Diurnal cycle of precipitation over the tropics and central United States: intercomparison of general circulation models

Diurnal precipitation is a fundamental mode of variability that climate models have difficulty in accurately simulating. Here the diurnal cycle of precipitation (DCP) in participating climate models from the Global Energy and Water Exchanges' DCP project is evaluated over the tropics and centra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society Jg. 150; H. 759; S. 911 - 936
Hauptverfasser: Tao, Cheng, Xie, Shaocheng, Ma, Hsi‐Yen, Bechtold, Peter, Cui, Zeyu, Vaillancourt, Paul A., Van Weverberg, Kwinten, Wang, Yi‐Chi, Wong, May, Yang, Jing, Zhang, Guang J., Choi, In‐Jin, Tang, Shuaiqi, Wei, Jiangfeng, Wu, Wen‐Ying, Zhang, Meng, Neelin, J. David, Zeng, Xubin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.01.2024
Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Schlagworte:
ISSN:0035-9009, 1477-870X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Diurnal precipitation is a fundamental mode of variability that climate models have difficulty in accurately simulating. Here the diurnal cycle of precipitation (DCP) in participating climate models from the Global Energy and Water Exchanges' DCP project is evaluated over the tropics and central United States. Common model biases such as excessive precipitation over the tropics, too frequent light‐to‐moderate rain, and the failure to capture propagating convection in the central United States still exist. Over the central United States, the issues of too weak rainfall intensity in climate runs is well improved in their hindcast runs with initial conditions from numerical weather prediction analyses. But the improvement is minimal over the central Amazon. Incorporating the role of the large‐scale environment in convective triggering processes helps resolve the phase‐locking issue in many models where precipitation often incorrectly peaks near noon due to maximum insolation over land. Allowing air parcels to be lifted above the boundary layer improves the simulation of nocturnal precipitation which is often associated with the propagation of mesoscale systems. Including convective memory in cumulus parameterizations acts to suppress light‐to‐moderate rain and promote intense rainfall; however, it also weakens the diurnal variability. Simply increasing model resolution (with cumulus parameterizations still used) cannot fully resolve the biases of low‐resolution climate models in DCP. The hierarchy modeling framework from this study is useful for identifying the missing physics in models and testing new development of model convective processes over different convective regimes. Key findings: (1) The model bias of too weak rainfall intensity of diurnal cycle of precipitation in climate simulations is improved in weather hindcasts over the central United States (2) Models with a revised convection trigger that allows air parcels to be lifted above the boundary layer show much better simulation of nocturnal rainfall which is often associated with the propagation of mesoscale systems. (3) Including convective memory in cumulus parameterizations helps to decrease the model bias of too frequent light‐to‐moderate rain but it also weakens the diurnal variability. The composite mean diurnal cycle of precipitation (mm·day−1) for (a) climate runs (June–August, 2011–2018) and (b) hindcast runs (June 1–July 15, 2015). Results from the five‐day hindcasts are averaged over Day 2 to Day 5 hindcast lead time. Domain‐mean precipitation from merged radar gauge products that is available from the ARM continuous forcing data set and the VARANAL for PECAN are used in (a) and (b) respectively.
AbstractList Diurnal precipitation is a fundamental mode of variability that climate models have difficulty in accurately simulating. Here the diurnal cycle of precipitation (DCP) in participating climate models from the Global Energy and Water Exchanges' DCP project is evaluated over the tropics and central United States. Common model biases such as excessive precipitation over the tropics, too frequent light‐to‐moderate rain, and the failure to capture propagating convection in the central United States still exist. Over the central United States, the issues of too weak rainfall intensity in climate runs is well improved in their hindcast runs with initial conditions from numerical weather prediction analyses. But the improvement is minimal over the central Amazon. Incorporating the role of the large‐scale environment in convective triggering processes helps resolve the phase‐locking issue in many models where precipitation often incorrectly peaks near noon due to maximum insolation over land. Allowing air parcels to be lifted above the boundary layer improves the simulation of nocturnal precipitation which is often associated with the propagation of mesoscale systems. Including convective memory in cumulus parameterizations acts to suppress light‐to‐moderate rain and promote intense rainfall; however, it also weakens the diurnal variability. Simply increasing model resolution (with cumulus parameterizations still used) cannot fully resolve the biases of low‐resolution climate models in DCP. The hierarchy modeling framework from this study is useful for identifying the missing physics in models and testing new development of model convective processes over different convective regimes. Key findings: (1) The model bias of too weak rainfall intensity of diurnal cycle of precipitation in climate simulations is improved in weather hindcasts over the central United States (2) Models with a revised convection trigger that allows air parcels to be lifted above the boundary layer show much better simulation of nocturnal rainfall which is often associated with the propagation of mesoscale systems. (3) Including convective memory in cumulus parameterizations helps to decrease the model bias of too frequent light‐to‐moderate rain but it also weakens the diurnal variability. The composite mean diurnal cycle of precipitation (mm·day−1) for (a) climate runs (June–August, 2011–2018) and (b) hindcast runs (June 1–July 15, 2015). Results from the five‐day hindcasts are averaged over Day 2 to Day 5 hindcast lead time. Domain‐mean precipitation from merged radar gauge products that is available from the ARM continuous forcing data set and the VARANAL for PECAN are used in (a) and (b) respectively.
Abstract Diurnal precipitation is a fundamental mode of variability that climate models have difficulty in accurately simulating. Here the diurnal cycle of precipitation (DCP) in participating climate models from the Global Energy and Water Exchanges' DCP project is evaluated over the tropics and central United States. Common model biases such as excessive precipitation over the tropics, too frequent light‐to‐moderate rain, and the failure to capture propagating convection in the central United States still exist. Over the central United States, the issues of too weak rainfall intensity in climate runs is well improved in their hindcast runs with initial conditions from numerical weather prediction analyses. But the improvement is minimal over the central Amazon. Incorporating the role of the large‐scale environment in convective triggering processes helps resolve the phase‐locking issue in many models where precipitation often incorrectly peaks near noon due to maximum insolation over land. Allowing air parcels to be lifted above the boundary layer improves the simulation of nocturnal precipitation which is often associated with the propagation of mesoscale systems. Including convective memory in cumulus parameterizations acts to suppress light‐to‐moderate rain and promote intense rainfall; however, it also weakens the diurnal variability. Simply increasing model resolution (with cumulus parameterizations still used) cannot fully resolve the biases of low‐resolution climate models in DCP. The hierarchy modeling framework from this study is useful for identifying the missing physics in models and testing new development of model convective processes over different convective regimes.
Diurnal precipitation is a fundamental mode of variability that climate models have difficulty in accurately simulating. Here the diurnal cycle of precipitation (DCP) in participating climate models from the Global Energy and Water Exchanges' DCP project is evaluated over the tropics and central United States. Common model biases such as excessive precipitation over the tropics, too frequent light‐to‐moderate rain, and the failure to capture propagating convection in the central United States still exist. Over the central United States, the issues of too weak rainfall intensity in climate runs is well improved in their hindcast runs with initial conditions from numerical weather prediction analyses. But the improvement is minimal over the central Amazon. Incorporating the role of the large‐scale environment in convective triggering processes helps resolve the phase‐locking issue in many models where precipitation often incorrectly peaks near noon due to maximum insolation over land. Allowing air parcels to be lifted above the boundary layer improves the simulation of nocturnal precipitation which is often associated with the propagation of mesoscale systems. Including convective memory in cumulus parameterizations acts to suppress light‐to‐moderate rain and promote intense rainfall; however, it also weakens the diurnal variability. Simply increasing model resolution (with cumulus parameterizations still used) cannot fully resolve the biases of low‐resolution climate models in DCP. The hierarchy modeling framework from this study is useful for identifying the missing physics in models and testing new development of model convective processes over different convective regimes.
Author Zhang, Guang J.
Van Weverberg, Kwinten
Tang, Shuaiqi
Bechtold, Peter
Ma, Hsi‐Yen
Choi, In‐Jin
Xie, Shaocheng
Wang, Yi‐Chi
Zeng, Xubin
Wong, May
Cui, Zeyu
Vaillancourt, Paul A.
Tao, Cheng
Wu, Wen‐Ying
Yang, Jing
Neelin, J. David
Zhang, Meng
Wei, Jiangfeng
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0001-8500-5019
  surname: Tao
  fullname: Tao, Cheng
  organization: Lawrence Livermore National Laboratory
– sequence: 2
  givenname: Shaocheng
  orcidid: 0000-0001-8931-5145
  surname: Xie
  fullname: Xie, Shaocheng
  email: xie2@llnl.gov
  organization: Lawrence Livermore National Laboratory
– sequence: 3
  givenname: Hsi‐Yen
  surname: Ma
  fullname: Ma, Hsi‐Yen
  organization: Lawrence Livermore National Laboratory
– sequence: 4
  givenname: Peter
  orcidid: 0000-0002-1967-3382
  surname: Bechtold
  fullname: Bechtold, Peter
  organization: European Centre for Medium‐Range Weather Forecasts
– sequence: 5
  givenname: Zeyu
  surname: Cui
  fullname: Cui, Zeyu
  organization: Tsinghua University
– sequence: 6
  givenname: Paul A.
  surname: Vaillancourt
  fullname: Vaillancourt, Paul A.
  organization: Environment and Climate Change Canada
– sequence: 7
  givenname: Kwinten
  surname: Van Weverberg
  fullname: Van Weverberg, Kwinten
  organization: Met Office
– sequence: 8
  givenname: Yi‐Chi
  surname: Wang
  fullname: Wang, Yi‐Chi
  organization: Academia Sinica
– sequence: 9
  givenname: May
  surname: Wong
  fullname: Wong, May
  organization: National Center for Atmospheric Research
– sequence: 10
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  organization: Environment and Climate Change Canada
– sequence: 11
  givenname: Guang J.
  surname: Zhang
  fullname: Zhang, Guang J.
  organization: Scripps Institution of Oceanography
– sequence: 12
  givenname: In‐Jin
  surname: Choi
  fullname: Choi, In‐Jin
  organization: Korea Institute of Atmospheric Prediction Systems
– sequence: 13
  givenname: Shuaiqi
  orcidid: 0000-0002-8946-9205
  surname: Tang
  fullname: Tang, Shuaiqi
  organization: Pacific Northwest National Laboratory
– sequence: 14
  givenname: Jiangfeng
  surname: Wei
  fullname: Wei, Jiangfeng
  organization: Nanjing University of Information Science and Technology
– sequence: 15
  givenname: Wen‐Ying
  surname: Wu
  fullname: Wu, Wen‐Ying
  organization: Lawrence Livermore National Laboratory
– sequence: 16
  givenname: Meng
  surname: Zhang
  fullname: Zhang, Meng
  organization: Lawrence Livermore National Laboratory
– sequence: 17
  givenname: J. David
  surname: Neelin
  fullname: Neelin, J. David
  organization: University of California, Los Angeles
– sequence: 18
  givenname: Xubin
  surname: Zeng
  fullname: Zeng, Xubin
  organization: University of Arizona
BackLink https://www.osti.gov/biblio/2280463$$D View this record in Osti.gov
BookMark eNp10EFrFTEQB_BQKvhai18h2IMH2ZpNspvEm1RblYKUWvAWtrMTm8e-ZF-Sp75v391uT0VPA8Nv_gz_I3IYYkBCXtfsrGaMv9-uz2TLzQFZ1VKpSiv285CsGBNNZRgzL8lRzmvGWKO4WpG_n_wuhW6gsIcBaXR0TAh-9KUrPgYaf2Oi5R5pSXH0kGkXegoYSppuboMv2NObyWL-QH0omCBuxi75PN86-gsDzhJ8gt2wRG5ij0N-RV64bsh48jSPye3F5x_nX6qr75dfzz9eVSCkMZVGpZx0CgX2zplGSY7C9Fq5O1kjSNliy7SY9q1UrMYWasUEZ51uWq1bLo7JmyU35uJthuljuIcYAkKxnGsmWzGh0wWNKW53mItdx8dasuVGKM1r08xRbxcFKeac0Nkx-U2X9rZmdu7ebtd27n6S1TMJT4VOvfnhH_7d4v_4Aff_i7XX3x71A9WUlfU
CitedBy_id crossref_primary_10_1029_2024JD043020
crossref_primary_10_1002_qj_4781
crossref_primary_10_1029_2024MS004630
crossref_primary_10_5194_acp_24_7041_2024
crossref_primary_10_1029_2023GL108090
crossref_primary_10_1029_2024JD040828
crossref_primary_10_1029_2024MS004315
crossref_primary_10_1029_2024JD043102
crossref_primary_10_1360_SSTe_2024_0241
crossref_primary_10_1029_2024GL109945
crossref_primary_10_1029_2024MS004569
Cites_doi 10.1029/2003GL018554
10.1007/s10546‐005‐9030‐8
10.1175/JCLI-D-20-0639.1
10.1175/MWR‐D‐20‐0020.1
10.1029/2022MS003418
10.1002/2014JD022011
10.1175/1520‐0493(2001)129<1148:TNROEI>2.0.CO;2
10.1175/JCLI‐D‐20‐0699.1
10.1029/2006gl027567
10.1175/1520‐0493(1989)117<1779:ACMFSF>2.0.CO;2
10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
10.1029/2019MS001916
10.1029/2020JD033766
10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
10.1175/jas‐d‐13‐0163.1
10.5194/gmd‐12‐1909‐2019
10.1175/JCLI3884.1
10.1175/JCLI-D-13-00474.1
10.1029/2004JD005617
10.1007/s40641‐019‐00131‐0
10.1029/2018jd029689
10.1175/BAMS‐85‐12‐1903
10.1175/1520‐0493(2000)128<3187:ANBLMS>2.0.CO;2
10.1175/2008JCLI2244.1
10.1175/JCLI‐D‐16‐0597.1
10.1007/s00382-007-0260-y
10.3390/rs12040720
10.1002/2015MS000490
10.1029/2021GL096759
10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2
10.1175/1520‐0469(1980)037<1722:NPOCDM>2.0.CO;2
10.5194/gmd‐13‐3887‐2020
10.1175/MWR‐D‐19‐0164.1
10.1029/2006GL027022
10.1029/2019MS001629
10.5194/gmd‐14‐177‐2021
10.1080/07055900.1995.9649539
10.1175/JCLI‐D‐12‐00429.1
10.1029/2021MS002586
10.1175/1525‐7541(2003)004<1147:TVGPCP>2.0.CO;2
10.1175/1520-0442-16.10.1456
10.1175/BAMS‐84‐9‐1205
10.1175/MWR-D-14-00354.1
10.1007/BF01025402
10.1029/2019MS001702
10.5194/gmd‐14‐73‐2021
10.1186/s40645-019-0304-z
10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2
10.1029/2010JD014532
10.1029/2003JD004045
10.1007/s00382-022-06546-0
10.5194/acp‐16‐4785‐2016
10.1088/1748-9326/abd351
10.5194/acp‐16‐14249‐2016
10.1002/2017jd027194
10.1002/qj.333
10.2151/jmsj.87.895
10.1002/qj.49712555707
10.1029/2000JD900170
10.1175/2007JCLI2051.1
10.5194/gmd-9-1937-2016
10.1029/2008GL036779
10.1175/WAF‐D‐21‐0179.1
10.1029/2018MS001350
10.1002/qj.332
10.1002/2017JD027200
10.1029/2019JD031651
10.25923/n9wm‐be49
10.5194/acp‐17‐14519‐2017
10.1002/2015JD023337
10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2
10.1175/JCLI‐D‐21‐0617.1
10.1175/BAMS‐D‐15‐00257.1
10.1007/s10546‐008‐9275‐0
10.1175/MWR‐D‐11‐00215.1
10.1175/JAS-D-13-0233.1
10.1002/qj.49712757309
10.1029/2019MS001897
10.1175/JCLI-D-12-00134.1
10.1175/1520‐0442(2002)015<1609:aiisas>2.0.co;2
10.1002/qj.3803
10.1175/2008MWR2387.1
10.1002/qj.289
10.1175/JCLI-D-12-00235.1
10.1175/JCLI-D-15-0664.1
10.5194/gmd‐14‐1575‐2021
10.1029/JD095iD10p17001
10.1029/2020JD033859
10.1002/qj.4222
10.1029/2019MS001781
10.1175/1520‐0493(1990)118<1483:AMFCSW>2.0.CO;2
ContentType Journal Article
Copyright 2023 Royal Meteorological Society
2024 Royal Meteorological Society
Copyright_xml – notice: 2023 Royal Meteorological Society
– notice: 2024 Royal Meteorological Society
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
OTOTI
DOI 10.1002/qj.4629
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
OSTI.GOV
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Physics
EISSN 1477-870X
EndPage 936
ExternalDocumentID 2280463
10_1002_qj_4629
QJ4629
Genre researchArticle
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: LLNL Laboratory Directed Research and Development project
  funderid: 22‐ERD‐013
– fundername: Weather and Climate Science for Service Partnership (WCSSP)
– fundername: National Science Foundation Grants
– fundername: U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research
  funderid: DE‐AC52‐07NA27344
– fundername: National Science and Technology Council, Taiwan
  funderid: MOST111‐2111‐M‐001‐013
– fundername: U.S. Department of Energy
  funderid: DE‐AC05‐76RL01830; DE‐SC0022064
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7TG
7TN
F1W
H96
KL.
L.G
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c3499-8e77f4f7e3edff95742e39d87fb41ec446e608357464701e6c170320a85688623
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001138241900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-9009
IngestDate Mon Jan 15 05:22:27 EST 2024
Fri Jul 25 12:23:52 EDT 2025
Sat Nov 29 01:50:04 EST 2025
Tue Nov 18 22:12:05 EST 2025
Wed Jan 22 16:14:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 759
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3499-8e77f4f7e3edff95742e39d87fb41ec446e608357464701e6c170320a85688623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
DE‐AC05‐76RL01830; DE‐SC0022064
ORCID 0000-0001-8931-5145
0000-0002-8946-9205
0000-0001-8500-5019
0000-0002-1967-3382
0000000289469205
0000000189315145
0000000219673382
0000000185005019
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qj.4629
PQID 2937821952
PQPubID 1016432
PageCount 26
ParticipantIDs osti_scitechconnect_2280463
proquest_journals_2937821952
crossref_primary_10_1002_qj_4629
crossref_citationtrail_10_1002_qj_4629
wiley_primary_10_1002_qj_4629_QJ4629
PublicationCentury 2000
PublicationDate January 2024 Part B
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024 Part B
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Reading
– name: United Kingdom
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2024
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 1990; 95
2019; GSD‐61
2002; 15
2013; 26
1989; 117
2021b; 14
2009; 87
2019; 11
2021; 126
2006; 33
2018; 123
2019; 12
1995; 33
2015; 143
2014; 27
2019; 124
2004; 5
2003; 16
2020; 13
2020; 12
1999; 125
2020; 125
2007; 29
1980; 37
2017; 30
2021; 34
1990; 47
2000; 128
2010; 115
1999; 12
2022; 35
2003; 4
2022; 37
2008; 21
1992; 49
2012; 25
2003; 84
2019a; 11
2019b; 147
2021a; 126
2012; 140
2014; 119
2004; 85
2006; 119
2019; 6
2019; 5
2005; 110
2023; 15
2015; 120
2020; 148
2008; 128
2006; 19
2020; 146
1991
2004; 109
2001; 129
2016; 16
2008b; 134
2015; 7
2003; 30
2022; 49
2023; 60
2001; 127
2021; 14
2021; 13
1990; 118
2021; 16
2009; 36
2008a; 134
2022
2021
2017; 17
2004; 17
2020
2000; 105
2017; 98
2019
2008; 136
2008; 134
2016; 29
2018; 10
2014; 71
2022; 148
2016; 9
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Tang S. (e_1_2_8_66_1) 2021; 34
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_96_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 123
  start-page: 2888
  year: 2018
  end-page: 2909
  article-title: CAUSES: on the role of surface energy budget errors to the warm surface air temperature error over the central U.S
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 34
  start-page: 3189
  issue: 8
  year: 2021
  end-page: 3210
  article-title: Evaluating diurnal and semi‐diurnal cycle of precipitation in CMIP6 models using satellite‐ and ground‐based observations
  publication-title: Journal of Climate
– volume: 128
  start-page: 117
  year: 2008
  end-page: 132
  article-title: Upgrades to the boundary‐layer scheme in the Met Office numerical weather prediction model
  publication-title: Boundary‐Layer Meteorology
– volume: GSD‐61
  start-page: 42
  year: 2019
  article-title: A description of the MYNN‐EDMF scheme and the coupling to other components in WRF‐ARW
  publication-title: NOAA Tech. Memo. OAR
– volume: 35
  start-page: 5719
  year: 2022
  end-page: 5743
  article-title: Metrics for evaluating CMIP6 representation of daily precipitation probability distributions
  publication-title: Journal of Climate
– volume: 26
  start-page: 3258
  year: 2013
  end-page: 3274
  article-title: The transpose‐AMIP II experiment and its application to the understanding of Southern Ocean cloud biases in climate models
  publication-title: Journal of Climate
– volume: 123
  start-page: 2968
  year: 2018
  end-page: 2992
  article-title: CAUSES: diagnosis of the summertime warm bias in CMIP5 climate models at the ARM Southern Great Plains site
  publication-title: Journal of Geophysical Research
– volume: 19
  start-page: 4605
  year: 2006
  end-page: 4630
  article-title: Precipitation characteristics in eighteen coupled climate models
  publication-title: Journal of Climate
– volume: 127
  start-page: 869
  issue: 573
  year: 2001
  end-page: 886
  article-title: A mass‐flux convection scheme for regional and global models
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 11
  start-page: 2377
  year: 2019
  end-page: 2411
  article-title: An overview of the atmospheric component of the energy exascale earth system model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 29
  start-page: 4461
  issue: 12
  year: 2016
  end-page: 4471
  article-title: Metrics for the diurnal cycle of precipitation: toward routine benchmarks for climate models
  publication-title: Journal of Climate
– volume: 143
  start-page: 2532
  year: 2015
  end-page: 2559
  article-title: Implementation of deterministic weather forecast systems based on ensemble‐variational data assimilation at Environment Canada. Part I: the global system
  publication-title: Monthly Weather Review
– volume: 118
  start-page: 1483
  year: 1990
  end-page: 1506
  article-title: A mass flux convection scheme with representation of cloud ensemble characteristics and stability‐dependent closure
  publication-title: Monthly Weather Review
– volume: 12
  issue: 4
  year: 2020
  article-title: The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses
  publication-title: Remote Sensing
– volume: 27
  start-page: 1781
  year: 2014
  end-page: 1798
  article-title: On the correspondence between mean forecast errors and climate errors in CMIP5 models
  publication-title: Journal of Climate
– volume: 87
  start-page: 895
  year: 2009
  end-page: 912
  article-title: Development of an improved turbulence closure model for the atmospheric boundary layer
  publication-title: Journal of the Meteorological Society of Japan
– volume: 134
  start-page: 2109
  year: 2008b
  end-page: 2125
  article-title: PC2: A prognostic cloud fraction and condensation scheme. Part II: Results of climate model simulations
  publication-title: Quarterly Journal of Royal Meteorology
– volume: 13
  start-page: 3887
  year: 2020
  end-page: 3904
  article-title: Taiwan earth system model version 1: Description and evaluation of mean state
  publication-title: Geoscientific Model Development
– volume: 140
  start-page: 3090
  issue: 9
  year: 2012
  end-page: 3105
  article-title: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C‐grid staggering
  publication-title: Monthly Weather Review
– volume: 125
  start-page: 1607
  year: 1999
  end-page: 1636
  article-title: A microphysically based precipitation scheme for the UK meteorological office unified model. Q.J.R
  publication-title: Meteorological Society
– volume: 109
  year: 2004
  article-title: Developing long‐term single‐column model/cloud system resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations
  publication-title: Journal of Geophysical Research
– volume: 47
  start-page: 2784
  year: 1990
  end-page: 2802
  article-title: A one‐dimensional entraining/detraining plume model and its application in convective parameterization
  publication-title: Journal of the Atmospheric Sciences
– volume: 26
  start-page: 1516
  year: 2013
  end-page: 1534
  article-title: Metrics and diagnostics for precipitation‐related processes in climate model short‐range hindcasts
  publication-title: Journal of Climate
– volume: 10
  start-page: 2618
  year: 2018
  end-page: 2644
  article-title: Understanding cloud and convective characteristics in version 1 of the E3SM atmosphere model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 17
  start-page: 14519
  year: 2017
  end-page: 14541
  article-title: Cloud characteristics, thermodynamic controls and radiative impacts during the observations and modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment
  publication-title: Atmospheric Chemistry and Physics
– volume: 95
  start-page: 17001
  issue: D10
  year: 1990
  end-page: 17014
  article-title: Rainfall and surface kinematic conditions over central Amazonia during ABLE 2B
  publication-title: Journal of Geophysical Research
– volume: 25
  start-page: 7937
  year: 2012
  end-page: 7955
  article-title: On the correspondence between short‐ and long‐timescale systematic errors in CAM4/CAM5 for the years of tropical convection
  publication-title: Journal of Climate
– volume: 129
  start-page: 1148
  year: 2001
  end-page: 1163
  article-title: The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing
  publication-title: Monthly Weather Review
– start-page: 14
  year: 1991
  end-page: 18
– volume: 11
  start-page: 3593
  year: 2019a
  end-page: 3635
  article-title: Modernization of atmospheric physics in Canadian NWP
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 29
  start-page: 727
  year: 2007
  end-page: 744
  article-title: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low‐and mid‐latitudes
  publication-title: Climate Dynamics
– year: 2022
– volume: 5
  start-page: 487
  year: 2004
  end-page: 503
  article-title: CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution
  publication-title: Journal of Hydrometeorology
– volume: 16
  start-page: 1456
  year: 2003
  end-page: 1475
  article-title: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements
  publication-title: Journal of Climate
– volume: 30
  start-page: 5923
  year: 2017
  end-page: 5941
  article-title: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20‐km‐mesh regional climate model
  publication-title: Journal of Climate
– volume: 119
  start-page: 397
  issue: 2
  year: 2006
  end-page: 407
  article-title: An improved Mellor‐Yamada level‐3 model: Its numerical stability and application to a regional prediction of advection fog
  publication-title: Boundary‐Layer Meteorology
– volume: 14
  start-page: 1575
  year: 2021
  end-page: 1593
  article-title: Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model
  publication-title: Geoscientific Model Development
– volume: 147
  start-page: 4127
  issue: 11
  year: 2019b
  end-page: 4149
  article-title: A Lagrangian perspective on parameterizing deep convection
  publication-title: Monthly Weather Review
– volume: 84
  start-page: 1205
  issue: 9
  year: 2003
  end-page: 1218
  article-title: The changing character of precipitation
  publication-title: Bulletin of the American Meteorological Society
– year: 2019
– volume: 117
  start-page: 1779
  year: 1989
  end-page: 1800
  article-title: A comprehensive mass flux scheme for cumulus parameterization in large‐scale models
  publication-title: Monthly Weather Review
– volume: 12
  start-page: 1909
  year: 2019
  end-page: 1963
  article-title: The met office unified model global atmosphere 7.0/7.1 and JULES global land 7.0 configurations
  publication-title: Geoscientific Model Development
– volume: 49
  start-page: 93
  year: 1992
  end-page: 106
  article-title: Role of convective trigger functions in numerical forecasts of mesoscale convective systems
  publication-title: Meteorology and Atmospheric Physics
– volume: 126
  year: 2021a
  article-title: Evaluation of the causes of wet‐season dry biases over Amazonia in CAM5
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 115
  year: 2010
  article-title: Dreary state of precipitation in global models
  publication-title: Journal of Geophysical Research
– volume: 21
  start-page: 5904
  year: 2008
  end-page: 5924
  article-title: The impact of convection on ENSO: from a delayed oscillator to a series of events
  publication-title: Journal of Climate
– volume: 85
  start-page: 1903
  year: 2004
  end-page: 1916
  article-title: Evaluating parameterizations in general circulation models: climate simulation meets weather prediction
  publication-title: Bulletin of the American Meteorological Society
– volume: 36
  start-page: L07809
  issue: 7
  year: 2009
  article-title: Shifting the diurnal cycle of parameterized deep convection over land
  publication-title: Geophysical Research Letters
– volume: 33
  year: 2006
  article-title: Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great Plains
  publication-title: Geophysical Research Letters
– volume: 124
  start-page: 3301
  year: 2019
  end-page: 3318
  article-title: Differences in eddy‐correlation and energy‐balance surface turbulent heat flux measurements and their impacts on the large‐scale forcing fields at the ARM SGP site
  publication-title: Journal of Geophysical Research–Atmospheres
– volume: 136
  start-page: 5095
  year: 2008
  end-page: 5115
  article-title: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization
  publication-title: Monthly Weather Review
– volume: 119
  start-page: 11784
  year: 2014
  end-page: 11808
  article-title: Interactions between cumulus convection and its environment as revealed by the MC3E sounding array
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 30
  start-page: 2281
  issue: 24
  year: 2003
  article-title: Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the US southern great plains
  publication-title: Geophysical Research Letters
– volume: 37
  start-page: 1722
  year: 1980
  end-page: 1733
  article-title: Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization
  publication-title: Journal of Atmospheric Sciences
– volume: 16
  year: 2021
  article-title: Climate models capture key features of extreme precipitation probabilities across regions
  publication-title: Environmental Research Letters
– volume: 148
  start-page: 4917
  issue: 12
  year: 2020
  end-page: 4941
  article-title: A convection parameterization for low‐CAPE environments
  publication-title: Monthly Weather Review
– volume: 11
  start-page: 2290
  year: 2019
  end-page: 2310
  article-title: Improved diurnal cycle of precipitation in E3SM with a revised convective triggering function
  publication-title: Journal of Advances in Modeling Earth Systems.
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 17
  start-page: 930
  year: 2004
  end-page: 951
  article-title: The diurnal cycle and its depiction in the community climate system model
  publication-title: Journal of Climate
– volume: 16
  start-page: 14249
  year: 2016
  end-page: 14264
  article-title: Large‐scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment
  publication-title: Atmospheric Chemistry and Physics
– volume: 129
  start-page: 784
  year: 2001
  end-page: 801
  article-title: The diurnal cycle in the tropics
  publication-title: Monthly Weather Review
– volume: 33
  start-page: 407
  year: 1995
  end-page: 446
  article-title: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate center general circulation model
  publication-title: Atmosphere‐Ocean
– volume: 12
  year: 2020
  article-title: The community earth system model version 2 (CESM2)
  publication-title: Journal of Advances in Modeling Earth Systems.
– volume: 15
  start-page: e2022MS003418
  year: 2023
  article-title: Confronting the convective gray zone in the global configuration of the Met Office Unified Model
  publication-title: Journal of Advances in Modeling Earth Systems
– year: 2021
  article-title: Understanding the roles of convective trigger functions in the diurnal cycle of precipitation in the NCAR CAM5
  publication-title: Journal of Climate
– volume: 33
  issue: 18
  year: 2006
  article-title: Diagnosis of the summertime warm and dry bias over the US southern great plains in the GFDL climate model using a weather forecasting approach
  publication-title: Geophysical Research Letters
– volume: 6
  start-page: 61
  year: 2019
  article-title: DYAMOND: the dynamics of the atmospheric general circulation modeled on non‐hydrostatic domains
  publication-title: Progress in Earth and Planetary Science
– volume: 4
  start-page: 1147
  issue: 6
  year: 2003
  end-page: 1167
  article-title: The version‐2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present)
  publication-title: Journal of Hydrometeorology
– volume: 15
  start-page: 1609
  issue: 13
  year: 2002
  end-page: 1625
  article-title: An improved in situ and satellite SST analysis for climate
  publication-title: Journal of Climate
– volume: 148
  start-page: 1
  year: 2022
  end-page: 29
  article-title: Long‐term single‐column model intercomparison on diurnal cycle of precipitation over mid‐latitude and tropical land
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 12
  year: 2020
  article-title: Memory properties in cloud‐resolving simulations of the diurnal cycle of deep convection
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 125
  year: 2020
  article-title: Evaluation of an improved convective triggering function: observational evidence and SCM tests
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 120
  start-page: 10681
  year: 2015
  end-page: 10702
  article-title: Impacts of the triggering function of cumulus parameterization on warm‐season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 12
  start-page: 2451
  issue: 8
  year: 1999
  end-page: 2473
  article-title: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range
  publication-title: Journal of Climate
– volume: 37
  start-page: 1491
  issue: 8
  year: 2022
  end-page: 1507
  article-title: Forecasting convection with a “Scale‐Aware” Tiedtke cumulus parameterization scheme at kilometer scales
  publication-title: Weather and Forecasting
– volume: 128
  start-page: 3187
  year: 2000
  end-page: 3199
  article-title: A new boundary layer mixing scheme. Part I: Scheme description and single‐column model tests
  publication-title: Monthly Weather Review
– volume: 5
  start-page: 172
  issue: 3
  year: 2019
  end-page: 184
  article-title: Global cloud‐resolving models
  publication-title: Current Climate Change Reports
– volume: 98
  start-page: 767
  issue: 4
  year: 2017
  end-page: 786
  article-title: The 2015 plains elevated convection at night field project
  publication-title: Bulletin of the American Meteorological Society
– volume: 105
  start-page: 14983
  year: 2000
  end-page: 14996
  article-title: Impact of the convection triggering function on single‐column model simulations
  publication-title: Journal of Geophysical Research
– volume: 14
  start-page: 177
  year: 2021
  end-page: 204
  article-title: GTS v1.0 a macrophysics scheme for climate models based on a probability density function
  publication-title: Geoscientific Model Development
– volume: 71
  start-page: 734
  year: 2014
  end-page: 753
  article-title: Representing equilibrium and nonequilibrium convection in large‐scale models
  publication-title: Journal of the Atmospheric Sciences
– volume: 16
  start-page: 4785
  year: 2016
  end-page: 4797
  article-title: Introduction: observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)
  publication-title: Atmospheric Chemistry and Physics
– year: 2020
– volume: 21
  start-page: 2680
  year: 2008
  end-page: 2696
  article-title: Diurnal precipitation regimes in the global tropics
  publication-title: Journal of Climate
– volume: 60
  start-page: 3947
  issue: 11‐12
  year: 2023
  end-page: 3968
  article-title: Diurnal cycle of precipitation over global monsoon systems in CMIP6 simulations
  publication-title: Climate Dynamics
– volume: 13
  year: 2021
  article-title: Representations of precipitation diurnal cycle in the amazon as simulated by observationally constrained cloud‐system resolving and global climate models
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 49
  year: 2022
  article-title: Superior daily and sub‐daily precipitation statistics for intense and long‐lived storms in global storm‐resolving models
  publication-title: Geophysical Research Letters
– volume: 134
  start-page: 1337
  issue: 634
  year: 2008
  end-page: 1351
  article-title: Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time‐scales
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 14
  start-page: 73
  issue: 1
  year: 2021b
  end-page: 90
  article-title: A multi‐year short‐range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales
  publication-title: Geoscientific Model Development
– volume: 71
  start-page: 3902
  issue: 11
  year: 2014
  end-page: 3930
– volume: 126
  year: 2021
  article-title: Interpreting the diurnal cycle of clouds and precipitation in the ARM GOAmazon observations: shallow to deep convection transition
  publication-title: Journal of Geophysical Research–Atmospheres
– volume: 134
  start-page: 2093
  year: 2008a
  end-page: 2107
  article-title: PC2: A prognostic cloud fraction and condensation scheme. Part I: Scheme description
  publication-title: Quarterly Journal of Royal Meteorology and Society
– volume: 9
  start-page: 1937
  year: 2016
  end-page: 1958
  article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization
  publication-title: Geoscience Model Development
– volume: 7
  start-page: 1810
  year: 2015
  end-page: 1827
  article-title: An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 110
  year: 2005
  article-title: Effects of modifications to the Zhang‐McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3
  publication-title: Journal of Geophysical Research
– ident: e_1_2_8_96_1
  doi: 10.1029/2003GL018554
– ident: e_1_2_8_50_1
  doi: 10.1007/s10546‐005‐9030‐8
– volume: 34
  start-page: 3189
  issue: 8
  year: 2021
  ident: e_1_2_8_66_1
  article-title: Evaluating diurnal and semi‐diurnal cycle of precipitation in CMIP6 models using satellite‐ and ground‐based observations
  publication-title: Journal of Climate
  doi: 10.1175/JCLI-D-20-0639.1
– ident: e_1_2_8_47_1
  doi: 10.1175/MWR‐D‐20‐0020.1
– ident: e_1_2_8_74_1
  doi: 10.1029/2022MS003418
– ident: e_1_2_8_90_1
  doi: 10.1002/2014JD022011
– ident: e_1_2_8_35_1
  doi: 10.1175/1520‐0493(2001)129<1148:TNROEI>2.0.CO;2
– ident: e_1_2_8_9_1
  doi: 10.1175/JCLI‐D‐20‐0699.1
– ident: e_1_2_8_33_1
  doi: 10.1029/2006gl027567
– ident: e_1_2_8_73_1
  doi: 10.1175/1520‐0493(1989)117<1779:ACMFSF>2.0.CO;2
– ident: e_1_2_8_30_1
  doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
– ident: e_1_2_8_15_1
  doi: 10.1029/2019MS001916
– ident: e_1_2_8_72_1
  doi: 10.1029/2020JD033766
– ident: e_1_2_8_29_1
  doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
– ident: e_1_2_8_5_1
  doi: 10.1175/jas‐d‐13‐0163.1
– ident: e_1_2_8_76_1
  doi: 10.5194/gmd‐12‐1909‐2019
– ident: e_1_2_8_11_1
  doi: 10.1175/JCLI3884.1
– ident: e_1_2_8_41_1
  doi: 10.1175/JCLI-D-13-00474.1
– ident: e_1_2_8_95_1
  doi: 10.1029/2004JD005617
– ident: e_1_2_8_60_1
  doi: 10.1007/s40641‐019‐00131‐0
– ident: e_1_2_8_69_1
  doi: 10.1029/2018jd029689
– ident: e_1_2_8_56_1
  doi: 10.1175/BAMS‐85‐12‐1903
– ident: e_1_2_8_36_1
  doi: 10.1175/1520‐0493(2000)128<3187:ANBLMS>2.0.CO;2
– ident: e_1_2_8_52_1
  doi: 10.1175/2008JCLI2244.1
– ident: e_1_2_8_92_1
  doi: 10.1175/JCLI‐D‐16‐0597.1
– ident: e_1_2_8_12_1
  doi: 10.1007/s00382-007-0260-y
– ident: e_1_2_8_21_1
  doi: 10.3390/rs12040720
– ident: e_1_2_8_37_1
  doi: 10.1002/2015MS000490
– ident: e_1_2_8_38_1
  doi: 10.1029/2021GL096759
– ident: e_1_2_8_13_1
  doi: 10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2
– ident: e_1_2_8_17_1
  doi: 10.1175/1520‐0469(1980)037<1722:NPOCDM>2.0.CO;2
– ident: e_1_2_8_34_1
  doi: 10.5194/gmd‐13‐3887‐2020
– ident: e_1_2_8_49_1
  doi: 10.1175/MWR‐D‐19‐0164.1
– ident: e_1_2_8_28_1
  doi: 10.1029/2006GL027022
– ident: e_1_2_8_57_1
  doi: 10.1029/2019MS001629
– ident: e_1_2_8_61_1
  doi: 10.5194/gmd‐14‐177‐2021
– ident: e_1_2_8_94_1
  doi: 10.1080/07055900.1995.9649539
– ident: e_1_2_8_81_1
  doi: 10.1175/JCLI‐D‐12‐00429.1
– ident: e_1_2_8_65_1
  doi: 10.1029/2021MS002586
– ident: e_1_2_8_2_1
  doi: 10.1175/1525‐7541(2003)004<1147:TVGPCP>2.0.CO;2
– ident: e_1_2_8_53_1
  doi: 10.1175/1520-0442-16.10.1456
– ident: e_1_2_8_75_1
  doi: 10.1175/BAMS‐84‐9‐1205
– ident: e_1_2_8_7_1
  doi: 10.1175/MWR-D-14-00354.1
– ident: e_1_2_8_31_1
  doi: 10.1007/BF01025402
– ident: e_1_2_8_89_1
  doi: 10.1029/2019MS001702
– ident: e_1_2_8_43_1
  doi: 10.5194/gmd‐14‐73‐2021
– ident: e_1_2_8_64_1
  doi: 10.1186/s40645-019-0304-z
– ident: e_1_2_8_91_1
  doi: 10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2
– ident: e_1_2_8_63_1
  doi: 10.1029/2010JD014532
– ident: e_1_2_8_86_1
  doi: 10.1029/2003JD004045
– ident: e_1_2_8_70_1
  doi: 10.1007/s00382-022-06546-0
– ident: e_1_2_8_44_1
  doi: 10.5194/acp‐16‐4785‐2016
– ident: e_1_2_8_45_1
  doi: 10.1088/1748-9326/abd351
– ident: e_1_2_8_68_1
  doi: 10.5194/acp‐16‐14249‐2016
– ident: e_1_2_8_26_1
– ident: e_1_2_8_39_1
  doi: 10.1002/2017jd027194
– ident: e_1_2_8_83_1
  doi: 10.1002/qj.333
– ident: e_1_2_8_51_1
  doi: 10.2151/jmsj.87.895
– ident: e_1_2_8_20_1
– ident: e_1_2_8_82_1
  doi: 10.1002/qj.49712555707
– ident: e_1_2_8_85_1
  doi: 10.1029/2000JD900170
– ident: e_1_2_8_32_1
  doi: 10.1175/2007JCLI2051.1
– ident: e_1_2_8_16_1
  doi: 10.5194/gmd-9-1937-2016
– ident: e_1_2_8_59_1
  doi: 10.1029/2008GL036779
– ident: e_1_2_8_77_1
  doi: 10.1175/WAF‐D‐21‐0179.1
– ident: e_1_2_8_87_1
  doi: 10.1029/2018MS001350
– ident: e_1_2_8_84_1
  doi: 10.1002/qj.332
– ident: e_1_2_8_93_1
  doi: 10.1002/2017JD027200
– ident: e_1_2_8_80_1
  doi: 10.1029/2019JD031651
– ident: e_1_2_8_54_1
  doi: 10.25923/n9wm‐be49
– ident: e_1_2_8_19_1
  doi: 10.5194/acp‐17‐14519‐2017
– ident: e_1_2_8_79_1
  doi: 10.1002/2015JD023337
– ident: e_1_2_8_10_1
  doi: 10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2
– ident: e_1_2_8_27_1
– ident: e_1_2_8_24_1
– ident: e_1_2_8_46_1
  doi: 10.1175/JCLI‐D‐21‐0617.1
– ident: e_1_2_8_18_1
  doi: 10.1175/BAMS‐D‐15‐00257.1
– ident: e_1_2_8_6_1
  doi: 10.1007/s10546‐008‐9275‐0
– ident: e_1_2_8_62_1
  doi: 10.1175/MWR‐D‐11‐00215.1
– ident: e_1_2_8_55_1
  doi: 10.1175/JAS-D-13-0233.1
– ident: e_1_2_8_3_1
  doi: 10.1002/qj.49712757309
– ident: e_1_2_8_14_1
  doi: 10.1029/2019MS001897
– ident: e_1_2_8_88_1
  doi: 10.1175/JCLI-D-12-00134.1
– ident: e_1_2_8_58_1
  doi: 10.1175/1520‐0442(2002)015<1609:aiisas>2.0.co;2
– ident: e_1_2_8_25_1
  doi: 10.1002/qj.3803
– ident: e_1_2_8_71_1
  doi: 10.1175/2008MWR2387.1
– ident: e_1_2_8_4_1
  doi: 10.1002/qj.289
– ident: e_1_2_8_40_1
  doi: 10.1175/JCLI-D-12-00235.1
– ident: e_1_2_8_8_1
  doi: 10.1175/JCLI-D-15-0664.1
– ident: e_1_2_8_78_1
  doi: 10.5194/gmd‐14‐1575‐2021
– ident: e_1_2_8_22_1
  doi: 10.1029/JD095iD10p17001
– ident: e_1_2_8_42_1
  doi: 10.1029/2020JD033859
– ident: e_1_2_8_67_1
  doi: 10.1002/qj.4222
– ident: e_1_2_8_48_1
  doi: 10.1029/2019MS001781
– ident: e_1_2_8_23_1
  doi: 10.1175/1520‐0493(1990)118<1483:AMFCSW>2.0.CO;2
SSID ssj0005727
Score 2.4803624
Snippet Diurnal precipitation is a fundamental mode of variability that climate models have difficulty in accurately simulating. Here the diurnal cycle of...
Abstract Diurnal precipitation is a fundamental mode of variability that climate models have difficulty in accurately simulating. Here the diurnal cycle of...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 911
SubjectTerms Air parcels
Boundary layers
Climate
Climate models
Clouds
Convection
Diurnal
Diurnal cycle
General circulation models
Intercomparison
Mesoscale systems
Physics
Precipitation
Rain
Rainfall intensity
Tropical environments
Variability
Weather forecasting
Title Diurnal cycle of precipitation over the tropics and central United States: intercomparison of general circulation models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4629
https://www.proquest.com/docview/2937821952
https://www.osti.gov/biblio/2280463
Volume 150
WOSCitedRecordID wos001138241900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1477-870X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005727
  issn: 0035-9009
  databaseCode: DRFUL
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RpYdeaOmHmkKrOSBuKZuNEye9VdBVhQBRBBU3K3bsKghtlmSp4N93JjYLqKpUiVMUyeN8jCd-M5q8B7DlCmN1leZxUpeUoNhxFWtHDqmsyFmJW5uh3vHzQB4dFefn5fEDqS_PD7EsuHFkDN9rDvBK9zv3pKFXF59puvIZrE5o1WYjWN07mZ4d3Pd3yKDXmmZxSUjC_zHLxjvB9NFWNGoppB7BzIdgddhtpi-fcJ-vYC1ATPzq18Q6rNjZa4gOCR233VBEx23cvWwIqg5nb-Bmr_Em5pYMsHU4Z86LeaDvRu7yRAKKuOjaeWN6rGY1hq5O9KAVPWj9gkw_0ZmluCFP9sszW6NpOhPEwnAQ4Onfwtn02-nu9zgoMsQmpdQoLqyUTjhpU1s7V2aUV9u0rAvptEisodTS5ozppMiFHCc2N4lkhfaqyPKCcqf0HYxm7cy-BySYWmspxmlKZoJwUp7oqtYucUJoK4oItu-co0x4XlbNuFSeaHmiri4Uv9gIcDlw7hk6_h6ywd5VBCqYGddwC5FZKGYCoitHsHnndBUCuFeEggg7JWU2iWBrcO-_Jlc_9vnw4f-GbcCLCcEiX8TZhNGiu7Yf4bn5vWj67lNYw38AnSL2BA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6NMmm8wDZABNh2D4i3jKZx42RvCFaxrVTbBBNvVuLYKBVqSloQ_Pe7i00ZmiZN4imK5HN-3Dn57nT-PoA9m2pT5HESRmVGCYrp5mFhySG5EQkrcRe6rXf8GsrRKL24yL77rkreC-P4IRYFN14Z7feaFzgXpA8eWUOvxx9pvmwJlgUFEUX38vHPwfnwscFDesHWuB9mBCXcllk2PvCmT_5FnZrW1BOc-SdabX83g7Xn3OhrWPUgEw9dVLyBF2byFoJTwsd105bRcR-PrioCq-3ZOtwdV85E35MB1hanzHox9QTeyH2eSFAR5009rfQM80mJvq8THWxFB1s_IRNQNHohb8iTXTpua9RVo71cGLYSPLMNOB98Pjs6Cb0mQ6hjSo7C1EhphZUmNqW1WZ8yaxNnZSptISKjKbk0CaM6KRIhu5FJdCRZoz1P-0lK2VO8CZ1JPTFbgARUy0KKbhyTGbkwS6IiLwsbWSEKI9IA9h-8o7R_XtbNuFKOarmnrseKX2wAuBg4dRwdfw_ZYfcqghXMjau5iUjPFXMB0ZUD2H3wuvJLeKYIBxF6irJ-L4C91r__mlz9-MqH7f8b9gFenZydDtXwy-jbDqz0CCS5ks4udObNjXkHL_XtvJo1731A_wZSQvn0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7Rpaq4UPoS4dHOAXFL2Wy8cdJbxbIqdLuiVam4WYljV0FoE7ILgn_fmdgsRVWlSj1FkTzOYzzJN6Px9wHs2VSbIo-TMCozSlBMPw8LSw7JjUhYibvQXb3jx0ROp-n5eXbquyp5L4zjh1gW3Dgyuu81B7hpSnvwwBp6dfGe5suewKpgCZkerI6-jc8mDw0e0gu2xsMwIyjhtsyy8YE3ffQv6tUUU49w5u9otfvdjJ__z41uwLoHmfjRrYoXsGJmLyH4Qvi4brsyOu7j4WVFYLU7ewW3o8qZ6DsywNpiw6wXjSfwRu7zRIKKuGjrptJzzGcl-r5OdLAVHWz9gExA0eqlvCFP9tNxW6OuWu3lwrCT4Jm_hrPx0ffDT6HXZAh1TMlRmBoprbDSxKa0NhtSZm3irEylLURkNCWXJmFUJ0UiZD8yiY4ka7Tn6TBJKXuK30BvVs_MJiAB1bKQoh_HZCYIKSVRkZeFjawQhRFpAPv33lHaPy_rZlwqR7U8UFcXil9sALgc2DiOjj-HbLN7FcEK5sbV3ESkF4q5gOjKAezce135EJ4rwkGEnqJsOAhgr_Pv3yZXX0_4sPVvw97Bs9PRWE2Op5-3YW1AGMlVdHagt2ivzS481TeLat6-9ev5F-cZ-W8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diurnal+cycle+of+precipitation+over+the+tropics+and+central+United+States%3A+intercomparison+of+general+circulation+models&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Cheng%2C+Tao&rft.au=Xie%2C+Shaocheng&rft.au=Hsi%E2%80%90Yen+Ma&rft.au=Bechtold%2C+Peter&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=150&rft.issue=759&rft.spage=911&rft.epage=936&rft_id=info:doi/10.1002%2Fqj.4629&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon