Subgroups from regression trees with adjustment for prognostic effects and postselection inference

Identification of subgroups with differential treatment effects in randomized trials is attracting much attention. Many methods use regression tree algorithms. This article addresses 2 important questions arising from the subgroups: how to ensure that treatment effects in subgroups are not confounde...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics in medicine Ročník 38; číslo 4; s. 545 - 557
Hlavní autori: Loh, Wei‐Yin, Man, Michael, Wang, Shuaicheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Wiley Subscription Services, Inc 20.02.2019
Predmet:
ISSN:0277-6715, 1097-0258, 1097-0258
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Identification of subgroups with differential treatment effects in randomized trials is attracting much attention. Many methods use regression tree algorithms. This article addresses 2 important questions arising from the subgroups: how to ensure that treatment effects in subgroups are not confounded with effects of prognostic variables and how to determine the statistical significance of treatment effects in the subgroups. We address the first question by selectively including linear prognostic effects in the subgroups in a regression tree model. The second question is more difficult because it falls within the subject of postselection inference. We use a bootstrap technique to calibrate normal‐theory t intervals so that their expected coverage probability, averaged over all the subgroups in a fitted model, approximates the desired confidence level. It can also provide simultaneous confidence intervals for all subgroups. The first solution is implemented in the GUIDE algorithm and is applicable to data with missing covariate values, 2 or more treatment arms, and outcomes subject to right censoring. Bootstrap calibration is applicable to any subgroup identification method; it is not restricted to regression tree models. Two real examples are used for illustration: a diabetes trial where the outcomes are completely observed but some covariate values are missing and a breast cancer trial where the outcome is right censored.
AbstractList Identification of subgroups with differential treatment effects in randomized trials is attracting much attention. Many methods use regression tree algorithms. This article addresses 2 important questions arising from the subgroups: how to ensure that treatment effects in subgroups are not confounded with effects of prognostic variables and how to determine the statistical significance of treatment effects in the subgroups. We address the first question by selectively including linear prognostic effects in the subgroups in a regression tree model. The second question is more difficult because it falls within the subject of postselection inference. We use a bootstrap technique to calibrate normal-theory t intervals so that their expected coverage probability, averaged over all the subgroups in a fitted model, approximates the desired confidence level. It can also provide simultaneous confidence intervals for all subgroups. The first solution is implemented in the GUIDE algorithm and is applicable to data with missing covariate values, 2 or more treatment arms, and outcomes subject to right censoring. Bootstrap calibration is applicable to any subgroup identification method; it is not restricted to regression tree models. Two real examples are used for illustration: a diabetes trial where the outcomes are completely observed but some covariate values are missing and a breast cancer trial where the outcome is right censored.Identification of subgroups with differential treatment effects in randomized trials is attracting much attention. Many methods use regression tree algorithms. This article addresses 2 important questions arising from the subgroups: how to ensure that treatment effects in subgroups are not confounded with effects of prognostic variables and how to determine the statistical significance of treatment effects in the subgroups. We address the first question by selectively including linear prognostic effects in the subgroups in a regression tree model. The second question is more difficult because it falls within the subject of postselection inference. We use a bootstrap technique to calibrate normal-theory t intervals so that their expected coverage probability, averaged over all the subgroups in a fitted model, approximates the desired confidence level. It can also provide simultaneous confidence intervals for all subgroups. The first solution is implemented in the GUIDE algorithm and is applicable to data with missing covariate values, 2 or more treatment arms, and outcomes subject to right censoring. Bootstrap calibration is applicable to any subgroup identification method; it is not restricted to regression tree models. Two real examples are used for illustration: a diabetes trial where the outcomes are completely observed but some covariate values are missing and a breast cancer trial where the outcome is right censored.
Identification of subgroups with differential treatment effects in randomized trials is attracting much attention. Many methods use regression tree algorithms. This article addresses 2 important questions arising from the subgroups: how to ensure that treatment effects in subgroups are not confounded with effects of prognostic variables and how to determine the statistical significance of treatment effects in the subgroups. We address the first question by selectively including linear prognostic effects in the subgroups in a regression tree model. The second question is more difficult because it falls within the subject of postselection inference. We use a bootstrap technique to calibrate normal‐theory t intervals so that their expected coverage probability, averaged over all the subgroups in a fitted model, approximates the desired confidence level. It can also provide simultaneous confidence intervals for all subgroups. The first solution is implemented in the GUIDE algorithm and is applicable to data with missing covariate values, 2 or more treatment arms, and outcomes subject to right censoring. Bootstrap calibration is applicable to any subgroup identification method; it is not restricted to regression tree models. Two real examples are used for illustration: a diabetes trial where the outcomes are completely observed but some covariate values are missing and a breast cancer trial where the outcome is right censored.
Identification of subgroups with differential treatment effects in randomized trials is attracting much attention. Many methods use regression tree algorithms. This article addresses 2 important questions arising from the subgroups: how to ensure that treatment effects in subgroups are not confounded with effects of prognostic variables and how to determine the statistical significance of treatment effects in the subgroups. We address the first question by selectively including linear prognostic effects in the subgroups in a regression tree model. The second question is more difficult because it falls within the subject of postselection inference. We use a bootstrap technique to calibrate normal‐theory t intervals so that their expected coverage probability, averaged over all the subgroups in a fitted model, approximates the desired confidence level. It can also provide simultaneous confidence intervals for all subgroups. The first solution is implemented in the GUIDE algorithm and is applicable to data with missing covariate values, 2 or more treatment arms, and outcomes subject to right censoring. Bootstrap calibration is applicable to any subgroup identification method; it is not restricted to regression tree models. Two real examples are used for illustration: a diabetes trial where the outcomes are completely observed but some covariate values are missing and a breast cancer trial where the outcome is right censored.
Author Wang, Shuaicheng
Loh, Wei‐Yin
Man, Michael
Author_xml – sequence: 1
  givenname: Wei‐Yin
  orcidid: 0000-0001-6983-2495
  surname: Loh
  fullname: Loh, Wei‐Yin
  email: loh@stat.wisc.edu
  organization: University of Wisconsin‐Madison
– sequence: 2
  givenname: Michael
  surname: Man
  fullname: Man, Michael
  organization: Eli Lilly and Company
– sequence: 3
  givenname: Shuaicheng
  surname: Wang
  fullname: Wang, Shuaicheng
  organization: BioStat Solutions, Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29671896$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFr3DAQhUVJaDZpob8gCHrJxRtJtiz7GELTBlJ6SHsWsjzaarGljUYm5N9X201aKOlpmOGb4b15p-QoxACEfOBszRkTl-jntWqVekNWnPWqYkJ2R2TFhFJVq7g8IaeIW8Y4l0K9JSeiL9Oub1dkuF-GTYrLDqlLcaYJNgkQfQw0JwCkjz7_pGbcLphnCJm6mOguxU2ImL2l4BzYjNSEke7KCGEq_X7dBwcJgoV35NiZCeH9cz0jP24-fb_-Ut19-3x7fXVX2bopmsdW1qblg3QcnHGj6ZpRDYMbBWsssLrtJQNobOtqMLxpukExKRzrFFOueKnPyMXhbpH3sABmPXu0ME0mQFxQi_IO2XU16wv68R90G5cUijoteKt6KZtGFOr8mVqGGUa9S3426Um_fK8A6wNgU0RM4LT12ezd52T8pDnT-3h0iUfv4_kr8c_Cy81X0OqAPvoJnv7L6fvbr7_5X1kun5E
CitedBy_id crossref_primary_10_1002_sim_10163
crossref_primary_10_1177_17534666221107314
crossref_primary_10_1016_j_csda_2025_108142
crossref_primary_10_1002_sim_10167
crossref_primary_10_1007_s10985_024_09618_x
crossref_primary_10_3233_IDA_205367
crossref_primary_10_1002_widm_1326
Cites_doi 10.1002/sim.6454
10.1002/sim.4289
10.1080/10543406.2013.856026
10.1080/10543406.2013.856024
10.1080/01621459.1987.10478408
10.1111/j.1464-5491.2004.01426.x
10.1200/JCO.2011.38.3729
10.7326/0003-4819-116-1-78
10.1214/aos/1176344247
10.1007/s11222-005-1311-z
10.1200/JCO.1994.12.10.2086
10.1111/insr.12016
10.2307/2986301
10.1186/s12874-016-0122-6
10.1080/01621459.1963.10500855
10.1002/sim.7020
10.1198/016214501753168271
10.1136/bmj.e1553
10.1002/sim.7416
10.1080/10543406.2013.856021
10.2202/1557-4679.1071
10.1056/NEJMsr077003
10.1023/A:1010933404324
10.1080/01621459.1981.10477634
10.1198/1061860032049
10.1002/sim.4322
10.1001/jamainternmed.2016.9138
10.1111/j.1467-9868.2005.00490.x
10.1002/sim.5933
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
– notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.7677
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 557
ExternalDocumentID 29671896
10_1002_sim_7677
SIM7677
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: 1P01CA180945-01
– fundername: National Science Foundation
  funderid: DMS-1305725
– fundername: NCI NIH HHS
  grantid: P01 CA180945
– fundername: NIH HHS
  grantid: 1P01CA180945-01
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
ALUQN
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3497-d653a61b5f1efafda84d7bbfd204ce036950ee4c6f3ea1448b7052f08707f8963
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456205500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6715
1097-0258
IngestDate Thu Oct 02 12:01:52 EDT 2025
Tue Oct 07 05:23:55 EDT 2025
Mon Jul 21 05:59:50 EDT 2025
Tue Nov 18 22:32:41 EST 2025
Sat Nov 29 05:32:41 EST 2025
Tue Nov 11 03:12:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords precision medicine
missing value
differential treatment effect
bootstrap
Language English
License Copyright © 2018 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3497-d653a61b5f1efafda84d7bbfd204ce036950ee4c6f3ea1448b7052f08707f8963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6983-2495
PMID 29671896
PQID 2167955442
PQPubID 48361
PageCount 13
ParticipantIDs proquest_miscellaneous_2027588309
proquest_journals_2167955442
pubmed_primary_29671896
crossref_citationtrail_10_1002_sim_7677
crossref_primary_10_1002_sim_7677
wiley_primary_10_1002_sim_7677_SIM7677
PublicationCentury 2000
PublicationDate 20 February 2019
PublicationDateYYYYMMDD 2019-02-20
PublicationDate_xml – month: 02
  year: 2019
  text: 20 February 2019
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 34
2004; 22
1991; 1
2012; 344
1980; 29
2002; 12
2011; 30
2014; 24
2008; 4
2017; 177
2001; 45
2016; 16
2016; 35
1995; 5
2005; 67
1997; 7
1978; 6
2003; 12
2007; 357
1963; 58
2009; 52
2009; 10
1987; 82
2017; 36
1994; 12
1992; 116
1984
2017
1982
2005; 15
1972; 34
2011; 29
2014; 34
1981; 76
2014; 33
2001; 96
1994; 4
e_1_2_8_29_1
e_1_2_8_24_1
Loh WY (e_1_2_8_20_1) 1991; 1
e_1_2_8_25_1
e_1_2_8_27_1
Loh WY (e_1_2_8_11_1) 2002; 12
Loh WY (e_1_2_8_19_1) 1987; 82
Lawless JF (e_1_2_8_38_1) 1982
e_1_2_8_3_1
Loh WY (e_1_2_8_26_1) 1997; 7
e_1_2_8_2_1
e_1_2_8_5_1
Su X (e_1_2_8_28_1) 2009; 10
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Riviere MK (e_1_2_8_31_1) 2017
e_1_2_8_21_1
Dijkman B (e_1_2_8_12_1) 2009; 52
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_17_1
Breslow N (e_1_2_8_37_1) 1972; 34
e_1_2_8_18_1
e_1_2_8_39_1
Breiman L (e_1_2_8_22_1) 1984
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
Chaudhuri P (e_1_2_8_41_1) 1994; 4
e_1_2_8_15_1
e_1_2_8_16_1
Chaudhuri P (e_1_2_8_35_1) 1995; 5
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 34
  start-page: 216
  year: 1972
  end-page: 217
  article-title: Contribution to the discussion of regression models and life tables by D. R. Cox
  publication-title: J R Stat Soc B
– volume: 4
  year: 2008
  article-title: Interaction trees with censored survival data
  publication-title: Int J Biostat
– volume: 7
  start-page: 815
  year: 1997
  end-page: 840
  article-title: Split selection methods for classification trees
  publication-title: Stat Sin
– volume: 36
  start-page: 4446
  year: 2017
  end-page: 4454
  article-title: Multiplicity considerations in subgroup analysis
  publication-title: Stat Med
– volume: 67
  start-page: 91
  year: 2005
  end-page: 108
  article-title: Sparsity and smoothness via the fused lasso
  publication-title: J R Stat Soc B
– volume: 12
  start-page: 512
  year: 2003
  end-page: 530
  article-title: Classification trees with bivariate linear discriminant node models
  publication-title: J Comput Graph Stat
– volume: 5
  start-page: 641
  year: 1995
  end-page: 666
  article-title: Generalized regression trees
  publication-title: Stat Sin
– volume: 35
  start-page: 4837
  year: 2016
  end-page: 4855
  article-title: Identification of subgroups with differential treatment effects for longitudinal and multiresponse variables
  publication-title: Stat Med
– volume: 30
  start-page: 2601
  year: 2011
  end-page: 2621
  article-title: Subgroup identification based on differential effect search—a recursive partitioning method for establishing response to treatment in patient subpopulations
  publication-title: Stat Med
– volume: 15
  start-page: 231
  year: 2005
  end-page: 239
  article-title: Tree‐structured subgroup analysis for censored survival data: validation of computationally inexpensive model selection criteria
  publication-title: Stat Comput
– volume: 4
  start-page: 143
  year: 1994
  end-page: 167
  article-title: Piecewise‐polynomial regression trees
  publication-title: Stat Sin
– volume: 12
  start-page: 361
  year: 2002
  end-page: 386
  article-title: Regression trees with unbiased variable selection and interaction detection
  publication-title: Stat Sin
– volume: 29
  start-page: 156
  year: 1980
  end-page: 163
  article-title: The fitting of exponential, Weibull and extreme value distributions to complex censored survival data using GLIM
  publication-title: Appl Stat
– volume: 10
  start-page: 141
  year: 2009
  end-page: 158
  article-title: Subgroup analysis via recursive partitioning
  publication-title: J Mach Learn Res
– volume: 96
  start-page: 589
  year: 2001
  end-page: 604
  article-title: Classification trees with unbiased multiway splits
  publication-title: J Am Stat Assoc
– volume: 16
  start-page: 1
  year: 2016
  end-page: 15
  article-title: Subgroup analyses in confirmatory clinical trials: time to be specific about their purposes
  publication-title: BMC Med Res Methodol
– volume: 24
  start-page: 110
  year: 2014
  end-page: 129
  article-title: A Bayesian approach to subgroup identification
  publication-title: J Biopharm Stat
– volume: 1
  start-page: 477
  year: 1991
  end-page: 491
  article-title: Bootstrap calibration for confidence interval construction and selection
  publication-title: Stat Sin
– year: 1984
– year: 1982
– volume: 29
  start-page: 4718
  year: 2011
  article-title: Prognostic or predictive? It's time to get back to definitions!
  publication-title: J Clin Oncol
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 33
  start-page: 219
  year: 2014
  end-page: 237
  article-title: Qualitative interaction trees: a tool to identify qualitative treatment‐subgroup interactions
  publication-title: Stat Med
– volume: 357
  start-page: 2189
  year: 2007
  end-page: 2194
  article-title: Statistics in medicine—reporting of subgroup analyses in clinical trials
  publication-title: N Engl J Med
– volume: 58
  start-page: 415
  year: 1963
  end-page: 434
  article-title: Problems in the analysis of survey data, and a proposal
  publication-title: J Am Stat Assoc
– volume: 76
  start-page: 231
  year: 1981
  end-page: 240
  article-title: Covariance analysis of censored survival data using log‐linear analysis techniques
  publication-title: J Am Stat Assoc
– volume: 24
  start-page: 130
  year: 2014
  end-page: 153
  article-title: Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using SIDES
  publication-title: J Biopharm Stat
– volume: 30
  start-page: 2867
  year: 2011
  end-page: 2880
  article-title: Subgroup identification from randomized clinical trial data
  publication-title: Stat Med
– volume: 34
  start-page: 1818
  year: 2015
  end-page: 1833
  article-title: A regression tree approach to identifying subgroups with differential treatment effects
  publication-title: Stat Med
– volume: 82
  start-page: 155
  year: 1987
  end-page: 162
  article-title: Calibrating confidence coefficients
  publication-title: J Am Stat Assoc
– volume: 6
  start-page: 701
  year: 1978
  end-page: 726
  article-title: Nonparametric inference for a family of counting processes
  publication-title: Ann Stat
– volume: 24
  start-page: 72
  year: 2014
  end-page: 93
  article-title: An overview of statistical planning to address subgroups in confirmatory clinical trials
  publication-title: J Biopharm Stat
– volume: 177
  start-page: 561
  issue: 4
  year: 2017
  end-page: 562
  article-title: The challenges of generating evidence to support precision medicine
  publication-title: JAMA Intern Med
– volume: 116
  start-page: 78
  year: 1992
  end-page: 84
  article-title: A consumer's guide to subgroup analyses
  publication-title: Ann Intern Med
– volume: 344
  year: 2012
  article-title: Credibility of claims of subgroup effects in randomised controlled trials: systematic review
  publication-title: BMJ
– volume: 34
  start-page: 329
  year: 2014
  end-page: 370
  article-title: Fifty years of classification and regression trees (with discussion)
  publication-title: Int Stat Rev
– year: 2017
– volume: 52
  start-page: 515
  year: 2009
  end-page: 522
  article-title: How to work with a subgroup analysis
  publication-title: Can J Surg
– volume: 22
  start-page: 399
  year: 2004
  end-page: 405
  article-title: A long‐term comparison of pioglitazone and gliclazide in patients with type 2 diabetes mellitus: a randomized, double‐blind, parallel‐group comparison trial
  publication-title: Diabet Med
– volume: 12
  start-page: 2086
  year: 1994
  end-page: 2093
  article-title: Randomized 2 × 2 trial evaluating hormonal treatment and the duration of chemotherapy in node‐positive breast cancer patients
  publication-title: J Clin Oncol
– ident: e_1_2_8_6_1
  doi: 10.1002/sim.6454
– ident: e_1_2_8_4_1
  doi: 10.1002/sim.4289
– ident: e_1_2_8_18_1
  doi: 10.1080/10543406.2013.856026
– ident: e_1_2_8_30_1
  doi: 10.1080/10543406.2013.856024
– volume: 4
  start-page: 143
  year: 1994
  ident: e_1_2_8_41_1
  article-title: Piecewise‐polynomial regression trees
  publication-title: Stat Sin
– volume: 82
  start-page: 155
  year: 1987
  ident: e_1_2_8_19_1
  article-title: Calibrating confidence coefficients
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1987.10478408
– volume: 34
  start-page: 216
  year: 1972
  ident: e_1_2_8_37_1
  article-title: Contribution to the discussion of regression models and life tables by D. R. Cox
  publication-title: J R Stat Soc B
– volume: 10
  start-page: 141
  year: 2009
  ident: e_1_2_8_28_1
  article-title: Subgroup analysis via recursive partitioning
  publication-title: J Mach Learn Res
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1464-5491.2004.01426.x
– ident: e_1_2_8_8_1
  doi: 10.1200/JCO.2011.38.3729
– ident: e_1_2_8_13_1
  doi: 10.7326/0003-4819-116-1-78
– ident: e_1_2_8_36_1
  doi: 10.1214/aos/1176344247
– ident: e_1_2_8_27_1
  doi: 10.1007/s11222-005-1311-z
– volume-title: SIDES: Subgroup Identification Based on Differential Effect Search
  year: 2017
  ident: e_1_2_8_31_1
– ident: e_1_2_8_10_1
  doi: 10.1200/JCO.1994.12.10.2086
– volume: 12
  start-page: 361
  year: 2002
  ident: e_1_2_8_11_1
  article-title: Regression trees with unbiased variable selection and interaction detection
  publication-title: Stat Sin
– ident: e_1_2_8_25_1
  doi: 10.1111/insr.12016
– ident: e_1_2_8_33_1
  doi: 10.2307/2986301
– volume-title: Statistical Models and Methods for Lifetime Data
  year: 1982
  ident: e_1_2_8_38_1
– ident: e_1_2_8_16_1
  doi: 10.1186/s12874-016-0122-6
– volume: 5
  start-page: 641
  year: 1995
  ident: e_1_2_8_35_1
  article-title: Generalized regression trees
  publication-title: Stat Sin
– ident: e_1_2_8_21_1
  doi: 10.1080/01621459.1963.10500855
– ident: e_1_2_8_5_1
  doi: 10.1002/sim.7020
– ident: e_1_2_8_24_1
  doi: 10.1198/016214501753168271
– ident: e_1_2_8_15_1
  doi: 10.1136/bmj.e1553
– volume: 1
  start-page: 477
  year: 1991
  ident: e_1_2_8_20_1
  article-title: Bootstrap calibration for confidence interval construction and selection
  publication-title: Stat Sin
– ident: e_1_2_8_40_1
  doi: 10.1002/sim.7416
– ident: e_1_2_8_9_1
  doi: 10.1080/10543406.2013.856021
– volume-title: Classification and Regression Trees
  year: 1984
  ident: e_1_2_8_22_1
– ident: e_1_2_8_7_1
  doi: 10.2202/1557-4679.1071
– ident: e_1_2_8_17_1
  doi: 10.1056/NEJMsr077003
– ident: e_1_2_8_29_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_34_1
  doi: 10.1080/01621459.1981.10477634
– ident: e_1_2_8_23_1
  doi: 10.1198/1061860032049
– ident: e_1_2_8_3_1
  doi: 10.1002/sim.4322
– volume: 7
  start-page: 815
  year: 1997
  ident: e_1_2_8_26_1
  article-title: Split selection methods for classification trees
  publication-title: Stat Sin
– ident: e_1_2_8_14_1
  doi: 10.1001/jamainternmed.2016.9138
– ident: e_1_2_8_39_1
  doi: 10.1111/j.1467-9868.2005.00490.x
– ident: e_1_2_8_2_1
  doi: 10.1002/sim.5933
– volume: 52
  start-page: 515
  year: 2009
  ident: e_1_2_8_12_1
  article-title: How to work with a subgroup analysis
  publication-title: Can J Surg
SSID ssj0011527
Score 2.3354192
Snippet Identification of subgroups with differential treatment effects in randomized trials is attracting much attention. Many methods use regression tree algorithms....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 545
SubjectTerms Algorithms
bootstrap
Bootstrap method
Breast cancer
Clinical trials
differential treatment effect
Humans
Kaplan-Meier Estimate
Medical prognosis
Medical statistics
Medical treatment
missing value
Models, Statistical
Precision medicine
Prognosis
Randomized Controlled Trials as Topic - methods
Regression Analysis
Treatment Outcome
Title Subgroups from regression trees with adjustment for prognostic effects and postselection inference
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7677
https://www.ncbi.nlm.nih.gov/pubmed/29671896
https://www.proquest.com/docview/2167955442
https://www.proquest.com/docview/2027588309
Volume 38
WOSCitedRecordID wos000456205500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFH9styGDofP8stM5Ioj-1K2Xpk3y45geE7YxnJP7rSRNIhPtjavn3-97TVsZKgz2U6F9Sdu895JP8r4BvEEE7CvPQ-LVNCTChizRIneJtFZpl1WVa2sDfjmV5-dqPtcXnVclxcLE_BDDgRtpRjtfk4Ib2xz-SRraXP84kIWU67DBUWzFCDbef5pdnQ42hL5gKxkpCznN-9SzKT_s295ejP5CmLcBa7vizB7d51t34GGHM9lRFIzHsObrMTw46yzpY9iO53UshiGNYYtQZ0za_AQsTidtuEfDKPyELf3X6C5bMzJiN4xOb5lx31ZN66TOEPky8vSqF9QD65xEmKkdu8FbTVtsh5pf9_GFT-Fq9uHz8UnSFWNIqkxombgiz0wxtXmY-mCCM0o4ZGhwPBVUc6zQeeq9qIqQeYO7NGVlmvOQ4nwgg0I1fwajelH7XWAKIZyxUhmujAiBG6FCbnBvlSlTaG4n8K7nSll1mcqpYMb3MuZY5iWOZ0njOYHXA-VNzM7xD5q9nrFlp59Nycn6hEhKcOxieIyaReYSU_vFCmnIoqtUluoJPI8CMbyEa5Qo_KsJvG35_t-3l5cfz-j64q6EL2ELMZluo-bTPRj9XK78K9isfqEMLPdhXc7VfifpvwEVLALU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9QwDLbGDbFJaMCxwbEBQULsqayXpk0inqbBaRN3JwQb2luVNsm0afSmK8fvx27aogmQkHiq1DppG9vJFzu2AV4jAnal4z5yauwjUfgk0iK1kSwKpW1SlrapDfh1KudzdX6uP63Buy4WJuSH6A1upBnNfE0KTgbpg19ZQ-vLb29lJuUdWBcoRekA1t9_npxNeydCV7GVvJSZHKdd7tmYH3Rtb69Gv0HM24i1WXImD_7rYx_CVos02WEQjUew5qoh3Ju1vvQh3A8WOxYCkYawSbgzpG1-DAVOKE3AR80oAIUt3UU4MFsxcmPXjOy3zNirVd0cU2eIfRmd9aoW1ANrj4kwU1l2g7fqptwONb_sIgy34Wzy4fToOGrLMURlIrSMbJYmJhsXqR87b7w1Slhkqbc8FlR1LNNp7JwoM584g_s0Vcg45T7GGUF6hYq-A4NqUbmnwBSCOFNIZbgywntuhPKpwd1VokymeTGC_Y4tednmKqeSGdd5yLLMcxzPnMZzBK96ypuQn-MPNHsdZ_NWQ-uck_8JsZTg2EX_GHWLHCamcosV0pBPV6kk1iN4EiSifwnXKFL4VyN40zD-r2_Pv5zM6PrsXwlfwsbx6WyaT0_mH3dhExGabmLo4z0YfF-u3HO4W_5AeVi-aAX-J27IBdw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFH_MTcZAnN50Ozc1wnA_deulaZOwn2TzcHg7hnOy30raJDLR3nH1_Pt9r2krwwkDfyq0L2mb917ySd43gH1EwK503EdOjXwkCp9EWqQ2kkWhtE3K0ja1Ab9M5HSqrq_1xQocd7EwIT9Ef-BGmtHM16Tgbm790Z-sofXNj0OZSfkA1kSqM9TKtdNP46tJb0ToKraSlTKTo7TLPRvzo67t7dXoL4h5G7E2S854878-9gk8bpEmexdE4ymsuGoA6-etLX0Aj8KJHQuBSAPYINwZ0jZvQYETShPwUTMKQGEL9zU4zFaMzNg1o_NbZuy3Zd24qTPEvox8vaoZ9cBaNxFmKsvmeKtuyu1Q85suwvAZXI3ffz75ELXlGKIyEVpGNksTk42K1I-cN94aJSyy1FseC6o6luk0dk6UmU-cwX2aKmScch_jjCC9QkV_DqvVrHI7wBSCOFNIZbgywntuhPKpwd1VokymeTGEg44tednmKqeSGd_zkGWZ5zieOY3nEN70lPOQn-MOmr2Os3mroXXOyf6EWEpw7KJ_jLpFBhNTudkSacimq1QS6yFsB4noX8I1ihT-1RDeNoz_59vzy7Nzur64L-FrWL84HeeTs-nHXdhAgKabEPp4D1Z_LpbuJTwsf6E4LF618v4b8tQFVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subgroups+from+regression+trees+with+adjustment+for+prognostic+effects+and+postselection+inference&rft.jtitle=Statistics+in+medicine&rft.au=Loh%2C+Wei%E2%80%90Yin&rft.au=Man%2C+Michael&rft.au=Wang%2C+Shuaicheng&rft.date=2019-02-20&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=38&rft.issue=4&rft.spage=545&rft.epage=557&rft_id=info:doi/10.1002%2Fsim.7677&rft.externalDBID=10.1002%252Fsim.7677&rft.externalDocID=SIM7677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon