An adaptive semi‐implicit finite element solver for brain cancer progression modeling

Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in biomedical engineering Jg. 39; H. 7; S. e3734 - n/a
Hauptverfasser: Tzirakis, Konstantinos, Papanikas, Christos Panagiotis, Sakkalis, Vangelis, Tzamali, Eleftheria, Papaharilaou, Yannis, Caiazzo, Alfonso, Stylianopoulos, Triantafyllos, Vavourakis, Vasileios
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.07.2023
Wiley Subscription Services, Inc
Schlagworte:
ISSN:2040-7939, 2040-7947, 2040-7947
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum‐based finite element framework that is built on high performance computing, open‐source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two‐ and three‐dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor‐induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient‐specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling. We propose a high‐fidelity finite element method to simulate glioblastoma growth. The proposed in silico brain cancer model is robust in such that is capable to perform adaptive mesh refinement/coarsening and can realize scalable computations. Quantitative analysis permitted to assess the model sensitivity and stability, as well as to interrogate the parameter space and, thus, identify important mechanisms of glioblastoma progression. Our in silico model demonstrated great predictive potential, and can prospectively be used as a personalized treatment prognostic tool.
AbstractList Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum‐based finite element framework that is built on high performance computing, open‐source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two‐ and three‐dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor‐induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient‐specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling.
Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum-based finite element framework that is built on high performance computing, open-source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two- and three-dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor-induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient-specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling.Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum-based finite element framework that is built on high performance computing, open-source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two- and three-dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor-induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient-specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling.
Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum‐based finite element framework that is built on high performance computing, open‐source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two‐ and three‐dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor‐induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient‐specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling. We propose a high‐fidelity finite element method to simulate glioblastoma growth. The proposed in silico brain cancer model is robust in such that is capable to perform adaptive mesh refinement/coarsening and can realize scalable computations. Quantitative analysis permitted to assess the model sensitivity and stability, as well as to interrogate the parameter space and, thus, identify important mechanisms of glioblastoma progression. Our in silico model demonstrated great predictive potential, and can prospectively be used as a personalized treatment prognostic tool.
Author Stylianopoulos, Triantafyllos
Sakkalis, Vangelis
Vavourakis, Vasileios
Papaharilaou, Yannis
Papanikas, Christos Panagiotis
Tzirakis, Konstantinos
Tzamali, Eleftheria
Caiazzo, Alfonso
Author_xml – sequence: 1
  givenname: Konstantinos
  orcidid: 0000-0003-1360-5423
  surname: Tzirakis
  fullname: Tzirakis, Konstantinos
  email: ktzirakis@hmu.gr
  organization: Hellenic Mediterranean University
– sequence: 2
  givenname: Christos Panagiotis
  orcidid: 0000-0002-1084-6187
  surname: Papanikas
  fullname: Papanikas, Christos Panagiotis
  organization: University of Cyprus
– sequence: 3
  givenname: Vangelis
  orcidid: 0000-0003-4701-850X
  surname: Sakkalis
  fullname: Sakkalis, Vangelis
  organization: Foundation for Research and Technology–Hellas
– sequence: 4
  givenname: Eleftheria
  orcidid: 0000-0002-1756-7762
  surname: Tzamali
  fullname: Tzamali, Eleftheria
  organization: Foundation for Research and Technology–Hellas
– sequence: 5
  givenname: Yannis
  orcidid: 0000-0001-6441-2328
  surname: Papaharilaou
  fullname: Papaharilaou, Yannis
  organization: Foundation for Research and Technology–Hellas
– sequence: 6
  givenname: Alfonso
  orcidid: 0000-0002-7125-8645
  surname: Caiazzo
  fullname: Caiazzo, Alfonso
  organization: Leibniz‐Institut im Forschungsverbund
– sequence: 7
  givenname: Triantafyllos
  orcidid: 0000-0002-3093-1696
  surname: Stylianopoulos
  fullname: Stylianopoulos, Triantafyllos
  organization: University of Cyprus
– sequence: 8
  givenname: Vasileios
  orcidid: 0000-0002-4102-2084
  surname: Vavourakis
  fullname: Vavourakis, Vasileios
  email: vasvav@ucy.ac.cy
  organization: University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37203371$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1OGzEUha0qqPw0Up-gssSGzQR77LHjZRS1pRKFDVWXI4_nOjLy2MGeULHrI_CMfRIMSUFC4I2tq-8eH51ziCYhBkDoMyUzSkh9asIwY5LxD-igJpxUUnE5eX4ztY-mOV-TcmqllGQf0T6TNWFM0gP0exGw7vV6dLeAMwzu3997N6y9M27E1gU3AgYPA4QR5-hvIWEbE-6SdgEbHUwZrFNcJcjZxYCH2IN3YfUJ7VntM0x39xH69e3r1fKsOr_8_mO5OK8M44pXQHtoiOylapp6TlXPGmupkHVHBCPUUF0MCzBW8jLtbD_vpFFKU80bTixlR-hkq1tM3Gwgj-3gsgHvdYC4yW0RFVIQwZuCHr9Cr-MmheKuUKwWQhAyL9SXHbXpBujbdXKDTnft_8hefjQp5pzAPiOUtI-FtKWQ9rGQgs5eoSVVPZacxpKff2uh2i78cR7u3hVulxc_n_gHHF6alg
CitedBy_id crossref_primary_10_1002_cnm_3859
Cites_doi 10.1016/j.ymeth.2020.01.006
10.3389/fonc.2013.00066
10.3934/mbe.2015011
10.4137/CIN.S19339
10.1016/j.jtbi.2005.05.027
10.1016/j.ymeth.2020.02.010
10.1007/s00366‐006‐0049‐3
10.1098/rspa.2019.0364
10.1200/CCI.18.00068
10.1371/journal.pone.0013283
10.1038/nrc2808
10.1016/j.semcancer.2014.02.003
10.4137/CIN.S19343
10.1118/1.4903298
10.1016/j.canlet.2015.01.010
10.3390/jcm10102169
10.1007/s11538‐020‐00718‐x
10.1016/j.jtbi.2011.07.012
10.3389/fonc.2013.00062
10.1007/s11060‐017‐2650‐2
10.1093/imammb/dqq011
10.2172/1255238
10.1371/journal.pone.0103191
10.1155/2012/715812
10.1016/j.jtbi.2013.01.014
10.1137/S1064827595287997
10.1016/j.cell.2011.02.013
10.3390/math9182214
10.3934/mbe.2009.6.521
10.1615/critrevoncog.2014011777
10.1016/j.cell.2006.09.042
10.1109/TITB.2011.2171190
10.1016/j.jtbi.2008.03.027
10.15252/msb.202010105
10.1002/nme.1802
10.1098/rsif.2015.0388
10.1007/s00401‐016‐1545‐1
10.1158/0008‐5472.CAN‐11‐1399
10.1088/1478‐3975/ab1a09
10.1126/scitranslmed.3005686
10.1002/ajpa.1330290327
10.1109/TITB.2012.2185704
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/cnm.3734
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Civil Engineering Abstracts
MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage n/a
ExternalDocumentID 37203371
10_1002_cnm_3734
CNM3734
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cyprus Cancer Research Institute (Project acronym: PROTEAS; Call: Bridges in research excellence CCRI_2020_FUN_001; Grant ID: CCRI_2021_FA_LE_105)
– fundername: European High Performance Computing
  funderid: 956201
– fundername: European Commission ‐ High Performance Computing Joint Undertaking (Project acronym: DCoMEX; Call: H2020‐JTI‐EuroHPC‐2019‐1; Grant ID: 956201)
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3494-e1de507d79552819d35ff1672b06301c1a9736ecf74167bfd8b7c99a1a4540f13
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000993196300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2040-7939
2040-7947
IngestDate Thu Oct 02 13:24:48 EDT 2025
Wed Aug 13 04:25:07 EDT 2025
Mon Jul 21 06:00:53 EDT 2025
Sat Nov 29 03:05:20 EST 2025
Tue Nov 18 22:12:34 EST 2025
Wed Jan 22 16:19:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords finite element method
glioblastoma
adaptive mesh
computational model
high performance computing
PIHNA
in silico
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3494-e1de507d79552819d35ff1672b06301c1a9736ecf74167bfd8b7c99a1a4540f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1360-5423
0000-0002-3093-1696
0000-0002-4102-2084
0000-0002-1084-6187
0000-0002-7125-8645
0000-0003-4701-850X
0000-0002-1756-7762
0000-0001-6441-2328
PMID 37203371
PQID 2832666008
PQPubID 2034586
PageCount 25
ParticipantIDs proquest_miscellaneous_2816760645
proquest_journals_2832666008
pubmed_primary_37203371
crossref_primary_10_1002_cnm_3734
crossref_citationtrail_10_1002_cnm_3734
wiley_primary_10_1002_cnm_3734_CNM3734
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int J Numer Method Biomed Eng
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 9
2015; 12
2010; 10
2015; 14
2013; 3
2019; 3
2012; 2012
2013; 21
2020; 82
2015; 30
1998
2019; 16
2008
2005; 42
2021; 185
2012; 16
2013; 5
2006; 238
1998; 20
2016; 13
2021; 10
2006; 22
2011; 71
2021; 17
2018; 136
2012; 29
2016
2009; 6
2014; 19
2015; 359
2020; 476
2006; 127
2014; 9
2008; 253
2010; 5
2016; 131
2011; 144
2011; 287
1968
2007; 69
e_1_2_9_30_1
e_1_2_9_31_1
Roache P (e_1_2_9_36_1) 1998
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
ASME (e_1_2_9_37_1) 2008
e_1_2_9_29_1
References_xml – volume: 185
  start-page: 82
  year: 2021
  end-page: 93
  article-title: From tumour perfusion to drug delivery and clinical translation of in silico cancer models
  publication-title: Methods
– volume: 6
  start-page: 521
  issue: 3
  year: 2009
  end-page: 546
  article-title: A spatial model of tumor‐host interaction: application of chemotherapy
  publication-title: Math Biosci Eng
– volume: 16
  start-page: 299
  issue: 3
  year: 2012
  end-page: 307
  article-title: In‐depth analysis and evaluation of diffusive glioma models
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 17
  year: 2021
  article-title: Modeling glioblastoma heterogeneity as a dynamic network of cell states
  publication-title: Mol Syst Biol
– volume: 185
  start-page: 94
  year: 2021
  end-page: 104
  article-title: An in silico hybrid continuum‐/agent‐based procedure to modelling cancer development: Interrogating the interplay amongst glioma invasion, vascularity and necrosis
  publication-title: Methods Simul Biomed
– volume: 13
  start-page: 443
  issue: 2
  year: 2016
  end-page: 460
  article-title: A multiscale model for glioma spread including cell‐tissue interactions and proliferation
  publication-title: Math Biosci Eng
– volume: 131
  start-page: 803
  issue: 6
  year: 2016
  end-page: 820
  article-title: The 2016 World Health Organization classification of tumors of the central nervous system: a summary
  publication-title: Acta Neuropathol
– year: 1968
– volume: 14
  start-page: 67
  issue: Suppl 4
  year: 2015
  end-page: 81
  article-title: The importance of neighborhood scheme selection in agent‐based tumor growth modeling
  publication-title: Cancer Informat
– volume: 16
  start-page: 255
  issue: 2
  year: 2012
  end-page: 263
  article-title: High‐grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 9
  issue: 8
  year: 2014
  article-title: Exploring the competition between proliferative and invasive cancer phenotypes in a continuous spatial model
  publication-title: PLoS One
– volume: 12
  issue: 109
  year: 2015
  article-title: In silico analysis suggests differential response to bevacizumab and radiation combination therapy in newly diagnosed glioblastoma
  publication-title: J R Soc Interface
– volume: 22
  start-page: 237
  issue: 3–4
  year: 2006
  end-page: 254
  article-title: A C++ library for parallel adaptive mesh refinement/coarsening simulations
  publication-title: Eng Comput
– volume: 2012
  year: 2012
  article-title: Simulating radiotherapy effect in high‐grade glioma by using diffusive modeling and brain atlases
  publication-title: J Biomed Biotechnol
– volume: 29
  start-page: 49
  issue: 1
  year: 2012
  end-page: 65
  article-title: ‘Go or grow’: the key to the emergence of invasion in tumour progression?
  publication-title: Math Med Biol
– volume: 16
  year: 2019
  article-title: The 2019 mathematical oncology roadmap
  publication-title: Phys Biol
– volume: 20
  start-page: 359
  issue: 1
  year: 1998
  end-page: 392
  article-title: A fast and highly quality multilevel scheme for partitioning irregular graphs
  publication-title: SIAM J Sci Comput
– volume: 5
  start-page: 9
  issue: 187
  year: 2013
  article-title: Clinically relevant modeling of tumor growth and treatment response
  publication-title: Sci Transl Med
– year: 2016
– volume: 21
  start-page: 25
  issue: 323
  year: 2013
  end-page: 39
  article-title: Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion
  publication-title: J Theor Biol
– volume: 14
  start-page: 7
  issue: Suppl 4
  year: 2015
  end-page: 18
  article-title: A proposed paradigm shift in initializing cancer predictive models with DCE‐MRI based PK parameters: a feasibility study
  publication-title: Cancer Inform
– volume: 359
  start-page: 107
  issue: 1
  year: 2015
  end-page: 116
  article-title: Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1a‐ZEB1 axis
  publication-title: Cancer Lett
– volume: 144
  start-page: 646
  issue: 5
  year: 2011
  end-page: 674
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 136
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Clinical implications of in silico mathematical modeling for glioblastoma: a critical review
  publication-title: J Neuro‐Oncol
– volume: 476
  issue: 2238
  year: 2020
  article-title: Biomechanical modelling of spinal tumour anisotropic growth
  publication-title: Proc R Soc A: Math Phys Eng Sci
– volume: 5
  issue: 10
  year: 2010
  article-title: When the optimal is not the best: parameter estimation in complex biological models
  publication-title: PLoS One
– volume: 19
  start-page: 327
  issue: 5
  year: 2014
  end-page: 336
  article-title: Glioblastoma heterogeneity and cancer cell plasticity
  publication-title: Crit Rev Oncog
– volume: 287
  start-page: 131
  year: 2011
  end-page: 147
  article-title: Identification of intrinsic in vitro cellular mechanisms for glioma invasion
  publication-title: J Theor Biol
– volume: 3
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Blackboard to bedside: a mathematical modeling bottom‐up approach toward personalized cancer treatments
  publication-title: JCO Clin Cancer Inform
– volume: 238
  start-page: 146
  issue: 1
  year: 2006
  end-page: 156
  article-title: Evolutionary game theory in an agent‐based brain tumor model: exploring the ’Genotype‐Phenotype’ link
  publication-title: J Theor Biol
– volume: 30
  start-page: 13
  year: 2015
  end-page: 20
  article-title: Systems oncology: towards patient‐specific treatment regimes informed by multiscale mathematical modelling
  publication-title: Semin Cancer Biol
– volume: 42
  start-page: 90
  issue: 1
  year: 2005
  end-page: 102
  article-title: A voxel‐based multiscale model to simulate the radiation response of hypoxic tumors
  publication-title: Med Phys
– start-page: 895
  year: 1998
– year: 2008
– volume: 253
  start-page: 524
  issue: 3
  year: 2008
  end-page: 543
  article-title: Three‐dimensional multispecies nonlinear tumor growth–I Model and numerical method
  publication-title: J Theor Biol
– volume: 69
  start-page: 1212
  year: 2007
  end-page: 1238
  article-title: Adaptive finite element methodology for tumour angiogenesis modelling
  publication-title: Int J Numer Methods Eng
– volume: 10
  start-page: 2169
  issue: 10
  year: 2021
  article-title: In silico mathematical modelling for glioblastoma: a critical review and a patient‐specific case
  publication-title: J Clin Med
– volume: 3
  year: 2013
  article-title: Modeling tumor‐associated edema in gliomas during anti‐angiogenic therapy and its impact on imageable tumor
  publication-title: Front Oncol
– volume: 127
  start-page: 905
  issue: 5
  year: 2006
  end-page: 915
  article-title: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment
  publication-title: Cell
– volume: 10
  start-page: 221
  year: 2010
  end-page: 230
  article-title: Dissecting cancer through mathematics: from the cell to the animal model
  publication-title: Nat Rev Cancer
– volume: 82
  start-page: 43
  issue: 3
  year: 2020
  article-title: Speed switch in glioblastoma growth rate due to enhanced hypoxia‐induced migration
  publication-title: Bull Math Biol
– volume: 71
  start-page: 7366
  issue: 24
  year: 2011
  end-page: 7375
  article-title: Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology
  publication-title: Cancer Res
– volume: 3
  year: 2013
  article-title: From patient‐specific mathematical neuro‐oncology to precision medicine
  publication-title: Front Oncol
– volume: 9
  issue: 18
  year: 2021
  article-title: Mathematical modelling of glioblastomas invasion within the brain: a 3d multi‐scale moving‐boundary approach
  publication-title: Mathematics
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ymeth.2020.01.006
– ident: e_1_2_9_28_1
  doi: 10.3389/fonc.2013.00066
– ident: e_1_2_9_19_1
  doi: 10.3934/mbe.2015011
– ident: e_1_2_9_35_1
  doi: 10.4137/CIN.S19339
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jtbi.2005.05.027
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ymeth.2020.02.010
– ident: e_1_2_9_32_1
  doi: 10.1007/s00366‐006‐0049‐3
– ident: e_1_2_9_45_1
  doi: 10.1098/rspa.2019.0364
– ident: e_1_2_9_6_1
  doi: 10.1200/CCI.18.00068
– ident: e_1_2_9_42_1
  doi: 10.1371/journal.pone.0013283
– ident: e_1_2_9_22_1
  doi: 10.1038/nrc2808
– ident: e_1_2_9_4_1
  doi: 10.1016/j.semcancer.2014.02.003
– ident: e_1_2_9_13_1
  doi: 10.4137/CIN.S19343
– ident: e_1_2_9_39_1
  doi: 10.1118/1.4903298
– ident: e_1_2_9_40_1
  doi: 10.1016/j.canlet.2015.01.010
– ident: e_1_2_9_21_1
  doi: 10.3390/jcm10102169
– ident: e_1_2_9_27_1
  doi: 10.1007/s11538‐020‐00718‐x
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jtbi.2011.07.012
– ident: e_1_2_9_26_1
  doi: 10.3389/fonc.2013.00062
– ident: e_1_2_9_5_1
  doi: 10.1007/s11060‐017‐2650‐2
– ident: e_1_2_9_10_1
  doi: 10.1093/imammb/dqq011
– ident: e_1_2_9_34_1
  doi: 10.2172/1255238
– ident: e_1_2_9_24_1
  doi: 10.1371/journal.pone.0103191
– ident: e_1_2_9_41_1
  doi: 10.1155/2012/715812
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jtbi.2013.01.014
– ident: e_1_2_9_33_1
  doi: 10.1137/S1064827595287997
– volume-title: V&V 20: Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer. Technical report
  year: 2008
  ident: e_1_2_9_37_1
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_9_29_1
  doi: 10.3390/math9182214
– ident: e_1_2_9_38_1
  doi: 10.3934/mbe.2009.6.521
– ident: e_1_2_9_44_1
  doi: 10.1615/critrevoncog.2014011777
– ident: e_1_2_9_9_1
  doi: 10.1016/j.cell.2006.09.042
– ident: e_1_2_9_20_1
  doi: 10.1109/TITB.2011.2171190
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jtbi.2008.03.027
– ident: e_1_2_9_43_1
  doi: 10.15252/msb.202010105
– ident: e_1_2_9_31_1
  doi: 10.1002/nme.1802
– ident: e_1_2_9_25_1
  doi: 10.1098/rsif.2015.0388
– ident: e_1_2_9_2_1
  doi: 10.1007/s00401‐016‐1545‐1
– ident: e_1_2_9_23_1
  doi: 10.1158/0008‐5472.CAN‐11‐1399
– ident: e_1_2_9_7_1
  doi: 10.1088/1478‐3975/ab1a09
– ident: e_1_2_9_17_1
  doi: 10.1126/scitranslmed.3005686
– ident: e_1_2_9_30_1
  doi: 10.1002/ajpa.1330290327
– ident: e_1_2_9_16_1
  doi: 10.1109/TITB.2012.2185704
– start-page: 895
  volume-title: Verification and validation in computational science and engineering
  year: 1998
  ident: e_1_2_9_36_1
SSID ssj0000299973
Score 2.3287656
Snippet Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e3734
SubjectTerms Adaptive algorithms
adaptive mesh
Angiogenesis
Brain
Brain - pathology
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain tumors
Cancer
computational model
Computer Simulation
Finite Element Analysis
finite element method
Glioblastoma
high performance computing
Humans
Hypoxia
in silico
Invasiveness
Magnetic resonance imaging
Medical imaging
Medical prognosis
Modelling
Necrosis
Neovascularization, Pathologic
Neuroimaging
PIHNA
Quality
Sensitivity analysis
Simulation
Solvers
Survival
Tumors
Title An adaptive semi‐implicit finite element solver for brain cancer progression modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3734
https://www.ncbi.nlm.nih.gov/pubmed/37203371
https://www.proquest.com/docview/2832666008
https://www.proquest.com/docview/2816760645
Volume 39
WOSCitedRecordID wos000993196300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 2040-7947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000299973
  issn: 2040-7939
  databaseCode: DRFUL
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB21Ww5cKIUCC6UyEqKn0DhO4vhYFVY9lBVCVOwt8qcUqU2rzZZzf0J_I7-EGScbVNFKSJxyiPM1nvG82OP3AN5rb1XcfiZtUSW5SfNEF1IlqamcQYiRGRui2IScz6vFQn0dqippL0zPDzFOuFFkxPGaAlyb7vAPaahtLz4KKfJN2MrQbfMJbH36Njs7HWdYUhxpVVxizmLZnBJqzT6bZofry-_mo79A5l3MGpPObPt_XvcpPBmgJjvqfWMHNnz7DLYH2MmGoO6ew4-jlmmnr2jgY52_aH7d3Dax0LxZsdAQKGW-rzJn6Kno-wyRLjMkLsEsec2SxTKvnuKDRXEdzIi7cDb7_P34JBn0FhJLJDWJ584jPHRSFQWtrzlRhMBLmRki5uKWazRn6W0gFCdNcJWRVinNNdH4BS5ewKS9bP0rYLpUjpc-5MLYPM25cdJphBaYkUXgNkzhYG312g5k5KSJcV73NMpZjfaqyV5TeDe2vOoJOO5ps7fuuHoIwa4mDSb8N0OMg7cYT2Pw0IqIbv3lNbXBDymJsm8KL_sOHx9C8j1CSD6FD7FfH3x6fTz_QsfX_9rwDTwm0fq-6HcPJqvltX8Lj-zPVdMt92FTLqr9wZl_A0VO94A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJcKO8uLWAkBKe0cZzEa_VUFVZFbFcItaK3yE8pEk2r3W3P_IT-xv4SZpwHqgAJiVMOcV7jGc8Xe_x9AG-1typuP5O2mCS5SfNEF1IlqZk4gxAjMzZEsQk5n09OT9WXNdjr98K0_BDDhBtFRhyvKcBpQnr3F2uobc52hBT5HVjP0YuKEax_-Do9mQ1TLCkOtSquMWexbk4J1dPPptluf_nthPQbyrwNWmPWmW781_s-hAcd2GT7rXc8gjXfPIaNDniyLqyXT-DbfsO00xc09LGlP6tvflzXsdS8XrFQEyxlvq0zZ-ir6P0MsS4zJC_BLPnNgsVCr5bkg0V5HcyJT-Fk-vH44DDpFBcSSzQ1iefOI0B0UhUFrbA5UYTAS5kZoubilmu0Z-ltIBwnTXATI61Smmsi8gtcPINRc974TWC6VI6XPuTC2DzNuXHSaQQXmJNF4DaM4X1v9sp2dOSkivG9aomUswrtVZG9xvBmaHnRUnD8oc1233NVF4TLilSY8O8MUQ7eYjiN4UNrIrrx55fUBj-kJNK-MTxve3x4CAn4CCH5GN7Fjv3r06uD-REdX_xrw9dw7_D4aFbNPs0_b8F9krBvS4C3YbRaXPqXcNdererl4lXn0z8BO2P6iA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VtkK9UGiBLpRipApOoXGcxGtxqlpWRZRVVVG1t8hPKRJNV7tbzvwEfiO_hBnngSpAQuKUQ5zXeMbzxR5_H8C-9lbF7WfSFuMkN2me6EKqJDVjZxBiZMaGKDYhp9Px1ZU6W4F3_V6Ylh9imHCjyIjjNQW4n7lw8Is11DbXb4UU-T1YywtVYlSuHZ9PLk6HKZYUh1oV15izWDenhOrpZ9PsoL_8bkL6DWXeBa0x60w2_-t9H8KDDmyyw9Y7HsGKb7ZgswOerAvrxTZcHjZMOz2joY8t_HX949v3Opaa10sWaoKlzLd15gx9Fb2fIdZlhuQlmCW_mbNY6NWSfLAor4M58TFcTN5_PjpJOsWFxBJNTeK58wgQnVRFQStsThQh8FJmhqi5uOUa7Vl6GwjHSRPc2EirlOaaiPwCF09gtblp_A4wXSrHSx9yYWye5tw46TSCC8zJInAbRvCmN3tlOzpyUsX4UrVEylmF9qrIXiN4NbSctRQcf2iz2_dc1QXhoiIVJvw7Q5SDtxhOY_jQmohu_M0ttcEPKYm0bwRP2x4fHkICPkJIPoLXsWP_-vTqaPqJjs_-teFLuH92PKlOP0w_PocNUrBvK4B3YXU5v_UvYN1-XdaL-V7n0j8Bz5T6Aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+semi%E2%80%90implicit+finite+element+solver+for+brain+cancer+progression+modeling&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Tzirakis%2C+Konstantinos&rft.au=Papanikas%2C+Christos+Panagiotis&rft.au=Sakkalis%2C+Vangelis&rft.au=Tzamali%2C+Eleftheria&rft.date=2023-07-01&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=39&rft.issue=7&rft_id=info:doi/10.1002%2Fcnm.3734&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cnm_3734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon