One‐sample aggregate data meta‐analysis of medians

An aggregate data meta‐analysis is a statistical method that pools the summary statistics of several selected studies to estimate the outcome of interest. When considering a continuous outcome, typically each study must report the same measure of the outcome variable and its spread (eg, the sample m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine Jg. 38; H. 6; S. 969 - 984
Hauptverfasser: McGrath, Sean, Zhao, XiaoFei, Qin, Zhi Zhen, Steele, Russell, Benedetti, Andrea
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Wiley Subscription Services, Inc 15.03.2019
Schlagworte:
ISSN:0277-6715, 1097-0258, 1097-0258
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An aggregate data meta‐analysis is a statistical method that pools the summary statistics of several selected studies to estimate the outcome of interest. When considering a continuous outcome, typically each study must report the same measure of the outcome variable and its spread (eg, the sample mean and its standard error). However, some studies may instead report the median along with various measures of spread. Recently, the task of incorporating medians in meta‐analysis has been achieved by estimating the sample mean and its standard error from each study that reports a median in order to meta‐analyze the means. In this paper, we propose two alternative approaches to meta‐analyze data that instead rely on medians. We systematically compare these approaches via simulation study to each other and to methods that transform the study‐specific medians and spread into sample means and their standard errors. We demonstrate that the proposed median‐based approaches perform better than the transformation‐based approaches, especially when applied to skewed data and data with high inter‐study variance. Finally, we illustrate these approaches in a meta‐analysis of patient delay in tuberculosis diagnosis.
AbstractList An aggregate data meta-analysis is a statistical method that pools the summary statistics of several selected studies to estimate the outcome of interest. When considering a continuous outcome, typically each study must report the same measure of the outcome variable and its spread (eg, the sample mean and its standard error). However, some studies may instead report the median along with various measures of spread. Recently, the task of incorporating medians in meta-analysis has been achieved by estimating the sample mean and its standard error from each study that reports a median in order to meta-analyze the means. In this paper, we propose two alternative approaches to meta-analyze data that instead rely on medians. We systematically compare these approaches via simulation study to each other and to methods that transform the study-specific medians and spread into sample means and their standard errors. We demonstrate that the proposed median-based approaches perform better than the transformation-based approaches, especially when applied to skewed data and data with high inter-study variance. Finally, we illustrate these approaches in a meta-analysis of patient delay in tuberculosis diagnosis.
An aggregate data meta-analysis is a statistical method that pools the summary statistics of several selected studies to estimate the outcome of interest. When considering a continuous outcome, typically each study must report the same measure of the outcome variable and its spread (eg, the sample mean and its standard error). However, some studies may instead report the median along with various measures of spread. Recently, the task of incorporating medians in meta-analysis has been achieved by estimating the sample mean and its standard error from each study that reports a median in order to meta-analyze the means. In this paper, we propose two alternative approaches to meta-analyze data that instead rely on medians. We systematically compare these approaches via simulation study to each other and to methods that transform the study-specific medians and spread into sample means and their standard errors. We demonstrate that the proposed median-based approaches perform better than the transformation-based approaches, especially when applied to skewed data and data with high inter-study variance. Finally, we illustrate these approaches in a meta-analysis of patient delay in tuberculosis diagnosis.An aggregate data meta-analysis is a statistical method that pools the summary statistics of several selected studies to estimate the outcome of interest. When considering a continuous outcome, typically each study must report the same measure of the outcome variable and its spread (eg, the sample mean and its standard error). However, some studies may instead report the median along with various measures of spread. Recently, the task of incorporating medians in meta-analysis has been achieved by estimating the sample mean and its standard error from each study that reports a median in order to meta-analyze the means. In this paper, we propose two alternative approaches to meta-analyze data that instead rely on medians. We systematically compare these approaches via simulation study to each other and to methods that transform the study-specific medians and spread into sample means and their standard errors. We demonstrate that the proposed median-based approaches perform better than the transformation-based approaches, especially when applied to skewed data and data with high inter-study variance. Finally, we illustrate these approaches in a meta-analysis of patient delay in tuberculosis diagnosis.
Author Benedetti, Andrea
Zhao, XiaoFei
McGrath, Sean
Steele, Russell
Qin, Zhi Zhen
Author_xml – sequence: 1
  givenname: Sean
  orcidid: 0000-0002-7281-3516
  surname: McGrath
  fullname: McGrath, Sean
  organization: McGill University Health Centre
– sequence: 2
  givenname: XiaoFei
  surname: Zhao
  fullname: Zhao, XiaoFei
  organization: McGill University Health Centre
– sequence: 3
  givenname: Zhi Zhen
  surname: Qin
  fullname: Qin, Zhi Zhen
  organization: Stop TB Partnership Secretariat
– sequence: 4
  givenname: Russell
  surname: Steele
  fullname: Steele, Russell
  organization: McGill University
– sequence: 5
  givenname: Andrea
  orcidid: 0000-0002-8314-9497
  surname: Benedetti
  fullname: Benedetti, Andrea
  email: andrea.benedetti@mcgill.ca
  organization: McGill University Health Centre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30460713$$D View this record in MEDLINE/PubMed
BookMark eNp10MtKxDAUBuAgI85FwSeQghs3HU-StmmXMngZGJmFug5pejpk6GVsWmR2PoLP6JOYuSmIbhJy8uVw8g9Jr6orJOScwpgCsGtrynEMlB-RAYVE-MDCuEcGwITwI0HDPhlauwSgNGTihPQ5BBEIygckmlf4-f5hVbkq0FOLRYML1aKXqVZ5JbbKXapKFWtrrFfnrpQZVdlTcpyrwuLZfh-Rl7vb58mDP5vfTyc3M1_zIOG-YBlPY8xSnessDVKMIU1RM3cWInCLFkjjVEOIXDHBBY0wpxGPqQAa0YSPyNWu76qpXzu0rSyN1VgUqsK6s5JRHoUh4xF39PIXXdZd40bfqBhYnMBWXexVl7q_yFVjStWs5SERB8Y7oJva2gZzqU2rWlNXbaNMISnITeTSRS43kf-M-P3g0PMP6u_omylw_a-TT9PHrf8CpkqPbw
CitedBy_id crossref_primary_10_1016_j_jadohealth_2022_12_009
crossref_primary_10_1002_sim_8738
crossref_primary_10_1016_j_amjoto_2023_104195
crossref_primary_10_1002_pro6_1214
crossref_primary_10_3389_fpubh_2023_1183244
crossref_primary_10_3389_fcvm_2022_875327
crossref_primary_10_1016_j_wneu_2024_10_057
crossref_primary_10_1002_jrsm_1429
crossref_primary_10_1093_icvts_ivad003
crossref_primary_10_1016_j_oraloncology_2023_106415
crossref_primary_10_1136_emermed_2025_214918
crossref_primary_10_1002_lary_31148
crossref_primary_10_1002_hed_28174
crossref_primary_10_1002_jrsm_1686
crossref_primary_10_1097_MAO_0000000000004243
crossref_primary_10_1371_journal_pmed_1004110
crossref_primary_10_1097_GOX_0000000000006025
crossref_primary_10_3390_cancers12020477
crossref_primary_10_1016_j_ejphar_2021_173926
crossref_primary_10_1002_hed_27121
crossref_primary_10_1097_GOX_0000000000006026
crossref_primary_10_1016_j_clml_2022_11_002
crossref_primary_10_1016_j_ctarc_2025_100956
crossref_primary_10_1002_lary_32480
crossref_primary_10_1002_bimj_201900036
crossref_primary_10_1007_s00384_022_04144_4
crossref_primary_10_57264_cer_2023_0001
crossref_primary_10_1515_biol_2022_0559
crossref_primary_10_1155_2023_4477263
crossref_primary_10_1007_s00595_021_02446_8
crossref_primary_10_3389_fonc_2023_1088741
crossref_primary_10_1016_j_critrevonc_2020_103043
crossref_primary_10_1038_s41598_021_02770_6
crossref_primary_10_1016_j_euf_2021_04_003
crossref_primary_10_1002_alr_23512
crossref_primary_10_1002_ohn_1167
crossref_primary_10_1212_WN9_0000000000000030
crossref_primary_10_1371_journal_pdig_0000892
crossref_primary_10_1186_s12879_020_05524_3
crossref_primary_10_1016_j_forsciint_2023_111873
crossref_primary_10_1016_j_amjoto_2022_103517
crossref_primary_10_1016_j_euf_2023_03_004
crossref_primary_10_1002_pon_6064
crossref_primary_10_1007_s11060_025_05156_0
crossref_primary_10_1093_jncics_pkaf083
crossref_primary_10_1016_j_curtheres_2020_100607
crossref_primary_10_1016_j_euros_2022_04_009
crossref_primary_10_1016_j_tmaid_2020_101825
crossref_primary_10_1007_s00415_025_13204_y
crossref_primary_10_1111_aor_14261
crossref_primary_10_1016_j_jclinepi_2020_05_010
crossref_primary_10_1097_GOX_0000000000005311
crossref_primary_10_1016_j_scitotenv_2021_148617
crossref_primary_10_1016_j_knee_2024_10_014
crossref_primary_10_1007_s12029_024_01152_1
crossref_primary_10_1007_s40120_025_00830_x
crossref_primary_10_1186_s13045_023_01417_5
crossref_primary_10_1016_j_injury_2023_03_024
crossref_primary_10_1007_s00405_022_07490_9
crossref_primary_10_1177_02676591221096078
crossref_primary_10_1016_j_intimp_2021_108135
crossref_primary_10_3390_cancers13133206
crossref_primary_10_1111_apt_17370
crossref_primary_10_1016_j_oraloncology_2022_105809
crossref_primary_10_1093_cid_ciaf003
crossref_primary_10_1080_03007995_2022_2083326
crossref_primary_10_3390_jfmk10020126
crossref_primary_10_3390_ph14050476
crossref_primary_10_1016_j_scitotenv_2021_145755
crossref_primary_10_1186_s12931_021_01841_6
crossref_primary_10_1080_17476348_2021_1920927
crossref_primary_10_1007_s10654_020_00613_8
crossref_primary_10_3390_ijerph20166589
crossref_primary_10_1007_s00167_022_07204_y
crossref_primary_10_1371_journal_pone_0287887
crossref_primary_10_1093_asj_sjae074
crossref_primary_10_1002_lary_32158
crossref_primary_10_1002_micr_30977
crossref_primary_10_3390_cancers16071425
crossref_primary_10_1016_S2468_1253_22_00346_6
crossref_primary_10_1002_hed_28251
crossref_primary_10_1007_s00266_024_04382_7
crossref_primary_10_3389_fonc_2023_1247879
crossref_primary_10_1016_j_ijporl_2024_111896
crossref_primary_10_1177_0962280219889080
crossref_primary_10_1002_alr_23367
crossref_primary_10_1016_j_ejca_2021_07_014
crossref_primary_10_1002_hed_27723
crossref_primary_10_1002_sim_9757
crossref_primary_10_1007_s00405_022_07589_z
crossref_primary_10_1002_hed_27169
crossref_primary_10_1002_jmv_28677
crossref_primary_10_1016_j_amjoto_2023_104156
crossref_primary_10_1002_lary_31116
crossref_primary_10_1097_MAO_0000000000004446
crossref_primary_10_1111_tri_13753
crossref_primary_10_1002_lary_31751
crossref_primary_10_1038_s41586_023_06480_z
crossref_primary_10_1177_15533506231209128
crossref_primary_10_1002_ohn_949
crossref_primary_10_1007_s00405_023_08191_7
crossref_primary_10_1007_s00432_022_03965_8
crossref_primary_10_1002_hed_27891
crossref_primary_10_1007_s00701_021_04794_3
crossref_primary_10_1017_ice_2020_1273
crossref_primary_10_1002_wjo2_70034
crossref_primary_10_1080_09638288_2021_2022781
crossref_primary_10_1016_S1470_2045_22_00271_6
crossref_primary_10_1093_nop_npab026
crossref_primary_10_1002_jca_21881
crossref_primary_10_1177_1747493020972922
crossref_primary_10_1016_j_eclinm_2025_103336
crossref_primary_10_1177_00034894251341110
crossref_primary_10_1177_09622802221139233
crossref_primary_10_2174_0109298673263933231206101556
crossref_primary_10_2217_fon_2020_0248
crossref_primary_10_1183_23120541_00195_2021
crossref_primary_10_3389_fonc_2020_00414
Cites_doi 10.1186/s12936-016-1635-5
10.1016/j.cct.2006.04.004
10.1186/1471-2288-5-13
10.1002/sim.4780151402
10.1038/bjc.2012.516
10.1186/s13049-014-0067-x
10.1016/0197-2456(86)90046-2
10.1002/sim.3607
10.1037/1082-989X.3.4.486
10.1093/biomet/52.3-4.591
10.1002/sim.1186
10.1186/1471-2288-14-135
10.1371/journal.pmed.1000326
10.1186/s12874-015-0055-5
10.5588/ijtld.13.0585
10.1186/1471-2334-9-91
10.1186/s12890-017-0551-y
10.6000/1929-6029.2015.04.01.6
10.1136/bmj.327.7414.557
10.1186/1475-2875-10-337
10.1007/s11222-013-9381-9
10.1186/2046-4053-2-10
10.1016/j.hpb.2016.05.001
10.1038/sj.bjc.6604096
10.3102/10769986030003261
10.1007/BF02589065
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
– notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.8013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 984
ExternalDocumentID 30460713
10_1002_sim_8013
SIM8013
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fonds de Recherche du Québec ‐ Santé
– fundername: FRQS
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3493-72d3b8edbcfcdb4be80bbec2bcf774cf7c7e18bc05e3a273716ef163817016193
IEDL.DBID DRFUL
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458895100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 11:47:10 EDT 2025
Tue Oct 07 05:46:52 EDT 2025
Mon Jul 21 06:03:50 EDT 2025
Sat Nov 29 05:32:42 EST 2025
Tue Nov 18 22:24:07 EST 2025
Wed Jan 22 16:25:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords meta-analysis
median
simulation study
skewed data
aggregate data
Language English
License 2018 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3493-72d3b8edbcfcdb4be80bbec2bcf774cf7c7e18bc05e3a273716ef163817016193
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8314-9497
0000-0002-7281-3516
PMID 30460713
PQID 2180289063
PQPubID 48361
PageCount 1
ParticipantIDs proquest_miscellaneous_2136552363
proquest_journals_2180289063
pubmed_primary_30460713
crossref_citationtrail_10_1002_sim_8013
crossref_primary_10_1002_sim_8013
wiley_primary_10_1002_sim_8013_SIM8013
PublicationCentury 2000
PublicationDate 15 March 2019
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 15 March 2019
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1965; 52
2015; 15
2015; 4
2013; 2
2013; 108
2016; 10
2011; 31
2008
2011; 10
2014; 24
2008; 98
2016; 18
2016; 15
1996; 15
1993; 2
2014; 22
2007; 28
2003; 327
1986; 7
2017; 17
2010; 29
2002; 21
2005; 5
2005; 30
2009; 9
2014; 14
1962
2016
1998; 3
2015
2014; 18
1980
2010; 7
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Sohn H (e_1_2_8_16_1) 2016
e_1_2_8_27_1
e_1_2_8_3_1
Samal J (e_1_2_8_6_1) 2016; 10
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Conover WJ (e_1_2_8_25_1) 1980
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Kenney JF (e_1_2_8_26_1) 1962
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
Turchetti G (e_1_2_8_15_1) 2011; 31
Qin ZZ (e_1_2_8_7_1) 2015
e_1_2_8_32_1
O'Rourke K (e_1_2_8_34_1) 2008
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 15
  start-page: 593
  issue: 1
  year: 2016
  article-title: The economics of malaria control and elimination: a systematic review
  publication-title: Malar J
– volume: 9
  start-page: 91
  issue: 1
  year: 2009
  article-title: Time delays in diagnosis of pulmonary tuberculosis: a systematic review of literature
  publication-title: BMC Infect Dis
– volume: 28
  start-page: 105
  issue: 2
  year: 2007
  end-page: 114
  article-title: Random‐effects model for meta‐analysis of clinical trials: an update
  publication-title: Contemp Clin Trials
– volume: 24
  start-page: 461
  issue: 3
  year: 2014
  end-page: 479
  article-title: Linear quantile mixed models
  publication-title: Stat Comput
– year: 1962
– volume: 2
  start-page: 10
  issue: 1
  year: 2013
  article-title: Survival of patients with non‐small cell lung cancer without treatment: a systematic review and meta‐analysis
  publication-title: Syst Rev
– volume: 2
  start-page: 269
  year: 1993
  end-page: 290
  article-title: A comparison of procedures for combining risk differences in sets of 2 × 2 tables from clinical trials
  publication-title: J Italian Stat Soc
– volume: 17
  start-page: 202
  issue: 1
  year: 2017
  article-title: Delay in diagnosis of pulmonary tuberculosis in low‐and middle‐income settings: systematic review and meta‐analysis
  publication-title: BMC Pulm Med
– volume: 22
  start-page: 67
  year: 2014
  article-title: The impact of direct admission to a catheterisation lab/CCU in patients with ST‐elevation myocardial infarction on the delay to reperfusion and early risk of death: results of a systematic review including meta‐analysis
  publication-title: Scand J Trauma Resusc Emerg Med
– volume: 108
  start-page: 39
  issue: 1
  year: 2013
  end-page: 48
  article-title: Evaluation of survival benefits by platinums and taxanes for an unfavourable subset of carcinoma of unknown primary: a systematic review and meta‐analysis
  publication-title: Br J Cancer
– volume: 10
  start-page: LE01
  issue: 10
  year: 2016
  end-page: LE06
  article-title: Health seeking behaviour among tuberculosis patients in India: a systematic review
  publication-title: J Clin Diagn Res
– volume: 52
  start-page: 591
  issue: 3
  year: 1965
  end-page: 611
  article-title: An analysis of variance test for normality
  publication-title: Biometrika
– volume: 21
  start-page: 1539
  issue: 11
  year: 2002
  end-page: 1558
  article-title: Quantifying heterogeneity in a meta‐analysis
  publication-title: Statist Med
– volume: 14
  start-page: 135
  issue: 1
  year: 2014
  article-title: Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range
  publication-title: BMC Med Res Methodol
– year: 2016
– volume: 18
  start-page: 255
  issue: 3
  year: 2014
  end-page: 266
  article-title: Delays in diagnosis and treatment of pulmonary tuberculosis in India: a systematic review
  publication-title: Int J Tuberc Lung Dis
– volume: 4
  start-page: 57
  issue: 1
  year: 2015
  end-page: 64
  article-title: Estimating mean and standard deviation from the sample size, three quartiles, minimum, and maximum
  publication-title: Int J Stat Med Res
– volume: 15
  start-page: 61
  issue: 1
  year: 2015
  article-title: Simulation‐based estimation of mean and standard deviation for meta‐analysis via approximate Bayesian computation (ABC)
  publication-title: BMC Med Res Methodol
– volume: 3
  start-page: 486
  issue: 4
  year: 1998
  end-page: 504
  article-title: Fixed‐ and random‐effects models in meta‐analysis
  publication-title: Psychol Methods
– volume: 15
  start-page: 1465
  issue: 14
  year: 1996
  end-page: 1488
  article-title: Simple robust procedures for combining risk differences in sets of 2 × 2 tables
  publication-title: Statist Med
– volume: 18
  start-page: 559
  issue: 7
  year: 2016
  end-page: 566
  article-title: Prognostic value of lymph node metastases detected during surgical exploration for pancreatic or periampullary cancer: a systematic review and meta‐analysis
  publication-title: HPB (Oxford)
– volume: 31
  start-page: 319
  issue: 5
  year: 2011
  end-page: 327
  article-title: Systematic review of the scientific literature on the economic evaluation of cochlear implants in adult patients
  publication-title: Acta Otorhinolaryngol Ital
– volume: 327
  start-page: 557
  issue: 7414
  year: 2003
  end-page: 560
  article-title: Measuring inconsistency in meta‐analyses
  publication-title: BMJ
– volume: 5
  start-page: 13
  issue: 1
  year: 2005
  article-title: Estimating the mean and variance from the median, range, and the size of a sample
  publication-title: BMC Med Res Methodol
– year: 1980
– year: 2008
– volume: 7
  issue: 9
  year: 2010
  article-title: Seventy‐five trials and eleven systematic reviews a day: how will we ever keep up?
  publication-title: PLoS Med
– volume: 98
  start-page: 60
  issue: 1
  year: 2008
  end-page: 70
  article-title: Influences on pre‐hospital delay in the diagnosis of colorectal cancer: a systematic review
  publication-title: Br J Cancer
– volume: 30
  start-page: 261
  issue: 3
  year: 2005
  end-page: 293
  article-title: Bias and efficiency of meta‐analytic variance estimators in the random‐effects model
  publication-title: J Educ Behav Stat
– volume: 7
  start-page: 177
  issue: 3
  year: 1986
  end-page: 188
  article-title: Meta‐analysis in clinical trials
  publication-title: Control Clin Trials
– volume: 29
  start-page: 1259
  issue: 12
  year: 2010
  end-page: 1265
  article-title: Empirical vs natural weighting in random effects meta‐analysis
  publication-title: Statist Med
– year: 2015
– volume: 10
  start-page: 337
  issue: 1
  year: 2011
  article-title: Costs and cost‐effectiveness of malaria control interventions‐a systematic review
  publication-title: Malar J
– volume: 10
  start-page: LE01
  issue: 10
  year: 2016
  ident: e_1_2_8_6_1
  article-title: Health seeking behaviour among tuberculosis patients in India: a systematic review
  publication-title: J Clin Diagn Res
– ident: e_1_2_8_13_1
  doi: 10.1186/s12936-016-1635-5
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cct.2006.04.004
– ident: e_1_2_8_17_1
  doi: 10.1186/1471-2288-5-13
– ident: e_1_2_8_31_1
  doi: 10.1002/sim.4780151402
– ident: e_1_2_8_10_1
  doi: 10.1038/bjc.2012.516
– volume-title: Mathematics of Statistics, Part 1
  year: 1962
  ident: e_1_2_8_26_1
– ident: e_1_2_8_9_1
  doi: 10.1186/s13049-014-0067-x
– ident: e_1_2_8_24_1
  doi: 10.1016/0197-2456(86)90046-2
– ident: e_1_2_8_30_1
  doi: 10.1002/sim.3607
– ident: e_1_2_8_23_1
  doi: 10.1037/1082-989X.3.4.486
– ident: e_1_2_8_27_1
  doi: 10.1093/biomet/52.3-4.591
– ident: e_1_2_8_28_1
  doi: 10.1002/sim.1186
– volume: 31
  start-page: 319
  issue: 5
  year: 2011
  ident: e_1_2_8_15_1
  article-title: Systematic review of the scientific literature on the economic evaluation of cochlear implants in adult patients
  publication-title: Acta Otorhinolaryngol Ital
– ident: e_1_2_8_18_1
  doi: 10.1186/1471-2288-14-135
– ident: e_1_2_8_2_1
  doi: 10.1371/journal.pmed.1000326
– ident: e_1_2_8_20_1
  doi: 10.1186/s12874-015-0055-5
– ident: e_1_2_8_4_1
  doi: 10.5588/ijtld.13.0585
– volume-title: Delays in Diagnosis and Treatment of Pulmonary Tuberculosis, and Patient Care‐Seeking Pathways in China: A Systematic Review and Meta‐Analysis
  year: 2015
  ident: e_1_2_8_7_1
– volume-title: Practical Nonparametric Statistics
  year: 1980
  ident: e_1_2_8_25_1
– ident: e_1_2_8_5_1
  doi: 10.1186/1471-2334-9-91
– ident: e_1_2_8_3_1
  doi: 10.1186/s12890-017-0551-y
– ident: e_1_2_8_19_1
  doi: 10.6000/1929-6029.2015.04.01.6
– volume-title: The Combining of Information: Investigating and Synthesizing What is Possibly Common in Clinical Observations or Studies via Likelihood
  year: 2008
  ident: e_1_2_8_34_1
– ident: e_1_2_8_33_1
  doi: 10.1136/bmj.327.7414.557
– volume-title: Improving Tuberculosis Diagnosis in Vulnerable Populations: Impact and Cost‐Effectiveness of Novel, Rapid Molecular Assays
  year: 2016
  ident: e_1_2_8_16_1
– ident: e_1_2_8_14_1
  doi: 10.1186/1475-2875-10-337
– ident: e_1_2_8_35_1
  doi: 10.1007/s11222-013-9381-9
– ident: e_1_2_8_12_1
  doi: 10.1186/2046-4053-2-10
– ident: e_1_2_8_11_1
  doi: 10.1016/j.hpb.2016.05.001
– ident: e_1_2_8_8_1
  doi: 10.1038/sj.bjc.6604096
– ident: e_1_2_8_22_1
  doi: 10.3102/10769986030003261
– ident: e_1_2_8_29_1
– ident: e_1_2_8_32_1
  doi: 10.1007/BF02589065
SSID ssj0011527
Score 2.6002312
Snippet An aggregate data meta‐analysis is a statistical method that pools the summary statistics of several selected studies to estimate the outcome of interest. When...
An aggregate data meta-analysis is a statistical method that pools the summary statistics of several selected studies to estimate the outcome of interest. When...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 969
SubjectTerms aggregate data
Computer Simulation
Data Interpretation, Statistical
Delayed Diagnosis - statistics & numerical data
Humans
median
Medical research
Medical statistics
Meta-analysis
Meta-Analysis as Topic
Models, Statistical
Sampling
simulation study
skewed data
Statistical methods
Statistics as Topic - methods
Tuberculosis, Pulmonary - diagnosis
Title One‐sample aggregate data meta‐analysis of medians
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8013
https://www.ncbi.nlm.nih.gov/pubmed/30460713
https://www.proquest.com/docview/2180289063
https://www.proquest.com/docview/2136552363
Volume 38
WOSCitedRecordID wos000458895100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsQwEB10FRHEy3q_UUH0qbrbtE36KOqioKt4Y99KkqYiuF3Z7vrsJ_iNfokzvcmiguBLS8m0KZmZ5EwmOQHYFU3OI-Eq21dM24jAta0oSpGBjiWLfd_LyJ4fLni7LTqd4LpYVUl7YXJ-iGrCjTwj66_JwaVKD79IQ9On7gF2r2wcJhw0W68GEyc3rfuLKodQHthKSUqfN72SerbhHJbvjg5G3xDmKGDNRpzW3H_-dR5mC5xpHeWGsQBjJqnD1GWRSa_DTD5fZ-XbkOowTagzJ21eBP8qMR9v76kk6mBLPmJMTrNtFi0ntbpmILFQFmwmVi-2su0nSboE963Tu-MzuzhgwdbMDZjNnYgpYSKlYx0pVxnRUKhTB58RFeJFc9MUSjc8wyTiHIytTEwAjkjcMfJiy1BLeolZBYtWiypPRQ3tYsjoKRlLrqSrmeDSc7Rcg_2ypUNdsI_TIRjPYc6b7ITYRiG10RrsVJIvOePGDzKbpbLCwufS0CEyOxEg5sJPVMXoLZQCkYnpDUmGofU5jGRWciVXlWQ5Yk4f38t0-Wvt4e35Jd3X_yq4AdOIswJautb0NqE26A_NFkzqV9RrfxvGeUdsF9b7CRPn8jM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MTXQgXub9WkH0qW5r2qbFJ1GH4jbFG3srSZqK4Dpx6rM_wd_oL_Gc3kRUEHxpKTltSs5J8p1zki8AW16T89CzpelKpkxE4MqU5KUIX0WCRa7rJGTPN23e7Xq9nn9egr18L0zKD1EE3KhnJOM1dXAKSNc_WUOHd_1dHF_ZCFRstCI078rhReu6XSQR8hNbKUvp8qaTc882rHr-7tfZ6BvE_IpYkymnNfWvn52GyQxpGvupacxAScc1GOtkufQaTKQROyPdiFSDKuHOlLZ5FtyzWL-_vg0FkQcb4ha9coq3GbSg1OjrJ4GFIuMzMQaRkWxAiYdzcN06ujo4NrMjFkzFbJ-Z3AqZ9HQoVaRCaUvtNSRq1cJnxIV4UVw3PakajmYCkQ56VzoiCEc07uh7sXkox4NYL4JB60WlI8OGstFpdKSIBJfCVszjwrGUWIKdvKkDlfGP0zEY90HKnGwF2EYBtdESbBaSDynnxg8yq7m2gqzXDQOL6Ow8H1EXfqIoxv5CSRAR68EzyTC0P4uRzEKq5aKSJEvM6ePbiTJ_rT24POnQffmvghswfnzVaQftk-7pClQRdfm0kK3prEL56fFZr8GoekEdP65nRvwB2yH1Ow
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsQwEB10FRHEy3p31QqiT9Xdpm1afBJ1UdxdxRu-lSRNRdDust312U_wG_0SZ3oTUUHwpaVk2pRMJjmTSc4AbHsNzkPPlqYrmTIRgStTkpcifBUJFrmuk5I937V4p-Pd3_uXI3BQnIXJ-CHKBTeyjHS8JgPXvTDa_2QNTR6f93B8ZaMwZlMOmQqMHV81b1tlEKHI2EpRSpc3nIJ7tm7tF-9-nY2-QcyviDWdcpoz__rZWZjOkaZxmHWNORjRcRUm2nksvQpT2YqdkR1EqsIk4c6Mtnke3ItYv7--JYLIgw3xgF45rbcZtKHUeNYDgYUi5zMxupGRHkCJkwW4bZ7cHJ2aeYoFUzHbZya3QiY9HUoVqVDaUnt1iVq18BlxIV4U1w1PqrqjmUCkg96VjgjCEY07-l5sESpxN9bLYNB-UenIsK5sdBodKSLBpbAV87hwLCVWYLdo6kDl_OOUBuMpyJiTrQDbKKA2WoGtUrKXcW78IFMrtBXkVpcEFtHZeT6iLvxEWYz2QkEQEevukGQY9j-LkcxSpuWykjRKzOnjO6kyf609uD5r0331r4KbMHF53AxaZ53zNZhE0OXTPraGU4PKoD_U6zCuXlDF_Y28D38Adt_0tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90sample+aggregate+data+meta%E2%80%90analysis+of+medians&rft.jtitle=Statistics+in+medicine&rft.au=McGrath%2C+Sean&rft.au=Zhao%2C+XiaoFei&rft.au=Qin%2C+Zhi+Zhen&rft.au=Steele%2C+Russell&rft.date=2019-03-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=38&rft.issue=6&rft.spage=969&rft.epage=984&rft_id=info:doi/10.1002%2Fsim.8013&rft.externalDBID=10.1002%252Fsim.8013&rft.externalDocID=SIM8013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon