Generalized backpropagation algorithm for training second‐order neural networks
The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second‐order counterparts, in which the linear operation between inputs to a neuron and the associated weights is repla...
Saved in:
| Published in: | International journal for numerical methods in biomedical engineering Vol. 34; no. 5; pp. e2956 - n/a |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Wiley Subscription Services, Inc
01.05.2018
|
| Subjects: | |
| ISSN: | 2040-7939, 2040-7947, 2040-7947 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second‐order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second‐order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second‐order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm.
The main contribution of this paper is to propose deep neural networks consisting of quadratic artificial neurons and an associated generalized backpropagation algorithm and illustrate such networks with a number of examples. Interestingly, each quadratic neuron can be interpreted as a fuzzy logic gate, and a neural network of quadratic neurons can be naturally interpreted as a deep fuzzy logic system. Hence, we suggest to understand and develop quadratic neural networks in light of fuzzy logic theory and techniques for applications in which fuzzy logic is relevant. |
|---|---|
| AbstractList | The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second-order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second-order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second-order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm.The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second-order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second-order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second-order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm. The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second‐order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second‐order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second‐order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm. The main contribution of this paper is to propose deep neural networks consisting of quadratic artificial neurons and an associated generalized backpropagation algorithm and illustrate such networks with a number of examples. Interestingly, each quadratic neuron can be interpreted as a fuzzy logic gate, and a neural network of quadratic neurons can be naturally interpreted as a deep fuzzy logic system. Hence, we suggest to understand and develop quadratic neural networks in light of fuzzy logic theory and techniques for applications in which fuzzy logic is relevant. The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second‐order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second‐order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second‐order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm. |
| Author | Cong, Wenxiang Wang, Ge Fan, Fenglei |
| Author_xml | – sequence: 1 givenname: Fenglei orcidid: 0000-0003-3691-5141 surname: Fan fullname: Fan, Fenglei organization: Rensselaer Polytechnic Institute – sequence: 2 givenname: Wenxiang surname: Cong fullname: Cong, Wenxiang organization: Rensselaer Polytechnic Institute – sequence: 3 givenname: Ge orcidid: 0000-0002-2656-7705 surname: Wang fullname: Wang, Ge email: wangg6@rpi.edu organization: Rensselaer Polytechnic Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29277960$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kcFO3DAURS00FTPASHxBFakbNhkcO3HsZTUCWolSIcHacuyXqSGxp3aiEaz6Cf3GfgkeBqhUlbd5b3He1dW9B2jivAOEjgu8KDAmp9r1CyIqtodmBJc4r0VZT95uKqZoHuMdTkOEEDXdR1MiSF0Lhmfo-gIcBNXZRzBZo_T9Ovi1WqnBepepbuWDHX70WetDNgRlnXWrLIL2zvz59dsHAyFzMCaBtIaND_fxCH1oVRdh_rIP0e352c3yS375_eLr8vNlrmkpWM45KwinqiI1py3hRkDNgZa1EQYb0-ACKjC81K0uKBWKVYBLigEazRqKGT1EJzvd5PjnCHGQvY0auk458GOUheC4oowzktBP_6B3fgwuuZMEUyaKklY8UR9fqLHpwch1sL0KD_I1rAQsdoAOPsYArdR2eE5qG00nCyy3hchUiNwW8tfi28Or5n_QfIdubAcP73JyefXtmX8CfkaZog |
| CitedBy_id | crossref_primary_10_1007_s11063_023_11343_9 crossref_primary_10_1109_TMI_2019_2963248 crossref_primary_10_3390_s23229155 crossref_primary_10_1109_ACCESS_2022_3192387 crossref_primary_10_3390_s25092678 crossref_primary_10_1016_j_future_2023_07_043 crossref_primary_10_1007_s40747_021_00405_x crossref_primary_10_1186_s42492_022_00118_z crossref_primary_10_4150_jpm_2024_00234 crossref_primary_10_1364_AO_460164 crossref_primary_10_3390_electronics13245021 crossref_primary_10_1002_cnm_3372 crossref_primary_10_1016_j_envres_2021_111846 crossref_primary_10_1016_j_neucom_2019_09_001 crossref_primary_10_1080_02331934_2023_2239852 crossref_primary_10_1109_TIP_2020_3019661 |
| Cites_doi | 10.1109/TBME.2015.2487779 10.1109/CINC.2009.111 10.1109/TMI.2015.2461533 10.1109/TMI.2016.2538465 10.1016/j.chaos.2006.06.063 10.1109/TMI.2016.2535865 10.1016/0893-6080(89)90020-8 10.1118/1.4929559 10.1016/j.compmedimag.2015.02.001 10.1016/j.neunet.2014.09.003 10.1364/AO.26.004972 10.2478/v10006-012-0034-5 10.1016/S0169-7439(97)00061-0 10.1109/72.80210 10.2967/jnumed.109.069112 10.1016/j.neucom.2016.08.150 10.1023/A:1009634821039 10.1007/s101150050006 10.3233/JIFS-169134 10.1109/TMI.2016.2528162 10.1016/j.ins.2005.08.002 10.1007/978-3-642-88163-3 10.1109/72.317722 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1002/cnm.2956 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Civil Engineering Abstracts MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2040-7947 |
| EndPage | n/a |
| ExternalDocumentID | 29277960 10_1002_cnm_2956 CNM2956 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG1 XV2 ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM RWI WRC 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c3496-8861283a52783f28d9e78e347d9d0ddb01e5ed84cfc1339a65e0430eebc6b3063 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431995600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2040-7939 2040-7947 |
| IngestDate | Thu Oct 02 10:46:12 EDT 2025 Wed Aug 13 09:09:54 EDT 2025 Wed Feb 19 02:32:49 EST 2025 Sat Nov 29 03:05:16 EST 2025 Tue Nov 18 22:27:28 EST 2025 Sun Sep 21 06:20:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | artificial neural network second-order neurons backpropagation (BP) |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2017 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3496-8861283a52783f28d9e78e347d9d0ddb01e5ed84cfc1339a65e0430eebc6b3063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2656-7705 0000-0003-3691-5141 |
| PMID | 29277960 |
| PQID | 2036914358 |
| PQPubID | 2034586 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1980536862 proquest_journals_2036914358 pubmed_primary_29277960 crossref_citationtrail_10_1002_cnm_2956 crossref_primary_10_1002_cnm_2956 wiley_primary_10_1002_cnm_2956_CNM2956 |
| PublicationCentury | 2000 |
| PublicationDate | May 2018 2018-05-00 20180501 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chichester |
| PublicationTitle | International journal for numerical methods in biomedical engineering |
| PublicationTitleAlternate | Int J Numer Method Biomed Eng |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1989; 2 2008; 36 2009 2006; 176 2000; 2 2016; 35 1990; 1 2015; 61 2015; 42 2015; 41 2000; 11 2017; 32 1997; 39 2016; 63 2017 2016 2017; 262 2015 2012; 22 1969 1994; 5 2010; 51 1989 1987; 26 1988 e_1_2_5_27_1 e_1_2_5_28_1 Fan F (e_1_2_5_9_1) 2017 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Lang KJ (e_1_2_5_13_1) 1989 Goodfellow I (e_1_2_5_6_1) 2016 e_1_2_5_29_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Minsky ML (e_1_2_5_20_1) 1969 e_1_2_5_30_1 e_1_2_5_31_1 |
| References_xml | – year: 2009 – volume: 39 start-page: 43 year: 1997 end-page: 62 article-title: Introduction to multi‐layer feed‐forward neural networks publication-title: Chemom Intell Lab Syst – volume: 35 start-page: 1240 issue: 5 year: 2016 end-page: 1251 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans Med Imaging – year: 1989 – volume: 11 start-page: 17 issue: 1 year: 2000 end-page: 27 article-title: Learning synaptic clusters for nonlinear dendritic processing publication-title: Neural Process Lett – volume: 176 start-page: 2337 issue: 16 year: 2006 end-page: 2354 article-title: Adaptive feedback linearization control of chaotic systems via recurrent high‐order neural networks publication-title: Inform Sci – volume: 41 start-page: 1 year: 2015 end-page: 2 article-title: Machine learning in medical imaging publication-title: Comput Med Imaging Graph – year: 2016 – volume: 32 start-page: 1365 issue: 2 year: 2017 end-page: 1376 article-title: Notes on the generalized backpropagation algorithm for contextual neural networks with conditional aggregation functions publication-title: J Intell Fuzzy Syst – year: 2017 article-title: A new type of neurons for machine learning publication-title: Int J Numer Meth Biomed Eng – volume: 61 start-page: 85 year: 2015 end-page: 117 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw – volume: 42 start-page: 5879 issue: 10 year: 2015 end-page: 5889 article-title: Simultaneous CT‐MRI—next chapter of multimodality imaging publication-title: Med Phys – volume: 5 start-page: 698 issue: 5 year: 1994 end-page: 711 article-title: Developing higher‐order networks with empirically selected units publication-title: IEEE Trans Neural Netw – volume: 51 start-page: 1431 issue: 9 year: 2010 end-page: 1438 article-title: Toward implementing an MRI‐based PET attenuation‐correction method for neurologic studies on the MR‐PET brain prototype publication-title: J Nucl Med – volume: 35 start-page: 1285 issue: 5 year: 2016 end-page: 1298 article-title: Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging – volume: 2 start-page: 359 issue: 5 year: 1989 end-page: 366 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw – volume: 36 start-page: 388 issue: 2 year: 2008 end-page: 396 article-title: “Global stability of stochastic high‐order neural networks with discrete and distributed delays,” chaos publication-title: Solitons Fractals – volume: 22 start-page: 449 issue: 2 year: 2012 end-page: 459 article-title: Backpropagation generalized delta rule for the selective attention sigma‐if artificial neural network publication-title: Int J Appl Math Comput Sci – volume: 35 start-page: 1207 issue: 5 year: 2016 end-page: 1216 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans Med Imaging – volume: 35 start-page: 174 year: 2016 end-page: 183 article-title: Estimating CT image from MRI data using structured random forest and auto‐context model publication-title: IEEE Trans Med Imaging – year: 1969 – year: 1988 – volume: 26 start-page: 4972 issue: 23 year: 1987 end-page: 4978 article-title: Learning, invariance, and generalization in high‐order neural networks publication-title: Appl Optics – start-page: 52 year: 1989 end-page: 59 – volume: 2 start-page: 115 issue: 1 year: 2000 end-page: 129 article-title: FANNC: a fast adaptive neural network classifier publication-title: Knowl Inf Syst – volume: 1 start-page: 111 year: 1990 end-page: 121 article-title: Probabilistic neural networks and polynomial adaline as complementary techniques for classification publication-title: IEEE Trans Neural Netw – volume: 262 start-page: 57 year: 2017 end-page: 66 article-title: USNFIS: uniform stable neuro fuzzy inference system publication-title: Neurocomputing – volume: 63 start-page: 1301 issue: 6 year: 2016 end-page: 1309 article-title: Simultaneous CT‐MRI reconstruction for constrained imaging geometries using structural coupling and compressive sensing publication-title: IEEE Trans Biomed Eng – year: 2015 – ident: e_1_2_5_17_1 doi: 10.1109/TBME.2015.2487779 – ident: e_1_2_5_27_1 doi: 10.1109/CINC.2009.111 – ident: e_1_2_5_15_1 – ident: e_1_2_5_19_1 doi: 10.1109/TMI.2015.2461533 – ident: e_1_2_5_2_1 doi: 10.1109/TMI.2016.2538465 – ident: e_1_2_5_22_1 doi: 10.1016/j.chaos.2006.06.063 – ident: e_1_2_5_4_1 doi: 10.1109/TMI.2016.2535865 – ident: e_1_2_5_11_1 – ident: e_1_2_5_10_1 doi: 10.1016/0893-6080(89)90020-8 – ident: e_1_2_5_16_1 doi: 10.1118/1.4929559 – ident: e_1_2_5_28_1 – ident: e_1_2_5_7_1 doi: 10.1016/j.compmedimag.2015.02.001 – ident: e_1_2_5_5_1 doi: 10.1016/j.neunet.2014.09.003 – ident: e_1_2_5_21_1 doi: 10.1364/AO.26.004972 – ident: e_1_2_5_30_1 doi: 10.2478/v10006-012-0034-5 – ident: e_1_2_5_12_1 doi: 10.1016/S0169-7439(97)00061-0 – start-page: 52 volume-title: Proceedings of the 1988 connectionist models summer school year: 1989 ident: e_1_2_5_13_1 – ident: e_1_2_5_26_1 doi: 10.1109/72.80210 – volume-title: Perceptrons year: 1969 ident: e_1_2_5_20_1 – ident: e_1_2_5_18_1 doi: 10.2967/jnumed.109.069112 – ident: e_1_2_5_8_1 doi: 10.1016/j.neucom.2016.08.150 – year: 2017 ident: e_1_2_5_9_1 article-title: A new type of neurons for machine learning publication-title: Int J Numer Meth Biomed Eng – ident: e_1_2_5_29_1 doi: 10.1023/A:1009634821039 – ident: e_1_2_5_14_1 doi: 10.1007/s101150050006 – ident: e_1_2_5_31_1 doi: 10.3233/JIFS-169134 – ident: e_1_2_5_3_1 doi: 10.1109/TMI.2016.2528162 – ident: e_1_2_5_23_1 doi: 10.1016/j.ins.2005.08.002 – ident: e_1_2_5_25_1 doi: 10.1007/978-3-642-88163-3 – ident: e_1_2_5_24_1 doi: 10.1109/72.317722 – volume-title: Deep learning year: 2016 ident: e_1_2_5_6_1 |
| SSID | ssj0000299973 |
| Score | 2.2904472 |
| Snippet | The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2956 |
| SubjectTerms | Algorithms artificial neural network Artificial neural networks Back propagation backpropagation (BP) Fuzzy Logic Learning algorithms Machine Learning Mathematical models Neural networks Neural Networks (Computer) Neurons second‐order neurons |
| Title | Generalized backpropagation algorithm for training second‐order neural networks |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.2956 https://www.ncbi.nlm.nih.gov/pubmed/29277960 https://www.proquest.com/docview/2036914358 https://www.proquest.com/docview/1980536862 |
| Volume | 34 |
| WOSCitedRecordID | wos000431995600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2040-7947 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000299973 issn: 2040-7939 databaseCode: DRFUL dateStart: 20100101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5By8DC-1FeChKCqZA4aWOPCKgYSgUIpG6RHbtQ0aaoKQxM_AR-I7-Eu8QJQoCExBQpOceWz3f-zj5_BthDLSuuFFqaqzBAaQpZl2FAOVM9CrgQgZiMMr8ddjq82xWXNquSzsLk_BDlghtZRuavycClSo8-SUPjZHjIEN1PQ5XhsA0qUD29bt22yxUWFz2tyLaYWZY2J3xRsM-67Kgo_nU--gYyv2LWbNJpzf-nuQswZ6Gmc5yPjUWYMskSzFvY6VijTpfhylJP91_wtZLxAzYP3UymMkcO7kbj_uR-6CC6dYoLJZyU4mj9_vqWUXc6xIqJVSV5Tnm6Arets5uT87q9aaEeE2F8nXMEOtyXDbp3o8e4Fibkxg9CLbSrtXI90zCaB3EvxphWyGbDEFeYMSpuKgw6_FWoJKPErIPDTagQw3hCBzpQAVNeQImmCCwlQQ9Zg4Oiv6PY0pBT4wdRTqDMIuypiHqqBrul5GNOvfGDzFahssgaXxrR3qogHMjxF-VnNBvaC5GJGT2lkSc4uh86HlODtVzVZSVMsDDEyK4G-5lGf609Oulc0HPjr4KbMIuAi-cJk1tQmYyfzDbMxM-Tfjregemwy3fsMP4AWSX1FQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qK-jF-rY-VxA91W63226CJ1GLYi0qCt5Cskm12G6l23rw5E_wN_pLnNmXiAqCp4XdZDNkMpNvkskXgB3UsmJKoaXZCgOUBpdl6bmUM9WhgAsRiIko81teu83u7vhlDg7SszAxP0S24EaWEflrMnBakK58sob6QX_fQXg_AQUXR1E9D4Xj6-ZtK1tisdHV8miP2Yny5niNp_SztlNJq3-dkL6hzK-gNZp1msV_yTsLMwnYtA7j0TEHORPMQzEBnlZi1uECXCXk090XfK2k_4jyoaOJlGbJ3v1g2B099C3Et1Z6pYQVUiSt31_fIvJOi3gxsakgzioPF-G2eXJzdFpO7loo-0QZX2YMoQ6ryTrdvNFxmObGY6bmepprW2tlV03daOb6HR-jWi4bdUNsYcYov6Ew7KgtQT4YBGYFLGY8hSimyrWrXeU6qupSqilCS0ngQ5ZgL-1w4SdE5CR8T8QUyo7AnhLUUyXYzko-xeQbP5RZT3UmEvMLBe2uckKCDH-RfUbDod0QGZjBOBRVztAB0QGZEizHus4acbjjeRjblWA3UumvrYuj9gU9V_9acAumTm8uWqJ11j5fg2mEXyxOn1yH_Gg4Nhsw6T-PuuFwMxnNHzkU-B0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q3xx3p1OrSD6NO26bk3wSdShOMcUB3sLSZPpULuxbj745E_wN_pLPKc3GSoIPhXatAk5-U6_k5x8AdhDKyumFCLNVhigVLksSs-lnKkOBVzIQEwkmV_3Gg3WbvPmBByne2FifYhswo2QEflrArjp687Rl2qoHzwfOkjvJ2HarfAqonL67LbWqmdTLDa6Wh6tMTtR3hwv81R-1naO0tfHf0jfWOY4aY3-OrXcv9q7APMJ2bRO4tGxCBMmWIJcQjytBNbhMtwk4tPdV7ytpP-I7UNHExnNkk_3vUF3-PBsIb-10iMlrJAiaf3x9h6Jd1qki4lVBXFWebgCrdr53elFMTlroeiTZHyRMaQ6rCwrdPJGx2GaG4-Zsutprm2tlV0yFaOZ63d8jGq5rFYMqYUZo_yqwrCjvApTQS8w62Ax4ylkMSWuXe0q11Ell1JNkVpKIh8yDwdphws_ESKnxj-JWELZEdhTgnoqD7tZyX4svvFDmUJqM5HALxS0usqJCTL8RPYYgUOrITIwvVEoSpyhA6INMnlYi22dVeJwx_MwtsvDfmTSX2sXp41rum78teAOzDbPaqJ-2bjahDlkXyzOnizA1HAwMlsw478Mu-FgOxnMn9Co95g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+backpropagation+algorithm+for+training+second-order+neural+networks&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Fan%2C+Fenglei&rft.au=Cong%2C+Wenxiang&rft.au=Wang%2C+Ge&rft.date=2018-05-01&rft.issn=2040-7947&rft.eissn=2040-7947&rft.volume=34&rft.issue=5&rft.spage=e2956&rft_id=info:doi/10.1002%2Fcnm.2956&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |