Generalized backpropagation algorithm for training second‐order neural networks

The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second‐order counterparts, in which the linear operation between inputs to a neuron and the associated weights is repla...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in biomedical engineering Vol. 34; no. 5; pp. e2956 - n/a
Main Authors: Fan, Fenglei, Cong, Wenxiang, Wang, Ge
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01.05.2018
Subjects:
ISSN:2040-7939, 2040-7947, 2040-7947
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second‐order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second‐order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second‐order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm. The main contribution of this paper is to propose deep neural networks consisting of quadratic artificial neurons and an associated generalized backpropagation algorithm and illustrate such networks with a number of examples. Interestingly, each quadratic neuron can be interpreted as a fuzzy logic gate, and a neural network of quadratic neurons can be naturally interpreted as a deep fuzzy logic system. Hence, we suggest to understand and develop quadratic neural networks in light of fuzzy logic theory and techniques for applications in which fuzzy logic is relevant.
AbstractList The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second-order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second-order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second-order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm.The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second-order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second-order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second-order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm.
The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second‐order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second‐order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second‐order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm. The main contribution of this paper is to propose deep neural networks consisting of quadratic artificial neurons and an associated generalized backpropagation algorithm and illustrate such networks with a number of examples. Interestingly, each quadratic neuron can be interpreted as a fuzzy logic gate, and a neural network of quadratic neurons can be naturally interpreted as a deep fuzzy logic system. Hence, we suggest to understand and develop quadratic neural networks in light of fuzzy logic theory and techniques for applications in which fuzzy logic is relevant.
The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second‐order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second‐order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second‐order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm.
Author Cong, Wenxiang
Wang, Ge
Fan, Fenglei
Author_xml – sequence: 1
  givenname: Fenglei
  orcidid: 0000-0003-3691-5141
  surname: Fan
  fullname: Fan, Fenglei
  organization: Rensselaer Polytechnic Institute
– sequence: 2
  givenname: Wenxiang
  surname: Cong
  fullname: Cong, Wenxiang
  organization: Rensselaer Polytechnic Institute
– sequence: 3
  givenname: Ge
  orcidid: 0000-0002-2656-7705
  surname: Wang
  fullname: Wang, Ge
  email: wangg6@rpi.edu
  organization: Rensselaer Polytechnic Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29277960$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFO3DAURS00FTPASHxBFakbNhkcO3HsZTUCWolSIcHacuyXqSGxp3aiEaz6Cf3GfgkeBqhUlbd5b3He1dW9B2jivAOEjgu8KDAmp9r1CyIqtodmBJc4r0VZT95uKqZoHuMdTkOEEDXdR1MiSF0Lhmfo-gIcBNXZRzBZo_T9Ovi1WqnBepepbuWDHX70WetDNgRlnXWrLIL2zvz59dsHAyFzMCaBtIaND_fxCH1oVRdh_rIP0e352c3yS375_eLr8vNlrmkpWM45KwinqiI1py3hRkDNgZa1EQYb0-ACKjC81K0uKBWKVYBLigEazRqKGT1EJzvd5PjnCHGQvY0auk458GOUheC4oowzktBP_6B3fgwuuZMEUyaKklY8UR9fqLHpwch1sL0KD_I1rAQsdoAOPsYArdR2eE5qG00nCyy3hchUiNwW8tfi28Or5n_QfIdubAcP73JyefXtmX8CfkaZog
CitedBy_id crossref_primary_10_1007_s11063_023_11343_9
crossref_primary_10_1109_TMI_2019_2963248
crossref_primary_10_3390_s23229155
crossref_primary_10_1109_ACCESS_2022_3192387
crossref_primary_10_3390_s25092678
crossref_primary_10_1016_j_future_2023_07_043
crossref_primary_10_1007_s40747_021_00405_x
crossref_primary_10_1186_s42492_022_00118_z
crossref_primary_10_4150_jpm_2024_00234
crossref_primary_10_1364_AO_460164
crossref_primary_10_3390_electronics13245021
crossref_primary_10_1002_cnm_3372
crossref_primary_10_1016_j_envres_2021_111846
crossref_primary_10_1016_j_neucom_2019_09_001
crossref_primary_10_1080_02331934_2023_2239852
crossref_primary_10_1109_TIP_2020_3019661
Cites_doi 10.1109/TBME.2015.2487779
10.1109/CINC.2009.111
10.1109/TMI.2015.2461533
10.1109/TMI.2016.2538465
10.1016/j.chaos.2006.06.063
10.1109/TMI.2016.2535865
10.1016/0893-6080(89)90020-8
10.1118/1.4929559
10.1016/j.compmedimag.2015.02.001
10.1016/j.neunet.2014.09.003
10.1364/AO.26.004972
10.2478/v10006-012-0034-5
10.1016/S0169-7439(97)00061-0
10.1109/72.80210
10.2967/jnumed.109.069112
10.1016/j.neucom.2016.08.150
10.1023/A:1009634821039
10.1007/s101150050006
10.3233/JIFS-169134
10.1109/TMI.2016.2528162
10.1016/j.ins.2005.08.002
10.1007/978-3-642-88163-3
10.1109/72.317722
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/cnm.2956
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Civil Engineering Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage n/a
ExternalDocumentID 29277960
10_1002_cnm_2956
CNM2956
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RWI
WRC
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3496-8861283a52783f28d9e78e347d9d0ddb01e5ed84cfc1339a65e0430eebc6b3063
IEDL.DBID DRFUL
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431995600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2040-7939
2040-7947
IngestDate Thu Oct 02 10:46:12 EDT 2025
Wed Aug 13 09:09:54 EDT 2025
Wed Feb 19 02:32:49 EST 2025
Sat Nov 29 03:05:16 EST 2025
Tue Nov 18 22:27:28 EST 2025
Sun Sep 21 06:20:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords artificial neural network
second-order neurons
backpropagation (BP)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2017 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3496-8861283a52783f28d9e78e347d9d0ddb01e5ed84cfc1339a65e0430eebc6b3063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2656-7705
0000-0003-3691-5141
PMID 29277960
PQID 2036914358
PQPubID 2034586
PageCount 10
ParticipantIDs proquest_miscellaneous_1980536862
proquest_journals_2036914358
pubmed_primary_29277960
crossref_citationtrail_10_1002_cnm_2956
crossref_primary_10_1002_cnm_2956
wiley_primary_10_1002_cnm_2956_CNM2956
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int J Numer Method Biomed Eng
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 2
2008; 36
2009
2006; 176
2000; 2
2016; 35
1990; 1
2015; 61
2015; 42
2015; 41
2000; 11
2017; 32
1997; 39
2016; 63
2017
2016
2017; 262
2015
2012; 22
1969
1994; 5
2010; 51
1989
1987; 26
1988
e_1_2_5_27_1
e_1_2_5_28_1
Fan F (e_1_2_5_9_1) 2017
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Lang KJ (e_1_2_5_13_1) 1989
Goodfellow I (e_1_2_5_6_1) 2016
e_1_2_5_29_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Minsky ML (e_1_2_5_20_1) 1969
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – year: 2009
– volume: 39
  start-page: 43
  year: 1997
  end-page: 62
  article-title: Introduction to multi‐layer feed‐forward neural networks
  publication-title: Chemom Intell Lab Syst
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  end-page: 1251
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans Med Imaging
– year: 1989
– volume: 11
  start-page: 17
  issue: 1
  year: 2000
  end-page: 27
  article-title: Learning synaptic clusters for nonlinear dendritic processing
  publication-title: Neural Process Lett
– volume: 176
  start-page: 2337
  issue: 16
  year: 2006
  end-page: 2354
  article-title: Adaptive feedback linearization control of chaotic systems via recurrent high‐order neural networks
  publication-title: Inform Sci
– volume: 41
  start-page: 1
  year: 2015
  end-page: 2
  article-title: Machine learning in medical imaging
  publication-title: Comput Med Imaging Graph
– year: 2016
– volume: 32
  start-page: 1365
  issue: 2
  year: 2017
  end-page: 1376
  article-title: Notes on the generalized backpropagation algorithm for contextual neural networks with conditional aggregation functions
  publication-title: J Intell Fuzzy Syst
– year: 2017
  article-title: A new type of neurons for machine learning
  publication-title: Int J Numer Meth Biomed Eng
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
– volume: 42
  start-page: 5879
  issue: 10
  year: 2015
  end-page: 5889
  article-title: Simultaneous CT‐MRI—next chapter of multimodality imaging
  publication-title: Med Phys
– volume: 5
  start-page: 698
  issue: 5
  year: 1994
  end-page: 711
  article-title: Developing higher‐order networks with empirically selected units
  publication-title: IEEE Trans Neural Netw
– volume: 51
  start-page: 1431
  issue: 9
  year: 2010
  end-page: 1438
  article-title: Toward implementing an MRI‐based PET attenuation‐correction method for neurologic studies on the MR‐PET brain prototype
  publication-title: J Nucl Med
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  end-page: 1298
  article-title: Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
– volume: 36
  start-page: 388
  issue: 2
  year: 2008
  end-page: 396
  article-title: “Global stability of stochastic high‐order neural networks with discrete and distributed delays,” chaos
  publication-title: Solitons Fractals
– volume: 22
  start-page: 449
  issue: 2
  year: 2012
  end-page: 459
  article-title: Backpropagation generalized delta rule for the selective attention sigma‐if artificial neural network
  publication-title: Int J Appl Math Comput Sci
– volume: 35
  start-page: 1207
  issue: 5
  year: 2016
  end-page: 1216
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
  publication-title: IEEE Trans Med Imaging
– volume: 35
  start-page: 174
  year: 2016
  end-page: 183
  article-title: Estimating CT image from MRI data using structured random forest and auto‐context model
  publication-title: IEEE Trans Med Imaging
– year: 1969
– year: 1988
– volume: 26
  start-page: 4972
  issue: 23
  year: 1987
  end-page: 4978
  article-title: Learning, invariance, and generalization in high‐order neural networks
  publication-title: Appl Optics
– start-page: 52
  year: 1989
  end-page: 59
– volume: 2
  start-page: 115
  issue: 1
  year: 2000
  end-page: 129
  article-title: FANNC: a fast adaptive neural network classifier
  publication-title: Knowl Inf Syst
– volume: 1
  start-page: 111
  year: 1990
  end-page: 121
  article-title: Probabilistic neural networks and polynomial adaline as complementary techniques for classification
  publication-title: IEEE Trans Neural Netw
– volume: 262
  start-page: 57
  year: 2017
  end-page: 66
  article-title: USNFIS: uniform stable neuro fuzzy inference system
  publication-title: Neurocomputing
– volume: 63
  start-page: 1301
  issue: 6
  year: 2016
  end-page: 1309
  article-title: Simultaneous CT‐MRI reconstruction for constrained imaging geometries using structural coupling and compressive sensing
  publication-title: IEEE Trans Biomed Eng
– year: 2015
– ident: e_1_2_5_17_1
  doi: 10.1109/TBME.2015.2487779
– ident: e_1_2_5_27_1
  doi: 10.1109/CINC.2009.111
– ident: e_1_2_5_15_1
– ident: e_1_2_5_19_1
  doi: 10.1109/TMI.2015.2461533
– ident: e_1_2_5_2_1
  doi: 10.1109/TMI.2016.2538465
– ident: e_1_2_5_22_1
  doi: 10.1016/j.chaos.2006.06.063
– ident: e_1_2_5_4_1
  doi: 10.1109/TMI.2016.2535865
– ident: e_1_2_5_11_1
– ident: e_1_2_5_10_1
  doi: 10.1016/0893-6080(89)90020-8
– ident: e_1_2_5_16_1
  doi: 10.1118/1.4929559
– ident: e_1_2_5_28_1
– ident: e_1_2_5_7_1
  doi: 10.1016/j.compmedimag.2015.02.001
– ident: e_1_2_5_5_1
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_5_21_1
  doi: 10.1364/AO.26.004972
– ident: e_1_2_5_30_1
  doi: 10.2478/v10006-012-0034-5
– ident: e_1_2_5_12_1
  doi: 10.1016/S0169-7439(97)00061-0
– start-page: 52
  volume-title: Proceedings of the 1988 connectionist models summer school
  year: 1989
  ident: e_1_2_5_13_1
– ident: e_1_2_5_26_1
  doi: 10.1109/72.80210
– volume-title: Perceptrons
  year: 1969
  ident: e_1_2_5_20_1
– ident: e_1_2_5_18_1
  doi: 10.2967/jnumed.109.069112
– ident: e_1_2_5_8_1
  doi: 10.1016/j.neucom.2016.08.150
– year: 2017
  ident: e_1_2_5_9_1
  article-title: A new type of neurons for machine learning
  publication-title: Int J Numer Meth Biomed Eng
– ident: e_1_2_5_29_1
  doi: 10.1023/A:1009634821039
– ident: e_1_2_5_14_1
  doi: 10.1007/s101150050006
– ident: e_1_2_5_31_1
  doi: 10.3233/JIFS-169134
– ident: e_1_2_5_3_1
  doi: 10.1109/TMI.2016.2528162
– ident: e_1_2_5_23_1
  doi: 10.1016/j.ins.2005.08.002
– ident: e_1_2_5_25_1
  doi: 10.1007/978-3-642-88163-3
– ident: e_1_2_5_24_1
  doi: 10.1109/72.317722
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_5_6_1
SSID ssj0000299973
Score 2.2904472
Snippet The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2956
SubjectTerms Algorithms
artificial neural network
Artificial neural networks
Back propagation
backpropagation (BP)
Fuzzy Logic
Learning algorithms
Machine Learning
Mathematical models
Neural networks
Neural Networks (Computer)
Neurons
second‐order neurons
Title Generalized backpropagation algorithm for training second‐order neural networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.2956
https://www.ncbi.nlm.nih.gov/pubmed/29277960
https://www.proquest.com/docview/2036914358
https://www.proquest.com/docview/1980536862
Volume 34
WOSCitedRecordID wos000431995600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2040-7947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000299973
  issn: 2040-7939
  databaseCode: DRFUL
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5By8DC-1FeChKCqZA4aWOPCKgYSgUIpG6RHbtQ0aaoKQxM_AR-I7-Eu8QJQoCExBQpOceWz3f-zj5_BthDLSuuFFqaqzBAaQpZl2FAOVM9CrgQgZiMMr8ddjq82xWXNquSzsLk_BDlghtZRuavycClSo8-SUPjZHjIEN1PQ5XhsA0qUD29bt22yxUWFz2tyLaYWZY2J3xRsM-67Kgo_nU--gYyv2LWbNJpzf-nuQswZ6Gmc5yPjUWYMskSzFvY6VijTpfhylJP91_wtZLxAzYP3UymMkcO7kbj_uR-6CC6dYoLJZyU4mj9_vqWUXc6xIqJVSV5Tnm6Arets5uT87q9aaEeE2F8nXMEOtyXDbp3o8e4Fibkxg9CLbSrtXI90zCaB3EvxphWyGbDEFeYMSpuKgw6_FWoJKPErIPDTagQw3hCBzpQAVNeQImmCCwlQQ9Zg4Oiv6PY0pBT4wdRTqDMIuypiHqqBrul5GNOvfGDzFahssgaXxrR3qogHMjxF-VnNBvaC5GJGT2lkSc4uh86HlODtVzVZSVMsDDEyK4G-5lGf609Oulc0HPjr4KbMIuAi-cJk1tQmYyfzDbMxM-Tfjregemwy3fsMP4AWSX1FQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qK-jF-rY-VxA91W63226CJ1GLYi0qCt5Cskm12G6l23rw5E_wN_pLnNmXiAqCp4XdZDNkMpNvkskXgB3UsmJKoaXZCgOUBpdl6bmUM9WhgAsRiIko81teu83u7vhlDg7SszAxP0S24EaWEflrMnBakK58sob6QX_fQXg_AQUXR1E9D4Xj6-ZtK1tisdHV8miP2Yny5niNp_SztlNJq3-dkL6hzK-gNZp1msV_yTsLMwnYtA7j0TEHORPMQzEBnlZi1uECXCXk090XfK2k_4jyoaOJlGbJ3v1g2B099C3Et1Z6pYQVUiSt31_fIvJOi3gxsakgzioPF-G2eXJzdFpO7loo-0QZX2YMoQ6ryTrdvNFxmObGY6bmepprW2tlV03daOb6HR-jWi4bdUNsYcYov6Ew7KgtQT4YBGYFLGY8hSimyrWrXeU6qupSqilCS0ngQ5ZgL-1w4SdE5CR8T8QUyo7AnhLUUyXYzko-xeQbP5RZT3UmEvMLBe2uckKCDH-RfUbDod0QGZjBOBRVztAB0QGZEizHus4acbjjeRjblWA3UumvrYuj9gU9V_9acAumTm8uWqJ11j5fg2mEXyxOn1yH_Gg4Nhsw6T-PuuFwMxnNHzkU-B0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q3xx3p1OrSD6NO26bk3wSdShOMcUB3sLSZPpULuxbj745E_wN_pLPKc3GSoIPhXatAk5-U6_k5x8AdhDKyumFCLNVhigVLksSs-lnKkOBVzIQEwkmV_3Gg3WbvPmBByne2FifYhswo2QEflrArjp687Rl2qoHzwfOkjvJ2HarfAqonL67LbWqmdTLDa6Wh6tMTtR3hwv81R-1naO0tfHf0jfWOY4aY3-OrXcv9q7APMJ2bRO4tGxCBMmWIJcQjytBNbhMtwk4tPdV7ytpP-I7UNHExnNkk_3vUF3-PBsIb-10iMlrJAiaf3x9h6Jd1qki4lVBXFWebgCrdr53elFMTlroeiTZHyRMaQ6rCwrdPJGx2GaG4-Zsutprm2tlV0yFaOZ63d8jGq5rFYMqYUZo_yqwrCjvApTQS8w62Ax4ylkMSWuXe0q11Ell1JNkVpKIh8yDwdphws_ESKnxj-JWELZEdhTgnoqD7tZyX4svvFDmUJqM5HALxS0usqJCTL8RPYYgUOrITIwvVEoSpyhA6INMnlYi22dVeJwx_MwtsvDfmTSX2sXp41rum78teAOzDbPaqJ-2bjahDlkXyzOnizA1HAwMlsw478Mu-FgOxnMn9Co95g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+backpropagation+algorithm+for+training+second-order+neural+networks&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Fan%2C+Fenglei&rft.au=Cong%2C+Wenxiang&rft.au=Wang%2C+Ge&rft.date=2018-05-01&rft.issn=2040-7947&rft.eissn=2040-7947&rft.volume=34&rft.issue=5&rft.spage=e2956&rft_id=info:doi/10.1002%2Fcnm.2956&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon