An adaptive semi‐implicit finite element solver for brain cancer progression modeling
Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents...
Gespeichert in:
| Veröffentlicht in: | International journal for numerical methods in biomedical engineering Jg. 39; H. 7; S. e3734 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2023
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 2040-7939, 2040-7947, 2040-7947 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum‐based finite element framework that is built on high performance computing, open‐source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two‐ and three‐dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor‐induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient‐specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling.
We propose a high‐fidelity finite element method to simulate glioblastoma growth. The proposed in silico brain cancer model is robust in such that is capable to perform adaptive mesh refinement/coarsening and can realize scalable computations. Quantitative analysis permitted to assess the model sensitivity and stability, as well as to interrogate the parameter space and, thus, identify important mechanisms of glioblastoma progression. Our in silico model demonstrated great predictive potential, and can prospectively be used as a personalized treatment prognostic tool. |
|---|---|
| AbstractList | Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum‐based finite element framework that is built on high performance computing, open‐source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two‐ and three‐dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor‐induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient‐specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling. Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum-based finite element framework that is built on high performance computing, open-source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two- and three-dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor-induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient-specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling.Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum-based finite element framework that is built on high performance computing, open-source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two- and three-dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor-induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient-specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling. Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum‐based finite element framework that is built on high performance computing, open‐source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two‐ and three‐dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor‐induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient‐specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling. We propose a high‐fidelity finite element method to simulate glioblastoma growth. The proposed in silico brain cancer model is robust in such that is capable to perform adaptive mesh refinement/coarsening and can realize scalable computations. Quantitative analysis permitted to assess the model sensitivity and stability, as well as to interrogate the parameter space and, thus, identify important mechanisms of glioblastoma progression. Our in silico model demonstrated great predictive potential, and can prospectively be used as a personalized treatment prognostic tool. |
| Author | Stylianopoulos, Triantafyllos Sakkalis, Vangelis Vavourakis, Vasileios Papaharilaou, Yannis Papanikas, Christos Panagiotis Tzirakis, Konstantinos Tzamali, Eleftheria Caiazzo, Alfonso |
| Author_xml | – sequence: 1 givenname: Konstantinos orcidid: 0000-0003-1360-5423 surname: Tzirakis fullname: Tzirakis, Konstantinos email: ktzirakis@hmu.gr organization: Hellenic Mediterranean University – sequence: 2 givenname: Christos Panagiotis orcidid: 0000-0002-1084-6187 surname: Papanikas fullname: Papanikas, Christos Panagiotis organization: University of Cyprus – sequence: 3 givenname: Vangelis orcidid: 0000-0003-4701-850X surname: Sakkalis fullname: Sakkalis, Vangelis organization: Foundation for Research and Technology–Hellas – sequence: 4 givenname: Eleftheria orcidid: 0000-0002-1756-7762 surname: Tzamali fullname: Tzamali, Eleftheria organization: Foundation for Research and Technology–Hellas – sequence: 5 givenname: Yannis orcidid: 0000-0001-6441-2328 surname: Papaharilaou fullname: Papaharilaou, Yannis organization: Foundation for Research and Technology–Hellas – sequence: 6 givenname: Alfonso orcidid: 0000-0002-7125-8645 surname: Caiazzo fullname: Caiazzo, Alfonso organization: Leibniz‐Institut im Forschungsverbund – sequence: 7 givenname: Triantafyllos orcidid: 0000-0002-3093-1696 surname: Stylianopoulos fullname: Stylianopoulos, Triantafyllos organization: University of Cyprus – sequence: 8 givenname: Vasileios orcidid: 0000-0002-4102-2084 surname: Vavourakis fullname: Vavourakis, Vasileios email: vasvav@ucy.ac.cy organization: University College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37203371$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1OGzEUha0qqPw0Up-gssSGzQR77LHjZRS1pRKFDVWXI4_nOjLy2MGeULHrI_CMfRIMSUFC4I2tq-8eH51ziCYhBkDoMyUzSkh9asIwY5LxD-igJpxUUnE5eX4ztY-mOV-TcmqllGQf0T6TNWFM0gP0exGw7vV6dLeAMwzu3997N6y9M27E1gU3AgYPA4QR5-hvIWEbE-6SdgEbHUwZrFNcJcjZxYCH2IN3YfUJ7VntM0x39xH69e3r1fKsOr_8_mO5OK8M44pXQHtoiOylapp6TlXPGmupkHVHBCPUUF0MCzBW8jLtbD_vpFFKU80bTixlR-hkq1tM3Gwgj-3gsgHvdYC4yW0RFVIQwZuCHr9Cr-MmheKuUKwWQhAyL9SXHbXpBujbdXKDTnft_8hefjQp5pzAPiOUtI-FtKWQ9rGQgs5eoSVVPZacxpKff2uh2i78cR7u3hVulxc_n_gHHF6alg |
| CitedBy_id | crossref_primary_10_1002_cnm_3859 |
| Cites_doi | 10.1016/j.ymeth.2020.01.006 10.3389/fonc.2013.00066 10.3934/mbe.2015011 10.4137/CIN.S19339 10.1016/j.jtbi.2005.05.027 10.1016/j.ymeth.2020.02.010 10.1007/s00366‐006‐0049‐3 10.1098/rspa.2019.0364 10.1200/CCI.18.00068 10.1371/journal.pone.0013283 10.1038/nrc2808 10.1016/j.semcancer.2014.02.003 10.4137/CIN.S19343 10.1118/1.4903298 10.1016/j.canlet.2015.01.010 10.3390/jcm10102169 10.1007/s11538‐020‐00718‐x 10.1016/j.jtbi.2011.07.012 10.3389/fonc.2013.00062 10.1007/s11060‐017‐2650‐2 10.1093/imammb/dqq011 10.2172/1255238 10.1371/journal.pone.0103191 10.1155/2012/715812 10.1016/j.jtbi.2013.01.014 10.1137/S1064827595287997 10.1016/j.cell.2011.02.013 10.3390/math9182214 10.3934/mbe.2009.6.521 10.1615/critrevoncog.2014011777 10.1016/j.cell.2006.09.042 10.1109/TITB.2011.2171190 10.1016/j.jtbi.2008.03.027 10.15252/msb.202010105 10.1002/nme.1802 10.1098/rsif.2015.0388 10.1007/s00401‐016‐1545‐1 10.1158/0008‐5472.CAN‐11‐1399 10.1088/1478‐3975/ab1a09 10.1126/scitranslmed.3005686 10.1002/ajpa.1330290327 10.1109/TITB.2012.2185704 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1002/cnm.3734 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Civil Engineering Abstracts MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2040-7947 |
| EndPage | n/a |
| ExternalDocumentID | 37203371 10_1002_cnm_3734 CNM3734 |
| Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Cyprus Cancer Research Institute (Project acronym: PROTEAS; Call: Bridges in research excellence CCRI_2020_FUN_001; Grant ID: CCRI_2021_FA_LE_105) – fundername: European High Performance Computing funderid: 956201 – fundername: European Commission ‐ High Performance Computing Joint Undertaking (Project acronym: DCoMEX; Call: H2020‐JTI‐EuroHPC‐2019‐1; Grant ID: 956201) |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WRC WXSBR WYISQ XG1 XV2 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 1OB 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c3494-e1de507d79552819d35ff1672b06301c1a9736ecf74167bfd8b7c99a1a4540f13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000993196300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2040-7939 2040-7947 |
| IngestDate | Thu Oct 02 13:24:48 EDT 2025 Wed Aug 13 04:25:07 EDT 2025 Mon Jul 21 06:00:53 EDT 2025 Sat Nov 29 03:05:20 EST 2025 Tue Nov 18 22:12:34 EST 2025 Wed Jan 22 16:19:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | finite element method glioblastoma adaptive mesh computational model high performance computing PIHNA in silico |
| Language | English |
| License | 2023 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3494-e1de507d79552819d35ff1672b06301c1a9736ecf74167bfd8b7c99a1a4540f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1360-5423 0000-0002-3093-1696 0000-0002-4102-2084 0000-0002-1084-6187 0000-0002-7125-8645 0000-0003-4701-850X 0000-0002-1756-7762 0000-0001-6441-2328 |
| PMID | 37203371 |
| PQID | 2832666008 |
| PQPubID | 2034586 |
| PageCount | 25 |
| ParticipantIDs | proquest_miscellaneous_2816760645 proquest_journals_2832666008 pubmed_primary_37203371 crossref_primary_10_1002_cnm_3734 crossref_citationtrail_10_1002_cnm_3734 wiley_primary_10_1002_cnm_3734_CNM3734 |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 20230701 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Chichester |
| PublicationTitle | International journal for numerical methods in biomedical engineering |
| PublicationTitleAlternate | Int J Numer Method Biomed Eng |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2015; 12 2010; 10 2015; 14 2013; 3 2019; 3 2012; 2012 2013; 21 2020; 82 2015; 30 1998 2019; 16 2008 2005; 42 2021; 185 2012; 16 2013; 5 2006; 238 1998; 20 2016; 13 2021; 10 2006; 22 2011; 71 2021; 17 2018; 136 2012; 29 2016 2009; 6 2014; 19 2015; 359 2020; 476 2006; 127 2014; 9 2008; 253 2010; 5 2016; 131 2011; 144 2011; 287 1968 2007; 69 e_1_2_9_30_1 e_1_2_9_31_1 Roache P (e_1_2_9_36_1) 1998 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 ASME (e_1_2_9_37_1) 2008 e_1_2_9_29_1 |
| References_xml | – volume: 185 start-page: 82 year: 2021 end-page: 93 article-title: From tumour perfusion to drug delivery and clinical translation of in silico cancer models publication-title: Methods – volume: 6 start-page: 521 issue: 3 year: 2009 end-page: 546 article-title: A spatial model of tumor‐host interaction: application of chemotherapy publication-title: Math Biosci Eng – volume: 16 start-page: 299 issue: 3 year: 2012 end-page: 307 article-title: In‐depth analysis and evaluation of diffusive glioma models publication-title: IEEE Trans Inf Technol Biomed – volume: 17 year: 2021 article-title: Modeling glioblastoma heterogeneity as a dynamic network of cell states publication-title: Mol Syst Biol – volume: 185 start-page: 94 year: 2021 end-page: 104 article-title: An in silico hybrid continuum‐/agent‐based procedure to modelling cancer development: Interrogating the interplay amongst glioma invasion, vascularity and necrosis publication-title: Methods Simul Biomed – volume: 13 start-page: 443 issue: 2 year: 2016 end-page: 460 article-title: A multiscale model for glioma spread including cell‐tissue interactions and proliferation publication-title: Math Biosci Eng – volume: 131 start-page: 803 issue: 6 year: 2016 end-page: 820 article-title: The 2016 World Health Organization classification of tumors of the central nervous system: a summary publication-title: Acta Neuropathol – year: 1968 – volume: 14 start-page: 67 issue: Suppl 4 year: 2015 end-page: 81 article-title: The importance of neighborhood scheme selection in agent‐based tumor growth modeling publication-title: Cancer Informat – volume: 16 start-page: 255 issue: 2 year: 2012 end-page: 263 article-title: High‐grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases publication-title: IEEE Trans Inf Technol Biomed – volume: 9 issue: 8 year: 2014 article-title: Exploring the competition between proliferative and invasive cancer phenotypes in a continuous spatial model publication-title: PLoS One – volume: 12 issue: 109 year: 2015 article-title: In silico analysis suggests differential response to bevacizumab and radiation combination therapy in newly diagnosed glioblastoma publication-title: J R Soc Interface – volume: 22 start-page: 237 issue: 3–4 year: 2006 end-page: 254 article-title: A C++ library for parallel adaptive mesh refinement/coarsening simulations publication-title: Eng Comput – volume: 2012 year: 2012 article-title: Simulating radiotherapy effect in high‐grade glioma by using diffusive modeling and brain atlases publication-title: J Biomed Biotechnol – volume: 29 start-page: 49 issue: 1 year: 2012 end-page: 65 article-title: ‘Go or grow’: the key to the emergence of invasion in tumour progression? publication-title: Math Med Biol – volume: 16 year: 2019 article-title: The 2019 mathematical oncology roadmap publication-title: Phys Biol – volume: 20 start-page: 359 issue: 1 year: 1998 end-page: 392 article-title: A fast and highly quality multilevel scheme for partitioning irregular graphs publication-title: SIAM J Sci Comput – volume: 5 start-page: 9 issue: 187 year: 2013 article-title: Clinically relevant modeling of tumor growth and treatment response publication-title: Sci Transl Med – year: 2016 – volume: 21 start-page: 25 issue: 323 year: 2013 end-page: 39 article-title: Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion publication-title: J Theor Biol – volume: 14 start-page: 7 issue: Suppl 4 year: 2015 end-page: 18 article-title: A proposed paradigm shift in initializing cancer predictive models with DCE‐MRI based PK parameters: a feasibility study publication-title: Cancer Inform – volume: 359 start-page: 107 issue: 1 year: 2015 end-page: 116 article-title: Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1a‐ZEB1 axis publication-title: Cancer Lett – volume: 144 start-page: 646 issue: 5 year: 2011 end-page: 674 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 136 start-page: 1 year: 2018 end-page: 11 article-title: Clinical implications of in silico mathematical modeling for glioblastoma: a critical review publication-title: J Neuro‐Oncol – volume: 476 issue: 2238 year: 2020 article-title: Biomechanical modelling of spinal tumour anisotropic growth publication-title: Proc R Soc A: Math Phys Eng Sci – volume: 5 issue: 10 year: 2010 article-title: When the optimal is not the best: parameter estimation in complex biological models publication-title: PLoS One – volume: 19 start-page: 327 issue: 5 year: 2014 end-page: 336 article-title: Glioblastoma heterogeneity and cancer cell plasticity publication-title: Crit Rev Oncog – volume: 287 start-page: 131 year: 2011 end-page: 147 article-title: Identification of intrinsic in vitro cellular mechanisms for glioma invasion publication-title: J Theor Biol – volume: 3 start-page: 1 year: 2019 end-page: 11 article-title: Blackboard to bedside: a mathematical modeling bottom‐up approach toward personalized cancer treatments publication-title: JCO Clin Cancer Inform – volume: 238 start-page: 146 issue: 1 year: 2006 end-page: 156 article-title: Evolutionary game theory in an agent‐based brain tumor model: exploring the ’Genotype‐Phenotype’ link publication-title: J Theor Biol – volume: 30 start-page: 13 year: 2015 end-page: 20 article-title: Systems oncology: towards patient‐specific treatment regimes informed by multiscale mathematical modelling publication-title: Semin Cancer Biol – volume: 42 start-page: 90 issue: 1 year: 2005 end-page: 102 article-title: A voxel‐based multiscale model to simulate the radiation response of hypoxic tumors publication-title: Med Phys – start-page: 895 year: 1998 – year: 2008 – volume: 253 start-page: 524 issue: 3 year: 2008 end-page: 543 article-title: Three‐dimensional multispecies nonlinear tumor growth–I Model and numerical method publication-title: J Theor Biol – volume: 69 start-page: 1212 year: 2007 end-page: 1238 article-title: Adaptive finite element methodology for tumour angiogenesis modelling publication-title: Int J Numer Methods Eng – volume: 10 start-page: 2169 issue: 10 year: 2021 article-title: In silico mathematical modelling for glioblastoma: a critical review and a patient‐specific case publication-title: J Clin Med – volume: 3 year: 2013 article-title: Modeling tumor‐associated edema in gliomas during anti‐angiogenic therapy and its impact on imageable tumor publication-title: Front Oncol – volume: 127 start-page: 905 issue: 5 year: 2006 end-page: 915 article-title: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment publication-title: Cell – volume: 10 start-page: 221 year: 2010 end-page: 230 article-title: Dissecting cancer through mathematics: from the cell to the animal model publication-title: Nat Rev Cancer – volume: 82 start-page: 43 issue: 3 year: 2020 article-title: Speed switch in glioblastoma growth rate due to enhanced hypoxia‐induced migration publication-title: Bull Math Biol – volume: 71 start-page: 7366 issue: 24 year: 2011 end-page: 7375 article-title: Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology publication-title: Cancer Res – volume: 3 year: 2013 article-title: From patient‐specific mathematical neuro‐oncology to precision medicine publication-title: Front Oncol – volume: 9 issue: 18 year: 2021 article-title: Mathematical modelling of glioblastomas invasion within the brain: a 3d multi‐scale moving‐boundary approach publication-title: Mathematics – ident: e_1_2_9_14_1 doi: 10.1016/j.ymeth.2020.01.006 – ident: e_1_2_9_28_1 doi: 10.3389/fonc.2013.00066 – ident: e_1_2_9_19_1 doi: 10.3934/mbe.2015011 – ident: e_1_2_9_35_1 doi: 10.4137/CIN.S19339 – ident: e_1_2_9_11_1 doi: 10.1016/j.jtbi.2005.05.027 – ident: e_1_2_9_8_1 doi: 10.1016/j.ymeth.2020.02.010 – ident: e_1_2_9_32_1 doi: 10.1007/s00366‐006‐0049‐3 – ident: e_1_2_9_45_1 doi: 10.1098/rspa.2019.0364 – ident: e_1_2_9_6_1 doi: 10.1200/CCI.18.00068 – ident: e_1_2_9_42_1 doi: 10.1371/journal.pone.0013283 – ident: e_1_2_9_22_1 doi: 10.1038/nrc2808 – ident: e_1_2_9_4_1 doi: 10.1016/j.semcancer.2014.02.003 – ident: e_1_2_9_13_1 doi: 10.4137/CIN.S19343 – ident: e_1_2_9_39_1 doi: 10.1118/1.4903298 – ident: e_1_2_9_40_1 doi: 10.1016/j.canlet.2015.01.010 – ident: e_1_2_9_21_1 doi: 10.3390/jcm10102169 – ident: e_1_2_9_27_1 doi: 10.1007/s11538‐020‐00718‐x – ident: e_1_2_9_12_1 doi: 10.1016/j.jtbi.2011.07.012 – ident: e_1_2_9_26_1 doi: 10.3389/fonc.2013.00062 – ident: e_1_2_9_5_1 doi: 10.1007/s11060‐017‐2650‐2 – ident: e_1_2_9_10_1 doi: 10.1093/imammb/dqq011 – ident: e_1_2_9_34_1 doi: 10.2172/1255238 – ident: e_1_2_9_24_1 doi: 10.1371/journal.pone.0103191 – ident: e_1_2_9_41_1 doi: 10.1155/2012/715812 – ident: e_1_2_9_18_1 doi: 10.1016/j.jtbi.2013.01.014 – ident: e_1_2_9_33_1 doi: 10.1137/S1064827595287997 – volume-title: V&V 20: Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer. Technical report year: 2008 ident: e_1_2_9_37_1 – ident: e_1_2_9_3_1 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_9_29_1 doi: 10.3390/math9182214 – ident: e_1_2_9_38_1 doi: 10.3934/mbe.2009.6.521 – ident: e_1_2_9_44_1 doi: 10.1615/critrevoncog.2014011777 – ident: e_1_2_9_9_1 doi: 10.1016/j.cell.2006.09.042 – ident: e_1_2_9_20_1 doi: 10.1109/TITB.2011.2171190 – ident: e_1_2_9_15_1 doi: 10.1016/j.jtbi.2008.03.027 – ident: e_1_2_9_43_1 doi: 10.15252/msb.202010105 – ident: e_1_2_9_31_1 doi: 10.1002/nme.1802 – ident: e_1_2_9_25_1 doi: 10.1098/rsif.2015.0388 – ident: e_1_2_9_2_1 doi: 10.1007/s00401‐016‐1545‐1 – ident: e_1_2_9_23_1 doi: 10.1158/0008‐5472.CAN‐11‐1399 – ident: e_1_2_9_7_1 doi: 10.1088/1478‐3975/ab1a09 – ident: e_1_2_9_17_1 doi: 10.1126/scitranslmed.3005686 – ident: e_1_2_9_30_1 doi: 10.1002/ajpa.1330290327 – ident: e_1_2_9_16_1 doi: 10.1109/TITB.2012.2185704 – start-page: 895 volume-title: Verification and validation in computational science and engineering year: 1998 ident: e_1_2_9_36_1 |
| SSID | ssj0000299973 |
| Score | 2.3287656 |
| Snippet | Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e3734 |
| SubjectTerms | Adaptive algorithms adaptive mesh Angiogenesis Brain Brain - pathology Brain cancer Brain Neoplasms - diagnostic imaging Brain tumors Cancer computational model Computer Simulation Finite Element Analysis finite element method Glioblastoma high performance computing Humans Hypoxia in silico Invasiveness Magnetic resonance imaging Medical imaging Medical prognosis Modelling Necrosis Neovascularization, Pathologic Neuroimaging PIHNA Quality Sensitivity analysis Simulation Solvers Survival Tumors |
| Title | An adaptive semi‐implicit finite element solver for brain cancer progression modeling |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3734 https://www.ncbi.nlm.nih.gov/pubmed/37203371 https://www.proquest.com/docview/2832666008 https://www.proquest.com/docview/2816760645 |
| Volume | 39 |
| WOSCitedRecordID | wos000993196300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 2040-7947 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000299973 issn: 2040-7939 databaseCode: DRFUL dateStart: 20100101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB21Ww5cKIUCC6UyEqKn0DhO4vhYFVY9lBVCVOwt8qcUqU2rzZZzf0J_I7-EGScbVNFKSJxyiPM1nvG82OP3AN5rb1XcfiZtUSW5SfNEF1IlqamcQYiRGRui2IScz6vFQn0dqippL0zPDzFOuFFkxPGaAlyb7vAPaahtLz4KKfJN2MrQbfMJbH36Njs7HWdYUhxpVVxizmLZnBJqzT6bZofry-_mo79A5l3MGpPObPt_XvcpPBmgJjvqfWMHNnz7DLYH2MmGoO6ew4-jlmmnr2jgY52_aH7d3Dax0LxZsdAQKGW-rzJn6Kno-wyRLjMkLsEsec2SxTKvnuKDRXEdzIi7cDb7_P34JBn0FhJLJDWJ584jPHRSFQWtrzlRhMBLmRki5uKWazRn6W0gFCdNcJWRVinNNdH4BS5ewKS9bP0rYLpUjpc-5MLYPM25cdJphBaYkUXgNkzhYG312g5k5KSJcV73NMpZjfaqyV5TeDe2vOoJOO5ps7fuuHoIwa4mDSb8N0OMg7cYT2Pw0IqIbv3lNbXBDymJsm8KL_sOHx9C8j1CSD6FD7FfH3x6fTz_QsfX_9rwDTwm0fq-6HcPJqvltX8Lj-zPVdMt92FTLqr9wZl_A0VO94A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJcKO8uLWAkBKe0cZzEa_VUFVZFbFcItaK3yE8pEk2r3W3P_IT-xv4SZpwHqgAJiVMOcV7jGc8Xe_x9AG-1typuP5O2mCS5SfNEF1IlqZk4gxAjMzZEsQk5n09OT9WXNdjr98K0_BDDhBtFRhyvKcBpQnr3F2uobc52hBT5HVjP0YuKEax_-Do9mQ1TLCkOtSquMWexbk4J1dPPptluf_nthPQbyrwNWmPWmW781_s-hAcd2GT7rXc8gjXfPIaNDniyLqyXT-DbfsO00xc09LGlP6tvflzXsdS8XrFQEyxlvq0zZ-ir6P0MsS4zJC_BLPnNgsVCr5bkg0V5HcyJT-Fk-vH44DDpFBcSSzQ1iefOI0B0UhUFrbA5UYTAS5kZoubilmu0Z-ltIBwnTXATI61Smmsi8gtcPINRc974TWC6VI6XPuTC2DzNuXHSaQQXmJNF4DaM4X1v9sp2dOSkivG9aomUswrtVZG9xvBmaHnRUnD8oc1233NVF4TLilSY8O8MUQ7eYjiN4UNrIrrx55fUBj-kJNK-MTxve3x4CAn4CCH5GN7Fjv3r06uD-REdX_xrw9dw7_D4aFbNPs0_b8F9krBvS4C3YbRaXPqXcNdererl4lXn0z8BO2P6iA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VtkK9UGiBLpRipApOoXGcxGtxqlpWRZRVVVG1t8hPKRJNV7tbzvwEfiO_hBnngSpAQuKUQ5zXeMbzxR5_H8C-9lbF7WfSFuMkN2me6EKqJDVjZxBiZMaGKDYhp9Px1ZU6W4F3_V6Ylh9imHCjyIjjNQW4n7lw8Is11DbXb4UU-T1YywtVYlSuHZ9PLk6HKZYUh1oV15izWDenhOrpZ9PsoL_8bkL6DWXeBa0x60w2_-t9H8KDDmyyw9Y7HsGKb7ZgswOerAvrxTZcHjZMOz2joY8t_HX949v3Opaa10sWaoKlzLd15gx9Fb2fIdZlhuQlmCW_mbNY6NWSfLAor4M58TFcTN5_PjpJOsWFxBJNTeK58wgQnVRFQStsThQh8FJmhqi5uOUa7Vl6GwjHSRPc2EirlOaaiPwCF09gtblp_A4wXSrHSx9yYWye5tw46TSCC8zJInAbRvCmN3tlOzpyUsX4UrVEylmF9qrIXiN4NbSctRQcf2iz2_dc1QXhoiIVJvw7Q5SDtxhOY_jQmohu_M0ttcEPKYm0bwRP2x4fHkICPkJIPoLXsWP_-vTqaPqJjs_-teFLuH92PKlOP0w_PocNUrBvK4B3YXU5v_UvYN1-XdaL-V7n0j8Bz5T6Aw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+semi%E2%80%90implicit+finite+element+solver+for+brain+cancer+progression+modeling&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Tzirakis%2C+Konstantinos&rft.au=Papanikas%2C+Christos+Panagiotis&rft.au=Sakkalis%2C+Vangelis&rft.au=Tzamali%2C+Eleftheria&rft.date=2023-07-01&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=39&rft.issue=7&rft_id=info:doi/10.1002%2Fcnm.3734&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cnm_3734 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |