: 1909_CR9 – ident: 1909_CR22 doi: 10.1007/s11269-015-1188-3 – volume: 29 start-page: 861 year: 2015 ident: 1909_CR12 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-014-0967-3 – volume: 61 start-page: 112 year: 2013 ident: 1909_CR32 publication-title: J Hydrosci Hydraul doi: 10.2478/johh-2013-0015 – volume: 2 start-page: 79 year: 2015 ident: 1909_CR30 publication-title: Environ Process doi: 10.1007/s40710-015-0064-8 – volume: 18 start-page: 81 year: 2004 ident: 1909_CR8 publication-title: Hydrol Process doi: 10.1002/hyp.1313 – volume: 15 start-page: 1835 year: 2011 ident: 1909_CR36 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-15-1835-2011 – volume: 70 start-page: 430 year: 2006 ident: 1909_CR47 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.122 – volume: 531 start-page: 706 year: 2015 ident: 1909_CR39 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.10.056 – volume: 374 start-page: 294 year: 2009 ident: 1909_CR41 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.06.019 – volume: 1 start-page: 288 year: 1982 ident: 1909_CR13 publication-title: Syst Control Lett doi: 10.1016/S0167-6911(82)80025-X – volume: 35 start-page: 1709 year: 2010 ident: 1909_CR26 publication-title: Energy doi: 10.1016/j.energy.2009.12.021 – volume: 414–415 start-page: 284 year: 2012 ident: 1909_CR35 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.10.039 – volume: 21 start-page: 533 year: 2007 ident: 1909_CR15 publication-title: Water Resour Manag doi: 10.1007/s11269-006-9027-1 – volume: 45 start-page: 1 year: 2009 ident: 1909_CR43 publication-title: Water Resour Res doi: 10.1029/2007WR006737 – volume: 70 start-page: 63 year: 2014 ident: 1909_CR11 publication-title: Comput Geosci doi: 10.1016/j.cageo.2014.04.015 – ident: 1909_CR14 doi: 10.1007/s00477-015-1153-y – volume-title: Water harvesting for plant production year: 1990 ident: 1909_CR7 – ident: 1909_CR19 doi: 10.1029/2001WR000795 – volume: 28 start-page: 4685 year: 2014 ident: 1909_CR38 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0767-z – volume: 51 start-page: 4409 year: 2015 ident: 1909_CR40 publication-title: Water Resour Res doi: 10.1002/2015WR017049 – volume: 29 start-page: 17 year: 2014 ident: 1909_CR33 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0824-7 – volume: 372 start-page: 80 year: 2009 ident: 1909_CR44 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.03.038 – volume: 48 start-page: 1 year: 2012 ident: 1909_CR2 publication-title: Water Resour Res doi: 10.1029/2010WR009945 – volume: 397 start-page: 191 year: 2011 ident: 1909_CR10 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.11.030 – volume: 2 start-page: 527 year: 2015 ident: 1909_CR5 publication-title: Environ Process doi: 10.1007/s40710-015-0081-7 – volume-title: Time series analysis, forecasting and control, 1st edition year: 1970 ident: 1909_CR6 – volume: 514 start-page: 358 year: 2014 ident: 1909_CR31 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.03.057 – volume: 13 start-page: 49 year: 2010 ident: 1909_CR34 publication-title: J Hydroinf doi: 10.2166/hydro.2010.040 – ident: 1909_CR21 doi: 10.5194/hessd-7-8179-2010 – volume: 58 start-page: 374 year: 2013 ident: 1909_CR42 publication-title: Hydrol Sci J doi: 10.1080/02626667.2012.754102 |
| SSID | ssj0010090 |
| Score | 2.4634979 |
| Snippet | Streamflow forecasting is paramount process in water and flood management, determination of river water flow potentials, environmental flow analysis,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1883 |
| SubjectTerms | Agricultural practices Algorithms Artificial neural networks Atmospheric Sciences Autocorrelation Back propagation networks Basins Civil Engineering Correlation Data data collection Data processing Earth and Environmental Science Earth Sciences Electric power generation Environment Evaluation Flood control Flood forecasting Flood management Forecasting Geotechnical Engineering & Applied Earth Sciences Hydroelectric power Hydrogeology Hydrologic data Hydrologic models Hydrology Hydrology/Water Resources Mathematical models Neural networks Parameter uncertainty Recurrent neural networks River water Rivers Rolling (ship motion) Stochasticity Stream discharge Stream flow Streamflow forecasting Training Tropical climate uncertainty Water flow water power |
| SummonAdditionalLinks | – databaseName: Springer Journals New Starts & Take-Overs Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VlgM9QHlUXVqqQeIEipTEiWMfq6plL31IPNRb5NgOqrSbVJtdEPwd_igz3mS3IEBqTznEj8iZsb_xzHwD8MZnyrtEqij2iY8yp2ykCZhEhclzV2lSdVeHYhPF-bm6utKXfR53N0S7Dy7JsFOvk92SVHJsD1k9OtZR_gC2ciabYRP9w-eV64BAQ7hY0WQXZXReDq7Mvw3x-2G0Rph_OEXDWXP65F5fuQOPe2iJR0tZeAobvnkG27cIB5_Dz6O1vxrbGgn94fg7J22Fbks2CWTCjvAIEeJ43C5uJt4hX9liT-KNZ55Thq-7KZrG4XsSCOSyajT95Es7o5bTDgkPI3u9zbSetN-Qq4Ba03GcNV6QBuFZH8yInIeCY-r2g3TgBXw6Pfl4PI76Mg2RFZmeR4k0wlWxJqhQVImz7BnVRggpfZ6IupJGkpmpyNCrvXJCFLWyVhmTEvihLcaLXdhs2sbvARbSyzRzwrJdlPnU-MzGkkBs5XxhnRhBPPyv0vYc5lxKY1Ku2Zd5_Uta_5LXv8xH8HbV5WZJ4PG_xgeDEJS9LnclhzgSsMnTbASvV69JC9m1YhrfLrqSSf0Vl_pKR_BuEIxbQ_xrwpd3ar0Pj1KWrBACdwCb89nCv4KH9uv8upsdBjX4BRYVA5Y priority: 102 providerName: Springer Nature |
| Title | Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons |
| URI | https://link.springer.com/article/10.1007/s11269-018-1909-5 https://www.proquest.com/docview/1993238524 https://www.proquest.com/docview/2045817282 |
| Volume | 32 |
| WOSCitedRecordID | wos000425155400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMKy2qQOIEikjhx7BNaql16aal2eSynyLEdWKlNyqYFwd_hjzLjOu2CxF64OIoSx5HG4_nGM56PsWcuk84mQkaxS1yUWWkihcAkKnSe20qhqtvak00Uk4k8PVXTsOHWhbTKfk30C7VtDe2Rv6REMzQveZq9WnyNiDWKoquBQuMq20VDnRODQfHx0yaKgPjB77EodJEyNJ19VNMfnUtSQZlC6EOpWEX5n3ZpCzb_io96s3N0639_-Da7GQAnHKxnyB12xTV32Y0LZQjvsV8H2yg2tDUgJoTRDzrK5buta0wAlfHwF583DsN2tZg5C7SRC6G0N4wdHSQ-6-agGwtvcJoAka3h8LPP-G_LL_MOECUDxcL1vJ6134G4QY3uKPsa3qJewTikOAKdToERdvuJmnGfvT86fDccRYG8ITI8U8soEZrbKlYIIIoqsYbipUpzLoTLE15XQgt0PiW6f7WTlvOilsZIrVOERLjwOP6A7TRt4x4yKIQTaWa5IW8pc6l2mYkFQtvKusJYPmBxL7rShMrmRLAxK7c1mUnaJUq7JGmX-YA933RZrMt6XPbyXi_hMmh4V27FO2BPN49RNyngohvXrrqSSv1LIgBLB-xFP48ufOJfAz66fMDH7HpKE9dnwu2xneX5yj1h18y35Vl3vu9VYJ_tvj6cTI_xbhwPqU2n1Bbr9gTb45MPvwGRTRS- |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceCMCBQYJLiALe9de2weEqkJJ1Sb0UKTezGZ3DZUSO9QJVfk73PmNzGzspCDRWw-cfIjXK22-ee08PoDnLs6cjVQWhC5yQWwzE-TkmASpThI7yknUbenJJtLhMDs8zPfX4FfXC8NllZ1O9Ira1obvyF9zoRmZl0TEb6ffAmaN4uxqR6GxgMWuOz2hkK15s_OO_t8XQmy_P9jqBy2rQGBknM-CSGlpR2FOli0dRdZwIi_XUirlkkiWI6UVRUUZxSWly6yUaZkZk2ktyFaTRDhJ370El8mNEKEvFdxfZi3IX_F3OjmFZDGZ6i6L6lv1IqG4MolitjzMg-RPO7hybv_Kx3ozt33zfzugW3CjdahxcyEBt2HNVXfg-pkxi3fh5-YqS491ieTzYv-UW9X8ssUMDeQxJf7h6-Jxq55Px84iX1RjO7ocB44bpY-aCerK4gcSA2QyOdp-_IXOYvZ10iBFAci5fj0px_UJMvep0Q1Xl-NH0hs4aEs4kbtvsE_LfpDk34NPF3JK92G9qiv3ADBVTonYSsPRYOyEdrEJFbnuI-tSY2UPwg4qhWkntzOByLhYzZxmdBWEroLRVSQ9eLlcMl2MLTnv5Y0OUUWrwZpiBacePFv-TLqHE0q6cvW8KZjKIGOCM9GDVx1uz3ziXxs-PH_Dp3C1fzDYK_Z2hruP4JpgofFVfxuwPjueu8dwxXyfHTXHT7z4IXy-aDj_BnzlaII |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFyKM-KQIFBggvIqu211_YBodI2pCoNEQKpN7PeXUOlxA51QtX-Hf4Fv44Zx04KEr31wMmHeL3S5pvXzuMDeG6D2BpPxo5rPesEJtZOQo6JE6kwNFlCom7ymmwiGgzio6NkuAK_2l4YLqtsdWKtqE2p-Y58iwvNyLyEfrCVN2URw93em8l3hxmkONPa0mnMIXJgz04pfKte7-_Sf_3C93t7n3b6TsMw4GgRJFPHk0qYzE3IykWZZzQn9RIlhJQ29ESeSSUpQoopRsltbISI8ljrWCmf7DZJhxX03WuwGgkKejqw-nZvMPy4yGGQ91Lf8CQUoAVkuNucat245_mS65QogkvcxAn_tIpLV_ev7Gxt9Hq3_ufjug3rjauN23PZuAMrtrgLNy8MYLwHP7eX-XsscyRvGPtn3MRWL5tP10AeYFI_6op53Clnk5E1yFfY2Aw1x0PLLdTH1RhVYfAdCQgyzRxtP_pKZzH9Nq6Q4gPkKgA1zkflKTIrqlYV153jB9IoeNgUdyL35WCflp2TTrgPn6_klDagU5SFfQAYSSv9wAjNcWJgfWUD7Upy6jNjI21EF9wWNqluZroztcgoXU6jZqSlhLSUkZaGXXi5WDKZDzS57OXNFl1po9uqdAmtLjxb_ExaiVNNqrDlrEqZ5CBm6jO_C69aDF_4xL82fHj5hk_hBqE4fb8_OHgEaz7LT10OuAmd6cnMPobr-sf0uDp50sgiwperxvNvZBVymg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+Hybrid+Artificial+Neural+Network+Coupled+with+Rolling+Mechanism+and+Grey+Model+Algorithms+for+Streamflow+Forecasting+Over+Multiple+Time+Horizons&rft.jtitle=Water+resources+management&rft.au=Yaseen%2C+Zaher+Mundher&rft.au=Fu%2C+Minglei&rft.au=Wang%2C+Chen&rft.au=Wan+Hanna+Melini+Wan+Mohtar&rft.date=2018-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1007%2Fs11269-018-1909-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |