Sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival and competing risks outcomes
No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive...
Gespeichert in:
| Veröffentlicht in: | Statistics in medicine Jg. 39; H. 24; S. 3397 - 3411 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Wiley Subscription Services, Inc
30.10.2020
|
| Schlagworte: | |
| ISSN: | 0277-6715, 1097-0258, 1097-0258 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time‐to‐event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation‐maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package “survSens” is available on CRAN that implements the proposed methodology. |
|---|---|
| AbstractList | No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time-to-event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation-maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package "survSens" is available on CRAN that implements the proposed methodology. No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time‐to‐event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation‐maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package “survSens” is available on CRAN that implements the proposed methodology. No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time-to-event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation-maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package "survSens" is available on CRAN that implements the proposed methodology.No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time-to-event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation-maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package "survSens" is available on CRAN that implements the proposed methodology. |
| Author | Dulai, Parambir S. Huang, Rong Xu, Ronghui |
| Author_xml | – sequence: 1 givenname: Rong surname: Huang fullname: Huang, Rong organization: University of California San Diego – sequence: 2 givenname: Ronghui orcidid: 0000-0002-2822-0561 surname: Xu fullname: Xu, Ronghui email: rxu@health.ucsd.edu organization: University of California San Diego – sequence: 3 givenname: Parambir S. surname: Dulai fullname: Dulai, Parambir S. organization: University of California San Diego |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32677758$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10c1u1DAQB3ALFdFtQeIJkCUuXLLYzoeTI6r4qFTEoXC2HGcMLom9eOyt9gV4bpxuCxKCk6XRb8b2f87IiQ8eCHnO2ZYzJl6jW7Z9J8UjsuFskBUTbX9CNkxIWXWSt6fkDPGGMc5bIZ-Q01p0Usq235Cf1-DRJbd36UC11_MBHdJgaYqg0wI-UbAWTKIp0OwX0JgjTNQEb0P2k_NfqfM0jAhxr5MLZQTFlCcHSG9d-kaL37t9qWq_ti07SGtTdPi9XJRTKQE-JY-tnhGe3Z_n5Mu7t58vPlRXn95fXry5qkzdDKISozZmaqQVluupqYexnoaat2NvWAM176ZWcCtMDaJvLet63pm-5boR2mphRX1OXh3n7mL4kQGTWhwamGftIWRUohHNMAxsYIW-_IvehBzL91bVyJIq6_uiXtyrPC4wqV10i44H9ZBwAdsjMDEgRrDKuHQXVIrazYozta5QlRWqdYV_nvi74WHmP2h1pLduhsN_nbq-_HjnfwHjAq0s |
| CitedBy_id | crossref_primary_10_1186_s12916_025_04199_4 crossref_primary_10_1016_j_clgc_2020_08_009 crossref_primary_10_1245_s10434_021_10524_x crossref_primary_10_1186_s12874_025_02551_z crossref_primary_10_1093_jnen_nlad037 crossref_primary_10_6339_22_JDS1046 crossref_primary_10_1080_13607863_2020_1857698 crossref_primary_10_2217_cer_2022_0029 crossref_primary_10_1007_s10985_023_09607_6 crossref_primary_10_3390_math11102317 crossref_primary_10_1001_jamanetworkopen_2025_2152 crossref_primary_10_1016_j_medine_2025_502142 crossref_primary_10_1186_s12874_023_01906_8 crossref_primary_10_2217_cer_2022_0030 crossref_primary_10_3390_a18060346 crossref_primary_10_1007_s10985_023_09590_y crossref_primary_10_1007_s13253_022_00490_6 crossref_primary_10_1177_09622802241280782 crossref_primary_10_1016_j_prp_2022_153999 crossref_primary_10_1016_j_wneu_2023_02_062 crossref_primary_10_1016_j_medin_2025_502142 crossref_primary_10_1002_sim_10293 crossref_primary_10_1016_j_chest_2024_08_016 |
| Cites_doi | 10.1093/aje/kwr096 10.1080/19345747.2015.1078862 10.1007/978-1-4757-3692-2 10.1002/sim.6607 10.1002/bimj.201100042 10.1111/j.2517-6161.1977.tb01600.x 10.1214/14-STS499 10.2307/3318671 10.1038/ajg.2016.236 10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9 10.1038/s41395-018-0162-0 10.1111/j.2517-6161.1972.tb00899.x 10.1002/sim.3516 10.2307/2533848 10.1111/j.2517-6161.1982.tb01203.x 10.1016/j.reprotox.2019.04.002 10.1007/s11121-012-0339-5 10.1016/S0016-5085(18)31547-6 10.1016/S0016-5085(18)30684-X 10.1037/1082-989X.9.4.403 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| DOI | 10.1002/sim.8672 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| EISSN | 1097-0258 |
| EndPage | 3411 |
| ExternalDocumentID | 32677758 10_1002_sim_8672 SIM8672 |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institutes of Health funderid: UL1TR001442 of CTSA |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AMVHM CITATION O8X CGR CUY CVF ECM EIF NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c3492-2baccd47f2f1ad439b3d9315b8c04e316d521f2c3e285f06816c851a42afa2f23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000550226800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Wed Oct 01 14:48:39 EDT 2025 Tue Oct 28 03:39:47 EDT 2025 Mon Jul 21 05:13:31 EDT 2025 Sat Nov 29 05:32:45 EST 2025 Tue Nov 18 19:53:48 EST 2025 Wed Jan 22 16:32:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | proportional hazards regression stochastic EM Cox model expectation-maximization algorithm simulated confounder inverse probability weighting causal inference regression adjustment |
| Language | English |
| License | 2020 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3492-2baccd47f2f1ad439b3d9315b8c04e316d521f2c3e285f06816c851a42afa2f23 |
| Notes | Funding information National Institutes of Health, UL1TR001442 of CTSA ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2822-0561 |
| PMID | 32677758 |
| PQID | 2447715088 |
| PQPubID | 48361 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2424999090 proquest_journals_2447715088 pubmed_primary_32677758 crossref_citationtrail_10_1002_sim_8672 crossref_primary_10_1002_sim_8672 wiley_primary_10_1002_sim_8672_SIM8672 |
| PublicationCentury | 2000 |
| PublicationDate | 30 October 2020 |
| PublicationDateYYYYMMDD | 2020-10-30 |
| PublicationDate_xml | – month: 10 year: 2020 text: 30 October 2020 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Stat Med |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 34 2013; 14 2000; 19 2000; 6 2019; 86 2011 1977; 39 2018; 113 1982; 44 2004; 9 2011; 53 2016; 111 2014; 29 2002 2011; 174 1998; 54 1972; 34 2016; 9 2019; 154 2009; 28 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 Katz JA (e_1_2_7_8_1) 2011 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_23_1 e_1_2_7_11_1 Kalbfleisch JD (e_1_2_7_15_1) 2011 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – year: 2011 – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 22 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Series B (Methodological) – volume: 154 start-page: S369 issue: 6 year: 2019 end-page: S370 article-title: Comparative effectiveness of vedolizumab and tumor necrosis factor‐antagonist therapy in Crohn's disease: a multicenter consortium propensity score‐matched analysis publication-title: Gastroenterology – volume: 9 start-page: 403 issue: 4 year: 2004 article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies publication-title: Psychol Methods – volume: 111 start-page: 1147 issue: 8 year: 2016 article-title: The real‐world effectiveness and safety of vedolizumab for moderate–severe Crohn's disease: results from the US VICTORY consortium publication-title: Am J Gastroenterol – volume: 174 start-page: 345 issue: 3 year: 2011 end-page: 353 article-title: Propensity score‐based sensitivity analysis method for uncontrolled confounding publication-title: Am J Epidemiol – volume: 34 start-page: 3661 year: 2015 end-page: 3679 article-title: Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies publication-title: Stat Med – volume: 34 start-page: 187 issue: 2 year: 1972 end-page: 202 article-title: Regression models and life‐tables publication-title: J R Stat Soc Series B (Methodological) – volume: 54 start-page: 948 year: 1998 end-page: 963 article-title: Assessing the sensitivity of regression results to unmeasured confounders in observational studies publication-title: Biometrics – volume: 6 start-page: 457 issue: 3 year: 2000 end-page: 489 article-title: The stochastic EM algorithm: estimation and asymptotic results publication-title: Bernoulli – volume: 28 start-page: 956 issue: 6 year: 2009 end-page: 971 article-title: Simulating competing risks data in survival analysis publication-title: Stat Med – volume: 29 start-page: 596 issue: 4 year: 2014 article-title: Nonparametric bounds and sensitivity analysis of treatment effects publication-title: Stat Sci – year: 2002 – volume: 9 start-page: 395 issue: 3 year: 2016 end-page: 420 article-title: Assessing sensitivity to unmeasured confounding using a simulated potential confounder publication-title: J Res Educ Effect – volume: 14 start-page: 570 issue: 6 year: 2013 end-page: 580 article-title: An introduction to sensitivity analysis for unobserved confounding in nonexperimental prevention research publication-title: Prev Sci – volume: 113 start-page: 1345 issue: 9 year: 2018 article-title: Vedolizumab for ulcerative colitis: treatment outcomes from the VICTORY Consortium publication-title: Am J Gastroenterol – volume: 53 start-page: 822 issue: 5 year: 2011 end-page: 837 article-title: Sensitivity analysis for causal inference using inverse probability weighting publication-title: Biom J – volume: 86 start-page: 62 year: 2019 end-page: 67 article-title: Statistical sensitivity analysis for the estimation of fetal alcohol spectrum disorders prevalence publication-title: Reprod Toxicol – volume: 154 start-page: S68 issue: 6 year: 2019 article-title: Comparative safety profile of vedolizumab and tumor necrosis factor‐antagonist therapy for inflammatory bowel disease: a multicenter consortium propensity score‐matched analysis publication-title: Gastroenterology – volume: 44 start-page: 226 issue: 2 year: 1982 end-page: 233 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J R Stat Soc Series B (Methodological) – volume: 19 start-page: 3309 issue: 24 year: 2000 end-page: 3324 article-title: Proportional hazards model with random effects publication-title: Stat Med – ident: e_1_2_7_5_1 doi: 10.1093/aje/kwr096 – ident: e_1_2_7_13_1 doi: 10.1080/19345747.2015.1078862 – ident: e_1_2_7_2_1 doi: 10.1007/978-1-4757-3692-2 – ident: e_1_2_7_7_1 doi: 10.1002/sim.6607 – ident: e_1_2_7_6_1 doi: 10.1002/bimj.201100042 – volume-title: The Statistical Analysis of Failure Time Data year: 2011 ident: e_1_2_7_15_1 – ident: e_1_2_7_16_1 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_7_23_1 doi: 10.1214/14-STS499 – ident: e_1_2_7_19_1 doi: 10.2307/3318671 – ident: e_1_2_7_10_1 doi: 10.1038/ajg.2016.236 – ident: e_1_2_7_17_1 doi: 10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9 – ident: e_1_2_7_9_1 doi: 10.1038/s41395-018-0162-0 – ident: e_1_2_7_14_1 doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: e_1_2_7_20_1 doi: 10.1002/sim.3516 – ident: e_1_2_7_4_1 doi: 10.2307/2533848 – ident: e_1_2_7_18_1 doi: 10.1111/j.2517-6161.1982.tb01203.x – ident: e_1_2_7_22_1 doi: 10.1016/j.reprotox.2019.04.002 – volume-title: The Facts About Inflammatory Bowel Diseases year: 2011 ident: e_1_2_7_8_1 – ident: e_1_2_7_3_1 doi: 10.1007/s11121-012-0339-5 – ident: e_1_2_7_12_1 doi: 10.1016/S0016-5085(18)31547-6 – ident: e_1_2_7_11_1 doi: 10.1016/S0016-5085(18)30684-X – ident: e_1_2_7_21_1 doi: 10.1037/1082-989X.9.4.403 |
| SSID | ssj0011527 |
| Score | 2.4728615 |
| Snippet | No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3397 |
| SubjectTerms | Algorithms causal inference Causality Confounding Factors, Epidemiologic Cox model expectation‐maximization algorithm Humans inverse probability weighting Observational studies Propensity Score proportional hazards regression regression adjustment Sensitivity analysis simulated confounder stochastic EM |
| Title | Sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival and competing risks outcomes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8672 https://www.ncbi.nlm.nih.gov/pubmed/32677758 https://www.proquest.com/docview/2447715088 https://www.proquest.com/docview/2424999090 |
| Volume | 39 |
| WOSCitedRecordID | wos000550226800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 issn: 0277-6715 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ha9UwED_0TWQwpj6dezpHBNFPdU3SNunH4XwouCHOwftWkjSBB1sr63v7E_y7vXtpK0MFYZ8K7aUpzV3ul8vldwBvjC508NwnGp17kpVBJKWteSILZYu8NEoGvSk2oc7O9GJRfu2zKuksTOSHGANuZBmb-ZoM3Nju6DdpaLe8eq8LhdPvlkC1zSewdfJtfvFl3EMYCrbSJmWheD5Qz6biaGh72xn9gTBvA9aNx5k_usu3PobdHmey46gYT-Ceb6bw8LTfSZ_CTozXsXgMaQrbhDojafNT-HlOae2xrgQzPW0JawMb09JZzANhq5atm6sYZ6wZrq0DlWlCd8iWDWvtGPLFT-lixiKjyC9D-ZslKjm-nZoRdqdGlOiOHa1XeMt3z-Bi_vH7h09JX7AhcURymAhrnKszFUTgpkaoY2VdSp5b7dLMS17UCBaCcNILnYe00LxwiPhMJkwwIgi5B5Ombfw-MEkM6MZZHmSdpUZZw60QOpjgcQYq5QzeDSNXuZ7NnIpqXFaRh1lU-M8r-uczeD1K_ogMHn-RORgGv-ptuKsQ-ChFdPkaXzE-RuujLRXT-HZNMoKWjGmZzuB5VJqxEwTGSuFybAZvN7rxz96r88-ndH3xv4IvYVvQsp9caHoAk9X12r-CB-4G9eT6EO6rhT7sreEXFHUP6g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB5KK1oo_ji1PVs1gujTtptkb5PFp6IeLd4dYlvo25JkEziwu9K765_Qv9uZy-5KUUHwaWF3slk2M5kvk8k3AG-NznXw3CcanXuSFUEkha14InNl81FhlAx6XWxCzWb68rL4ugEfurMwkR-iD7iRZaznazJwCkgf_WINXcyvDnWucP7dylCLUL23Pn0bX0z6TYSuYivtUuaKjzru2VQcdW3veqPfIOZdxLp2OeNH__Wxj-FhizTZcVSNJ7Dh6wHcn7Z76QPYiRE7Fg8iDWCbcGekbX4Kt2eU2B4rSzDTEpewJrA-MZ3FTBC2bNiqvoqRxorh6jpQoSZ0iGxes8b2QV_8lEXMWWQU-2UofzNHNce3UzNC79SIUt2xo9USb_nFM7gYfz7_eJK0JRsSRzSHibDGuSpTQQRuKgQ7VlaF5COrXZp5yfMK4UIQTnqhRyHNNc8dYj6TCROMCEI-h826qf0eMEkc6MZZHmSVpUZZw60QOpjgcQ4q5BDed0NXupbPnMpqfC8jE7Mo8Z-X9M-H8KaX_BE5PP4gc9CNftla8aJE6KMUEeZrfEX_GO2PNlVM7ZsVyQhaNKZFOoTdqDV9JwiNlcIF2RDerZXjr72XZ6dTur74V8HX8ODkfDopJ6ezL_uwLSgIQA41PYDN5fXKv4R77gZ15vpVaxQ_AeAEEvI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5KOkphrG32K2u7ajC2J6-W5FgyexrrwkrbUNYV-mYkWYLAapcm6Z-wv3t3ke1StsFgTwb7ZBnrTvfpdPoO4K3RuQ6e-0Sjc0-yIoiksBVPZK5sPi6MkkGvik2o6VRfXRXna_CxOwsT-SH6gBtZxmq-JgP3N1U4vGcNnc-uP-hc4fy7nlENmQGsH32bXJ72mwhdxVbapcwVH3fcs6k47No-9Ea_QcyHiHXlciZb__Wx2_CkRZrsU1SNHVjz9RA2ztq99CE8jhE7Fg8iDWGTcGekbX4KPy8osT1WlmCmJS5hTWB9YjqLmSBs0bBlfR0jjRXD1XWgQk3oENmsZo3tg774KfOYs8go9stQ_m6Gao5vp2aE3qkRpbpjR8sF3vLzZ3A5-fL989ekLdmQOKI5TIQ1zlWZCiJwUyHYsbIqJB9b7dLMS55XCBeCcNILPQ5prnnuEPOZTJhgRBDyOQzqpvYvgUniQDfO8iCrLDXKGm6F0MEEj3NQIUfwvhu60rV85lRW40cZmZhFif-8pH8-gje95E3k8PiDzF43-mVrxfMSoY9SRJiv8RX9Y7Q_2lQxtW-WJCNo0ZgW6QheRK3pO0ForBQuyEbwbqUcf-29vDg-o-urfxU8gI3zo0l5ejw92YVNQTEA8qfpHgwWt0u_D4_cHarM7evWJn4BUT0SbQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+analysis+of+treatment+effect+to+unmeasured+confounding+in+observational+studies+with+survival+and+competing+risks+outcomes&rft.jtitle=Statistics+in+medicine&rft.au=Huang%2C+Rong&rft.au=Xu%2C+Ronghui&rft.au=Dulai%2C+Parambir+S.&rft.date=2020-10-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=39&rft.issue=24&rft.spage=3397&rft.epage=3411&rft_id=info:doi/10.1002%2Fsim.8672&rft.externalDBID=10.1002%252Fsim.8672&rft.externalDocID=SIM8672 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |