Using spectral Geodesic and spatial Euclidean weights of neighbourhood pixels for hyperspectral Endmember Extraction preprocessing

Spectral Mixture Analysis is one of the fundamental subjects encountered when dealing with remotely sensed hyperspectral images. Its goal is to identify constituent elements of mixed-pixels called Endmembers (EMs) and their associated abundance maps. In this paper, a novel Geodesic and Euclidean dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing Jg. 158; S. 201 - 218
Hauptverfasser: Kowkabi, Fatemeh, Keshavarz, Ahmad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2019
Schlagworte:
ISSN:0924-2716, 1872-8235
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Spectral Mixture Analysis is one of the fundamental subjects encountered when dealing with remotely sensed hyperspectral images. Its goal is to identify constituent elements of mixed-pixels called Endmembers (EMs) and their associated abundance maps. In this paper, a novel Geodesic and Euclidean distances-based preprocessing (GEPP) is addressed which is coupled with the classical spectral-based EM Extraction algorithms (EEs). It combines both spatial and spectral information utilizing two approaches with the purpose of searching for spectrally pure and spatially homogenous pixels that may be identified as the EM candidates in subsequent EEs. GEPP reduces EE processing time by introducing a new correlation coefficient similarity function (CCSF) on the spectrally pure and spatially homogenous pixels pick up with the help of spectral weighting computations, unsupervised Fuzzy C-means (FCM) clustering algorithm and a spatial neighbourhood system using Markov Random Field (MRF) so that processing a large amount of mixed and heterogeneous pixels developed by EEs is avoided. Moreover, CCSF exploits the spatial Euclidean and novel spectral Geodesic weights to compute the final mean vector which is able to improve recognition of spatially homogenous regions that are highly spectrally correlated such that it leads to better results of unmixing accuracy. According to experimental results on three synthetic and four real hyperspectral scenes, hyperspectral unmixing outcomes are relatively improved in terms of SAD and RMSE-based error metrics and higher computation speed can be realized by our proposal in comparison with the state-of-the-arttechniques.
AbstractList Spectral Mixture Analysis is one of the fundamental subjects encountered when dealing with remotely sensed hyperspectral images. Its goal is to identify constituent elements of mixed-pixels called Endmembers (EMs) and their associated abundance maps. In this paper, a novel Geodesic and Euclidean distances-based preprocessing (GEPP) is addressed which is coupled with the classical spectral-based EM Extraction algorithms (EEs). It combines both spatial and spectral information utilizing two approaches with the purpose of searching for spectrally pure and spatially homogenous pixels that may be identified as the EM candidates in subsequent EEs. GEPP reduces EE processing time by introducing a new correlation coefficient similarity function (CCSF) on the spectrally pure and spatially homogenous pixels pick up with the help of spectral weighting computations, unsupervised Fuzzy C-means (FCM) clustering algorithm and a spatial neighbourhood system using Markov Random Field (MRF) so that processing a large amount of mixed and heterogeneous pixels developed by EEs is avoided. Moreover, CCSF exploits the spatial Euclidean and novel spectral Geodesic weights to compute the final mean vector which is able to improve recognition of spatially homogenous regions that are highly spectrally correlated such that it leads to better results of unmixing accuracy. According to experimental results on three synthetic and four real hyperspectral scenes, hyperspectral unmixing outcomes are relatively improved in terms of SAD and RMSE-based error metrics and higher computation speed can be realized by our proposal in comparison with the state-of-the-arttechniques.
Author Kowkabi, Fatemeh
Keshavarz, Ahmad
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Kowkabi
  fullname: Kowkabi, Fatemeh
  email: fatemehkowkabi@miau.ac.ir
  organization: Department of Electrical Engineering, College of Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht 73711-13119, Iran
– sequence: 2
  givenname: Ahmad
  surname: Keshavarz
  fullname: Keshavarz, Ahmad
  email: a.keshavarz@pgu.ac.ir
  organization: Electrical Engineering Department, Scholar Engineering, Persian Gulf University, Bushehr 75168, Iran
BookMark eNqNkD9v2zAQxYkiBeqk-Qzh2EUuSYmUPHQIAjcpEKBLMxP8c4xpyKTKk9tkzScPBRcZurTDgYfHe-9wv3NylnICQq44W3PG1ef9OuJUcF9rLRjfVHXNmHxHVnzoRTOIVp6RFduIrhE9Vx_IOeKeMcalGlbk5QFjeqQ4gZuLGektZA8YHTXJV9XMsYrboxujB5Pob4iPuxlpDjQtrc3HssvZ0yk-wYg05EJ3zxOUt8Bt8gc4WCh0-1QFN8ec6FRgKtkBLss_kvfBjAiXf94L8vB1--Pmrrn_fvvt5vq-cW03zE0Izqph46zppeoG6XnfMdnzIUgBllvpQLHOdcyr0Iu-dSCsZcwFa9tOiU17QT6dcuvqn0fAWR8iOhhHkyAfUVdQohNSqraO9qdRVzJigaCnEg-mPGvO9EJd7_Ubdb1QXz4q9er88pfTxdksR9fj4_gf_uuTv9KEXxGKRhchOfCxVKLa5_jPjFcYFKsc
CitedBy_id crossref_primary_10_3390_s21134257
crossref_primary_10_1109_TGRS_2022_3187867
crossref_primary_10_1117_1_JRS_16_036513
crossref_primary_10_1016_j_bspc_2024_106436
crossref_primary_10_1109_TGRS_2024_3354046
crossref_primary_10_1016_j_envsoft_2025_106405
crossref_primary_10_3390_rs13040713
crossref_primary_10_1007_s11760_022_02140_3
crossref_primary_10_1016_j_ophoto_2025_100086
crossref_primary_10_1109_JSTARS_2025_3568537
crossref_primary_10_1016_j_asoc_2024_112679
crossref_primary_10_1109_TGRS_2022_3207766
crossref_primary_10_1109_JSTARS_2021_3065534
crossref_primary_10_1109_JSTARS_2022_3172120
Cites_doi 10.1109/LGRS.2005.856701
10.1109/JSTARS.2016.2577638
10.1109/JSTARS.2017.2694439
10.1109/TGRS.2002.802494
10.1109/TGRS.2011.2167193
10.1109/LGRS.2012.2229689
10.1016/j.rse.2014.03.034
10.1109/36.911111
10.1109/79.974727
10.1109/TGRS.2010.2068053
10.1016/j.isprsjprs.2017.03.004
10.1117/12.366289
10.1016/j.isprsjprs.2018.03.021
10.1109/TGRS.2013.2268539
10.1109/TGRS.2008.918089
10.1109/TGRS.2008.2002882
10.1016/j.isprsjprs.2016.04.008
10.1109/LGRS.2017.2779477
10.1145/2851613.2851644
10.1016/j.isprsjprs.2017.02.005
10.1109/IGARSS.2018.8518082
10.1016/j.isprsjprs.2016.05.013
10.4095/219526
10.1109/TGRS.2004.842292
10.1016/j.isprsjprs.2016.12.009
10.1109/JSTARS.2012.2192472
10.1109/LGRS.2013.2250905
10.1109/TGRS.2005.844293
10.1109/LGRS.2016.2544839
10.1109/TGRS.2009.2014945
10.1016/j.isprsjprs.2013.02.020
10.1109/TGRS.2011.2162098
10.1109/TGRS.2003.819189
10.1109/JSTARS.2014.2319261
10.1016/j.isprsjprs.2015.08.009
10.1109/IGARSS.2016.7729874
10.1109/TGRS.2011.2163822
10.1109/JSTARS.2014.2330364
10.1109/TGRS.2011.2169680
10.1109/TGRS.2017.2728104
10.1109/TGRS.2011.2163160
10.1007/s12524-014-0408-2
10.1109/LGRS.2014.2325874
10.1016/j.isprsjprs.2017.08.001
10.1109/JSTARS.2016.2645718
10.1109/TIP.2014.2363423
10.1109/TGRS.2006.881803
10.1109/LGRS.2011.2107877
10.1109/JSTARS.2017.2707541
10.1109/TGRS.2016.2633279
10.1109/TGRS.2006.888466
10.1109/IGARSS.2015.7326967
10.1109/JSTARS.2012.2194696
10.1016/j.isprsjprs.2016.12.010
10.1016/j.rse.2007.02.019
10.1109/TGRS.2010.2046671
10.1109/36.298007
10.1109/JSTARS.2016.2539286
10.1109/JSTARS.2016.2640274
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2019.10.005
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 218
ExternalDocumentID 10_1016_j_isprsjprs_2019_10_005
S0924271619302424
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c348t-ffcb689cba756485d17405718f52eb1b5ce604c40d6f7273ce2bb00cfbb346293
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501404100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-2716
IngestDate Thu Oct 02 04:10:19 EDT 2025
Sat Nov 29 07:13:44 EST 2025
Tue Nov 18 21:39:00 EST 2025
Fri Feb 23 02:28:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spectral
Geodesic and Euclidean distances-based preprocessing (GEPP)
Spatial
Endmember Extraction (EE)
Hyperspectral
Unmixing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-ffcb689cba756485d17405718f52eb1b5ce604c40d6f7273ce2bb00cfbb346293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2352425563
PQPubID 24069
PageCount 18
ParticipantIDs proquest_miscellaneous_2352425563
crossref_primary_10_1016_j_isprsjprs_2019_10_005
crossref_citationtrail_10_1016_j_isprsjprs_2019_10_005
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_10_005
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rajabi, Ghassemian (b0220) 2015; 12
Keshava, Mustard (b0090) 2002; 19
Liu, Xia, Wang, Zhang (b0150) 2011; 49
Rogge, Rivard, Zhang, Sanchez, Harris, Feng (b0230) 2007; 110
Torres-Madronero, Velez-Reyes (b0260) 2014; 7
Cao, Yu, Sanchez-Azofeifa, Feng, Rivard, Gu (b0030) 2015; 109
Qian, Xiong, Zeng, Zhou, Yan Tang (b0215) 2016; 55
Cohen, Gillis (b0060) 2018; 15
Jiménez, Sánchez, Martín, Plaza, Plaza (b0085) 2017; 10
Nascimento, Bioucas-Dias (b0195) 2005; 43
Sun, Yang, Wu, Li, Zhang (b0255) 2017; 131
Chang, Wu, Liu, Ouyang (b0055) 2006; 44
Martin, Plaza (b0175) 2012; 5
Li, Prasad, Fowler (b0140) 2014; 11
Sun, W., Ma. J., Yang G., D, B., Zhang, L., 2017. A Poisson nonnegative matrix factorization method with parameter subspace clustering constraint for endmember extraction in hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 128, 27–39.
Mei, He, Wang, Feng (b0185) 2010; 48
Chang, Plaza (b0050) 2006; 3
Zhang, Agathos, Li (b0285) 2017; 55
Plaza, A., Du, Q., Bioucas-Dias, J., Jia, X., Kruse, F., 2011. Foreword to the special issue on spectral unmixing of remotely sensed data. IEEE Trans. Geosci. Remote Sens. 49(11), 4103–4110.
Bachmann, Ainsworth, Fusina (b0005) 2005; 43
Makki, Younes, Francis, Bianchi, Zucchetti (b0165) 2017; 124
Lopez, Moure, Plaza, Callico, Lopez, Sarmiento (b0155) 2013; 10
Kowkabi, F., Ghassemian, H., Keshavarz, A., 2015. Endmember extraction using a novel cluster-based spatial border removal preprocessor. In: 2015 IEEE Geoscience and Remote Sensing Symposium (IGARSS2015), 26-31 July, pp. 5047–5050.
Bioucas-Dias, Nascimento (b0020) 2008; 46
Harsanyi, Chang (b0070) 1994; 32
Stagakis, Vanikiotis, Sykioti (b0245) 2016; 119
Canham, Schlamm, Ziemann, Basener, Messinger (b0025) 2011; 49
Zhong, Wang, Zhao, Feng, Zhang, Xu (b0290) 2016; 119
Li, Zhang (b0130) 2011; 49
Bernabé, Botella, Martín, Prieto-Matias, Plaza (b0010) 2017; 10
Chang, Du (b0040) 2004; 42
Kowkabi, Ghassemian, Keshavarz (b0105) 2016; 13
Zanotta, Haertel, Shimabukuro, Renno (bib307) 2014; 52
Kowkabi, Ghassemian, Keshavarz (b0120) 2017; 10
Chang, Li, Wu, Song (b0045) 2017; 10
Zhanga, Qina, Zhanga, Suna, Chenb (b0275) 2017; 126
Neville, R.A., Staenz, K., Szeredi, T., Lefebvre, J., Hauff, P., 1999. Automatic Endmember Extraction from Hyperspectral Data for Mineral Exploration. In: 21st Canadian Symposium on Remote Sensing, 21-24 June, pp. 21-24.
Zortea, Plaza (b0305) 2009; 47
Luo, Yan, Li, Yang (b0160) 2015; 2015
Geng, Xiao, Ji, Zhao, Wang (b0065) 2013; 79
Zhu, F., 2017. Hyperspectral unmixing:ground truth labeling, datasets, benchmark performances and survey. arXiv:1708.05125v2.
Plaza, Martinez, Perez, Plaza (b0210) 2002; 40
Liu, Zhang, Du (b0145) 2017; 10
Heinz, Chang (b0075) 2001; 39
Kowkabi, Ghassemian, Keshavarz (b0115) 2016; 9
Rajabi, Ghassemian (b0225) 2014; 43
Jia, Qian (b0080) 2009; 47
Kizel, Shoshany (b0095) 2018; 141
Mei, He, Zhang, Wang, Feng (b0190) 2011; 49
Kowkabi, F., Keshavarz, A., 2018. Hyperspectral endmember extraction preprocessing using combination of Euclidean and Geodesic distances. In: 2018 IEEE Geoscience and Remote Sensing Symposium (IGARSS2018), 22-27 July, pp. 4265–4268.
Kowkabi, F., Ghassemian, H., Keshavarz, A., 2016. Hyperspectral endmember extraction and unmixing by a novel spatial-spectral preprocessing module. In: 2016 IEEE Geoscience and Remote Sensing Symposium (IGARSS2016), 10-15 July, pp. 3382–3385.
Zhu, Wang, Fan, Xiang, Meng, Pan (b0300) 2014; 23
Zhang, J., Pechenizkiy, M., Pei, Y., Efremova, J., 2016. A robust density-based clustering algorithm for multi-manifold structure. In: 31st ACM/SIGAPP Symposium on Applied Computing (SAC 2016), DM Track, April 4-8, pp. 832–838.
Li, Zhang, Chen, Gao, Peng (b0135) 2011; 5
Castrodad, Xing, Greer, Bosch, Carin, Sapiro (b0035) 2011; 49
Martin, Plaza (b0170) 2011; 8
Winter, M.E.,1999. N-FINDR: An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data. In SPIE Proceedings, 3753, Imaging Spectrometry V, 266, pp. 266–277.
Ertürk, Çeşmeci, Güllü, Gerçek, Ertürk (bib306) 2014; 7
Shi, Wang (b0240) 2014; 149
Shepard (b0235) 1968
Miao, Qi (b0180) 2007; 45
Bioucas-Dias, Plaza, Dobigeon, Parente, Du, Gader, Chanussot (b0015) 2012; 5
Xu, Shi (b0265) 2017; 124
10.1016/j.isprsjprs.2019.10.005_b0200
Zhanga (10.1016/j.isprsjprs.2019.10.005_b0275) 2017; 126
10.1016/j.isprsjprs.2019.10.005_b0125
10.1016/j.isprsjprs.2019.10.005_b0205
Jiménez (10.1016/j.isprsjprs.2019.10.005_b0085) 2017; 10
Lopez (10.1016/j.isprsjprs.2019.10.005_b0155) 2013; 10
Luo (10.1016/j.isprsjprs.2019.10.005_b0160) 2015; 2015
Miao (10.1016/j.isprsjprs.2019.10.005_b0180) 2007; 45
Li (10.1016/j.isprsjprs.2019.10.005_b0130) 2011; 49
Chang (10.1016/j.isprsjprs.2019.10.005_b0055) 2006; 44
10.1016/j.isprsjprs.2019.10.005_b0280
Sun (10.1016/j.isprsjprs.2019.10.005_b0255) 2017; 131
Zhang (10.1016/j.isprsjprs.2019.10.005_b0285) 2017; 55
Zhong (10.1016/j.isprsjprs.2019.10.005_b0290) 2016; 119
Xu (10.1016/j.isprsjprs.2019.10.005_b0265) 2017; 124
Kizel (10.1016/j.isprsjprs.2019.10.005_b0095) 2018; 141
Zanotta (10.1016/j.isprsjprs.2019.10.005_bib307) 2014; 52
Chang (10.1016/j.isprsjprs.2019.10.005_b0045) 2017; 10
Li (10.1016/j.isprsjprs.2019.10.005_b0140) 2014; 11
Makki (10.1016/j.isprsjprs.2019.10.005_b0165) 2017; 124
Kowkabi (10.1016/j.isprsjprs.2019.10.005_b0115) 2016; 9
Qian (10.1016/j.isprsjprs.2019.10.005_b0215) 2016; 55
Cao (10.1016/j.isprsjprs.2019.10.005_b0030) 2015; 109
Jia (10.1016/j.isprsjprs.2019.10.005_b0080) 2009; 47
Cohen (10.1016/j.isprsjprs.2019.10.005_b0060) 2018; 15
Rogge (10.1016/j.isprsjprs.2019.10.005_b0230) 2007; 110
10.1016/j.isprsjprs.2019.10.005_b0295
Bernabé (10.1016/j.isprsjprs.2019.10.005_b0010) 2017; 10
10.1016/j.isprsjprs.2019.10.005_b0250
Stagakis (10.1016/j.isprsjprs.2019.10.005_b0245) 2016; 119
Ertürk (10.1016/j.isprsjprs.2019.10.005_bib306) 2014; 7
Harsanyi (10.1016/j.isprsjprs.2019.10.005_b0070) 1994; 32
10.1016/j.isprsjprs.2019.10.005_b0100
Bioucas-Dias (10.1016/j.isprsjprs.2019.10.005_b0020) 2008; 46
Plaza (10.1016/j.isprsjprs.2019.10.005_b0210) 2002; 40
Castrodad (10.1016/j.isprsjprs.2019.10.005_b0035) 2011; 49
Heinz (10.1016/j.isprsjprs.2019.10.005_b0075) 2001; 39
Bioucas-Dias (10.1016/j.isprsjprs.2019.10.005_b0015) 2012; 5
Geng (10.1016/j.isprsjprs.2019.10.005_b0065) 2013; 79
Liu (10.1016/j.isprsjprs.2019.10.005_b0145) 2017; 10
Liu (10.1016/j.isprsjprs.2019.10.005_b0150) 2011; 49
Keshava (10.1016/j.isprsjprs.2019.10.005_b0090) 2002; 19
Bachmann (10.1016/j.isprsjprs.2019.10.005_b0005) 2005; 43
Kowkabi (10.1016/j.isprsjprs.2019.10.005_b0105) 2016; 13
Shi (10.1016/j.isprsjprs.2019.10.005_b0240) 2014; 149
Shepard (10.1016/j.isprsjprs.2019.10.005_b0235) 1968
Martin (10.1016/j.isprsjprs.2019.10.005_b0175) 2012; 5
Chang (10.1016/j.isprsjprs.2019.10.005_b0050) 2006; 3
10.1016/j.isprsjprs.2019.10.005_b0110
Nascimento (10.1016/j.isprsjprs.2019.10.005_b0195) 2005; 43
Zhu (10.1016/j.isprsjprs.2019.10.005_b0300) 2014; 23
Canham (10.1016/j.isprsjprs.2019.10.005_b0025) 2011; 49
Kowkabi (10.1016/j.isprsjprs.2019.10.005_b0120) 2017; 10
Zortea (10.1016/j.isprsjprs.2019.10.005_b0305) 2009; 47
Mei (10.1016/j.isprsjprs.2019.10.005_b0185) 2010; 48
Rajabi (10.1016/j.isprsjprs.2019.10.005_b0225) 2014; 43
Chang (10.1016/j.isprsjprs.2019.10.005_b0040) 2004; 42
Mei (10.1016/j.isprsjprs.2019.10.005_b0190) 2011; 49
Torres-Madronero (10.1016/j.isprsjprs.2019.10.005_b0260) 2014; 7
Martin (10.1016/j.isprsjprs.2019.10.005_b0170) 2011; 8
Li (10.1016/j.isprsjprs.2019.10.005_b0135) 2011; 5
Rajabi (10.1016/j.isprsjprs.2019.10.005_b0220) 2015; 12
10.1016/j.isprsjprs.2019.10.005_b0270
References_xml – volume: 8
  start-page: 745
  year: 2011
  end-page: 749
  ident: b0170
  article-title: Region-based spatial preprocessing for endmember extraction and spectral unmixing
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 124
  start-page: 54
  year: 2017
  end-page: 69
  ident: b0265
  article-title: Multi-objective based spectral unmixing for hyperspectral images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 52
  start-page: 3005
  year: 2014
  end-page: 3012
  ident: bib307
  article-title: Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 79
  start-page: 211
  year: 2013
  end-page: 218
  ident: b0065
  article-title: A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 48
  start-page: 3434
  year: 2010
  end-page: 3445
  ident: b0185
  article-title: Spatial purity based endmember extraction for spectral mixture analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 782
  year: 2016
  end-page: 786
  ident: b0105
  article-title: A fast spatial-spectral preprocessing module for hyperspectral endmember extraction
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Kowkabi, F., Keshavarz, A., 2018. Hyperspectral endmember extraction preprocessing using combination of Euclidean and Geodesic distances. In: 2018 IEEE Geoscience and Remote Sensing Symposium (IGARSS2018), 22-27 July, pp. 4265–4268.
– volume: 32
  start-page: 779
  year: 1994
  end-page: 785
  ident: b0070
  article-title: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 1247
  year: 2017
  end-page: 1255
  ident: b0085
  article-title: Parallel implementation of spatial-spectral endmember extraction on graphic processing units
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 45
  year: 2007
  ident: b0180
  article-title: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 42
  start-page: 608
  year: 2004
  end-page: 619
  ident: b0040
  article-title: Estimation of number of spectrally distinct signal sources in hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 43
  start-page: 898
  year: 2005
  end-page: 910
  ident: b0195
  article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 23
  start-page: 5412
  year: 2014
  end-page: 5427
  ident: b0300
  article-title: Spectral unmixing via data-guided sparity
  publication-title: IEEE Trans. Image process.
– reference: Plaza, A., Du, Q., Bioucas-Dias, J., Jia, X., Kruse, F., 2011. Foreword to the special issue on spectral unmixing of remotely sensed data. IEEE Trans. Geosci. Remote Sens. 49(11), 4103–4110.
– volume: 49
  start-page: 4248
  year: 2011
  end-page: 4262
  ident: b0025
  article-title: Spatially adaptive hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 63
  year: 2018
  end-page: 67
  ident: b0060
  article-title: Spectral unmixing with multiple dictionaries
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 2452
  year: 2017
  end-page: 2461
  ident: b0010
  article-title: Parallel implementation of a full hyperspectral unmixing chain using OpenCL
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 49
  start-page: 757
  year: 2011
  end-page: 772
  ident: b0150
  article-title: An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 131
  start-page: 147
  year: 2017
  end-page: 159
  ident: b0255
  article-title: Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 39
  start-page: 529
  year: 2001
  end-page: 545
  ident: b0075
  article-title: Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 49
  start-page: 4263
  year: 2011
  end-page: 4281
  ident: b0035
  article-title: Learning Discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Zhu, F., 2017. Hyperspectral unmixing:ground truth labeling, datasets, benchmark performances and survey. arXiv:1708.05125v2.
– volume: 43
  start-page: 441
  year: 2005
  end-page: 454
  ident: b0005
  article-title: Exploitin manifold geometry in hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 354
  year: 2012
  end-page: 379
  ident: b0015
  article-title: Hyperspectral unmixing overview: geometrical, statistical and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens
– volume: 55
  start-page: 6431
  year: 2017
  end-page: 6439
  ident: b0285
  article-title: Robust minimum volume simplex analysis for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 1610
  year: 2017
  end-page: 1631
  ident: b0145
  article-title: A novel endmember extraction method for hyperspectral imagery based on quantum-behaved particle Swarm Optimization
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 10
  start-page: 2940
  year: 2017
  end-page: 2949
  ident: b0120
  article-title: Hybrid preprocessing algorithm for endmember extraction using clustering, over-segmentation, and local entropy criterion
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
– volume: 126
  start-page: 108
  year: 2017
  end-page: 119
  ident: b0275
  article-title: Endmember extraction from hyperspectral image based on discrete firefly algorithm (EE-DFA)
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 149
  start-page: 70
  year: 2014
  end-page: 87
  ident: b0240
  article-title: Incorporating spatial information in spectral unmixing: a review
  publication-title: Remote Sens. Environ.
– volume: 119
  start-page: 49
  year: 2016
  end-page: 63
  ident: b0290
  article-title: Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 43
  start-page: 269
  year: 2014
  end-page: 278
  ident: b0225
  article-title: Sparsity constrained graph regularized NMF for spectral unmixing of hyperspectral data
  publication-title: J. Indian Soc. Remote. Sens.
– volume: 109
  start-page: 17
  year: 2015
  end-page: 29
  ident: b0030
  article-title: Mapping tropical dry forest succession using multiple criteria spectral mixture analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 47
  start-page: 2679
  year: 2009
  end-page: 2693
  ident: b0305
  article-title: Spatial preprocessing for endmember extraction
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 053538-1
  year: 2011
  end-page: 11
  ident: b0135
  article-title: Adaptive support vector machine and Markov random field model for classifying hyperspectral imagery
  publication-title: J. Appl. Rem. Sens. (SPIE)
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 13
  ident: b0160
  article-title: Local and Global geometric structure preserving and application to hyperspectral image classification. Mathematical Problems in Engineering
  publication-title: Hindawi Publishing Corporation
– start-page: 517
  year: 1968
  end-page: 524
  ident: b0235
  article-title: A two-dimensional interpolation function for irregularly-spaced data
  publication-title: Proceedings of the 1968 ACM National Conference
– reference: Winter, M.E.,1999. N-FINDR: An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data. In SPIE Proceedings, 3753, Imaging Spectrometry V, 266, pp. 266–277.
– volume: 44
  start-page: 2804
  year: 2006
  end-page: 2819
  ident: b0055
  article-title: A new growing method for simplex-based endmember extraction algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 49
  start-page: 4210
  year: 2011
  end-page: 4222
  ident: b0190
  article-title: Improving spatial-spectral endmember extraction in the presence of anomalous ground objects
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 1985
  year: 2014
  end-page: 1993
  ident: b0260
  article-title: Integrating spatial information in unsupervised unmixing of hyperspectral imagery using multiscale representation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– reference: Kowkabi, F., Ghassemian, H., Keshavarz, A., 2015. Endmember extraction using a novel cluster-based spatial border removal preprocessor. In: 2015 IEEE Geoscience and Remote Sensing Symposium (IGARSS2015), 26-31 July, pp. 5047–5050.
– reference: Neville, R.A., Staenz, K., Szeredi, T., Lefebvre, J., Hauff, P., 1999. Automatic Endmember Extraction from Hyperspectral Data for Mineral Exploration. In: 21st Canadian Symposium on Remote Sensing, 21-24 June, pp. 21-24.
– volume: 5
  start-page: 380
  year: 2012
  end-page: 395
  ident: b0175
  article-title: Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
– volume: 141
  start-page: 185
  year: 2018
  end-page: 207
  ident: b0095
  article-title: Spatially adaptive hyperspectral unmixing through endmembers analytical localization based on sums of anisotropic 2D Gaussians
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 3
  start-page: 63
  year: 2006
  end-page: 67
  ident: b0050
  article-title: A fast iterative algorithm for implementation of pixel purity index
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 19
  start-page: 44
  year: 2002
  end-page: 57
  ident: b0090
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process. Mag.
– reference: Kowkabi, F., Ghassemian, H., Keshavarz, A., 2016. Hyperspectral endmember extraction and unmixing by a novel spatial-spectral preprocessing module. In: 2016 IEEE Geoscience and Remote Sensing Symposium (IGARSS2016), 10-15 July, pp. 3382–3385.
– volume: 7
  start-page: 3630
  year: 2014
  end-page: 3639
  ident: bib306
  article-title: Endmember Extraction Guided by Anomalies and Homogeneous Regions for Hyperspectral Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– reference: Sun, W., Ma. J., Yang G., D, B., Zhang, L., 2017. A Poisson nonnegative matrix factorization method with parameter subspace clustering constraint for endmember extraction in hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 128, 27–39.
– volume: 46
  start-page: 2435
  year: 2008
  end-page: 2445
  ident: b0020
  article-title: Hyperspectral subspace identification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Zhang, J., Pechenizkiy, M., Pei, Y., Efremova, J., 2016. A robust density-based clustering algorithm for multi-manifold structure. In: 31st ACM/SIGAPP Symposium on Applied Computing (SAC 2016), DM Track, April 4-8, pp. 832–838.
– volume: 55
  start-page: 1776
  year: 2016
  end-page: 1792
  ident: b0215
  article-title: Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 49
  start-page: 4223
  year: 2011
  end-page: 4238
  ident: b0130
  article-title: A hybrid automatic endmember extraction algorithm based on a local window
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 153
  year: 2014
  end-page: 157
  ident: b0140
  article-title: Hyperspectral image classification using gaussian mixture models and markov random fields
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 296
  year: 2017
  end-page: 308
  ident: b0045
  article-title: Recursive geometric simplex growing analysis for finding endmembers in hyperspectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 12
  start-page: 38
  year: 2015
  end-page: 42
  ident: b0220
  article-title: Spectral unmixing of hyperspectral imagery using multilayer NMF
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 1070
  year: 2013
  end-page: 1074
  ident: b0155
  article-title: A new preprocessing technique for fast hyperspectral endmember extraction
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 124
  start-page: 40
  year: 2017
  end-page: 53
  ident: b0165
  article-title: A survey of landmine detection using hyperspectral imaging
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 47
  start-page: 161
  year: 2009
  end-page: 173
  ident: b0080
  article-title: Constrained nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 110
  start-page: 287
  year: 2007
  end-page: 303
  ident: b0230
  article-title: Integration of spatial-spectral information for the improved extraction of endmembers
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 2025
  year: 2002
  end-page: 2041
  ident: b0210
  article-title: Spatial/spectral endmember extraction by multidimensional morphological operations
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 119
  start-page: 79
  year: 2016
  end-page: 89
  ident: b0245
  article-title: Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 9
  start-page: 2400
  year: 2016
  end-page: 2413
  ident: b0115
  article-title: Enhancing hyperspectral endmember extraction using clustering and oversegmentation-based preprocessing
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
– volume: 3
  start-page: 63
  issue: 1
  year: 2006
  ident: 10.1016/j.isprsjprs.2019.10.005_b0050
  article-title: A fast iterative algorithm for implementation of pixel purity index
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.856701
– volume: 10
  start-page: 296
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0045
  article-title: Recursive geometric simplex growing analysis for finding endmembers in hyperspectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2577638
– volume: 10
  start-page: 2940
  issue: 6
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0120
  article-title: Hybrid preprocessing algorithm for endmember extraction using clustering, over-segmentation, and local entropy criterion
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2017.2694439
– volume: 5
  start-page: 053538-1
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.10.005_b0135
  article-title: Adaptive support vector machine and Markov random field model for classifying hyperspectral imagery
  publication-title: J. Appl. Rem. Sens. (SPIE)
– volume: 40
  start-page: 2025
  issue: 9
  year: 2002
  ident: 10.1016/j.isprsjprs.2019.10.005_b0210
  article-title: Spatial/spectral endmember extraction by multidimensional morphological operations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.802494
– ident: 10.1016/j.isprsjprs.2019.10.005_b0205
  doi: 10.1109/TGRS.2011.2167193
– volume: 10
  start-page: 1070
  issue: 5
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.10.005_b0155
  article-title: A new preprocessing technique for fast hyperspectral endmember extraction
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2229689
– volume: 149
  start-page: 70
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.10.005_b0240
  article-title: Incorporating spatial information in spectral unmixing: a review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.034
– volume: 39
  start-page: 529
  issue: 3
  year: 2001
  ident: 10.1016/j.isprsjprs.2019.10.005_b0075
  article-title: Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.911111
– volume: 19
  start-page: 44
  year: 2002
  ident: 10.1016/j.isprsjprs.2019.10.005_b0090
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.974727
– volume: 49
  start-page: 757
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.10.005_b0150
  article-title: An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2068053
– ident: 10.1016/j.isprsjprs.2019.10.005_b0250
  doi: 10.1016/j.isprsjprs.2017.03.004
– ident: 10.1016/j.isprsjprs.2019.10.005_b0270
  doi: 10.1117/12.366289
– volume: 141
  start-page: 185
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.10.005_b0095
  article-title: Spatially adaptive hyperspectral unmixing through endmembers analytical localization based on sums of anisotropic 2D Gaussians
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.03.021
– volume: 52
  start-page: 3005
  issue: 5
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.10.005_bib307
  article-title: Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2268539
– volume: 46
  start-page: 2435
  issue: 8
  year: 2008
  ident: 10.1016/j.isprsjprs.2019.10.005_b0020
  article-title: Hyperspectral subspace identification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.918089
– volume: 47
  start-page: 161
  year: 2009
  ident: 10.1016/j.isprsjprs.2019.10.005_b0080
  article-title: Constrained nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2002882
– volume: 119
  start-page: 49
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.10.005_b0290
  article-title: Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.04.008
– volume: 15
  start-page: 63
  issue: 2
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.10.005_b0060
  article-title: Spectral unmixing with multiple dictionaries
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2779477
– ident: 10.1016/j.isprsjprs.2019.10.005_b0280
  doi: 10.1145/2851613.2851644
– volume: 126
  start-page: 108
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0275
  article-title: Endmember extraction from hyperspectral image based on discrete firefly algorithm (EE-DFA)
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.02.005
– ident: 10.1016/j.isprsjprs.2019.10.005_b0125
  doi: 10.1109/IGARSS.2018.8518082
– volume: 119
  start-page: 79
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.10.005_b0245
  article-title: Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.05.013
– ident: 10.1016/j.isprsjprs.2019.10.005_b0200
  doi: 10.4095/219526
– volume: 43
  start-page: 441
  issue: 3
  year: 2005
  ident: 10.1016/j.isprsjprs.2019.10.005_b0005
  article-title: Exploitin manifold geometry in hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.842292
– volume: 124
  start-page: 40
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0165
  article-title: A survey of landmine detection using hyperspectral imaging
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.12.009
– volume: 5
  start-page: 380
  issue: 2
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.10.005_b0175
  article-title: Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2012.2192472
– volume: 11
  start-page: 153
  issue: 1
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.10.005_b0140
  article-title: Hyperspectral image classification using gaussian mixture models and markov random fields
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2250905
– volume: 43
  start-page: 898
  issue: 4
  year: 2005
  ident: 10.1016/j.isprsjprs.2019.10.005_b0195
  article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.844293
– volume: 13
  start-page: 782
  issue: 6
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.10.005_b0105
  article-title: A fast spatial-spectral preprocessing module for hyperspectral endmember extraction
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2544839
– volume: 47
  start-page: 2679
  issue: 8
  year: 2009
  ident: 10.1016/j.isprsjprs.2019.10.005_b0305
  article-title: Spatial preprocessing for endmember extraction
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2014945
– volume: 79
  start-page: 211
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.10.005_b0065
  article-title: A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.02.020
– start-page: 517
  year: 1968
  ident: 10.1016/j.isprsjprs.2019.10.005_b0235
  article-title: A two-dimensional interpolation function for irregularly-spaced data
– volume: 49
  start-page: 4223
  issue: 11
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.10.005_b0130
  article-title: A hybrid automatic endmember extraction algorithm based on a local window
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2162098
– volume: 42
  start-page: 608
  issue: 3
  year: 2004
  ident: 10.1016/j.isprsjprs.2019.10.005_b0040
  article-title: Estimation of number of spectrally distinct signal sources in hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.819189
– volume: 7
  start-page: 1985
  issue: 6
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.10.005_b0260
  article-title: Integrating spatial information in unsupervised unmixing of hyperspectral imagery using multiscale representation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2319261
– volume: 109
  start-page: 17
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.10.005_b0030
  article-title: Mapping tropical dry forest succession using multiple criteria spectral mixture analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.08.009
– ident: 10.1016/j.isprsjprs.2019.10.005_b0110
  doi: 10.1109/IGARSS.2016.7729874
– volume: 49
  start-page: 4263
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.10.005_b0035
  article-title: Learning Discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2163822
– volume: 7
  start-page: 3630
  issue: 8
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.10.005_bib306
  article-title: Endmember Extraction Guided by Anomalies and Homogeneous Regions for Hyperspectral Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2330364
– ident: 10.1016/j.isprsjprs.2019.10.005_b0295
– volume: 49
  start-page: 4248
  issue: 11
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.10.005_b0025
  article-title: Spatially adaptive hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2169680
– volume: 55
  start-page: 6431
  issue: 11
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0285
  article-title: Robust minimum volume simplex analysis for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2728104
– volume: 49
  start-page: 4210
  issue: 11
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.10.005_b0190
  article-title: Improving spatial-spectral endmember extraction in the presence of anomalous ground objects
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2163160
– volume: 43
  start-page: 269
  issue: 2
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.10.005_b0225
  article-title: Sparsity constrained graph regularized NMF for spectral unmixing of hyperspectral data
  publication-title: J. Indian Soc. Remote. Sens.
  doi: 10.1007/s12524-014-0408-2
– volume: 12
  start-page: 38
  issue: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.10.005_b0220
  article-title: Spectral unmixing of hyperspectral imagery using multilayer NMF
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2325874
– volume: 131
  start-page: 147
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0255
  article-title: Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.08.001
– volume: 10
  start-page: 1247
  issue: 4
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0085
  article-title: Parallel implementation of spatial-spectral endmember extraction on graphic processing units
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2645718
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.10.005_b0160
  article-title: Local and Global geometric structure preserving and application to hyperspectral image classification. Mathematical Problems in Engineering
  publication-title: Hindawi Publishing Corporation
– volume: 23
  start-page: 5412
  issue: 12
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.10.005_b0300
  article-title: Spectral unmixing via data-guided sparity
  publication-title: IEEE Trans. Image process.
  doi: 10.1109/TIP.2014.2363423
– volume: 44
  start-page: 2804
  issue: 10
  year: 2006
  ident: 10.1016/j.isprsjprs.2019.10.005_b0055
  article-title: A new growing method for simplex-based endmember extraction algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.881803
– volume: 8
  start-page: 745
  issue: 4
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.10.005_b0170
  article-title: Region-based spatial preprocessing for endmember extraction and spectral unmixing
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2107877
– volume: 10
  start-page: 2452
  issue: 6
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0010
  article-title: Parallel implementation of a full hyperspectral unmixing chain using OpenCL
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2017.2707541
– volume: 55
  start-page: 1776
  issue: 3
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.10.005_b0215
  article-title: Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2633279
– volume: 45
  issue: 3
  year: 2007
  ident: 10.1016/j.isprsjprs.2019.10.005_b0180
  article-title: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.888466
– ident: 10.1016/j.isprsjprs.2019.10.005_b0100
  doi: 10.1109/IGARSS.2015.7326967
– volume: 5
  start-page: 354
  issue: 2
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.10.005_b0015
  article-title: Hyperspectral unmixing overview: geometrical, statistical and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2012.2194696
– volume: 124
  start-page: 54
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0265
  article-title: Multi-objective based spectral unmixing for hyperspectral images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.12.010
– volume: 110
  start-page: 287
  issue: 3
  year: 2007
  ident: 10.1016/j.isprsjprs.2019.10.005_b0230
  article-title: Integration of spatial-spectral information for the improved extraction of endmembers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.019
– volume: 48
  start-page: 3434
  issue: 9
  year: 2010
  ident: 10.1016/j.isprsjprs.2019.10.005_b0185
  article-title: Spatial purity based endmember extraction for spectral mixture analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2046671
– volume: 32
  start-page: 779
  issue: 4
  year: 1994
  ident: 10.1016/j.isprsjprs.2019.10.005_b0070
  article-title: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.298007
– volume: 9
  start-page: 2400
  issue: 6
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.10.005_b0115
  article-title: Enhancing hyperspectral endmember extraction using clustering and oversegmentation-based preprocessing
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2539286
– volume: 10
  start-page: 1610
  issue: 4
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.10.005_b0145
  article-title: A novel endmember extraction method for hyperspectral imagery based on quantum-behaved particle Swarm Optimization
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2640274
SSID ssj0001568
Score 2.3564708
Snippet Spectral Mixture Analysis is one of the fundamental subjects encountered when dealing with remotely sensed hyperspectral images. Its goal is to identify...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 201
SubjectTerms algorithms
Endmember Extraction (EE)
Geodesic and Euclidean distances-based preprocessing (GEPP)
Hyperspectral
hyperspectral imagery
probabilistic models
processing time
remote sensing
Spatial
Spectral
Unmixing
Title Using spectral Geodesic and spatial Euclidean weights of neighbourhood pixels for hyperspectral Endmember Extraction preprocessing
URI https://dx.doi.org/10.1016/j.isprsjprs.2019.10.005
https://www.proquest.com/docview/2352425563
Volume 158
WOSCitedRecordID wos000501404100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLaqDgk4IBggxpeMxG0KShPHcXarUAfjME1sSL1FiWOr7dokStKuZ_7L_ievP5K201DZgUOjKo2ttO9Tvx953scIfSYRTTPqU8dnQqpqVepEwgscKTxOotRN4HO92UR4fs7G4-ii17tte2FW8zDP2Xodlf_V1HAOjK1aZx9g7m5SOAHvwehwBLPD8Z8Mb0gAuoNSNd9_E0UmaqvKWiv-tFISXvL5NFNF-BtdGjV8DvVWFTm10nE5XYPb1CzECeSqVTfhKM8WQm0jcjxaN5XdarxU4pi65aB1hTbgPbu8-Hm5rU9RTopGU8IWoqmM-FMlAC_iuFZcejtaN-PcXCepJhucQkC8EJONc6gnySqpdO17OFkk2XbtYhBt8UBsEdIjjheabstuPTZa7u2Kaq8Xdn1l9677pgQxg1nLqp7BS5H2oi-atxdsXF37eP-OB-x4iS3lbRZ3E8VqIjgba6XcAy8MItZHB8Oz0fhH5_IHpuey-zo7RMJ77-lvYdCdgEBHOVfP0TObnuChgdUL1BP5IXq6JVp5iB4DoozM-Uv0W4MNt9jALdgwmBVbsOEObNiCDRcS74ANG7BhABveARvuwIY3YMM7YHuFfp2Orr5-d-yuHg73CWscKXlKWcTTJAwoYUEGOTEkDQMmAw8ChzTggrqEEzejUgXXXHgp-AYu09QnFKLT16ifF7l4gzClbsghJE4SFpAslJDrkySUkkASFoSCHCHa_sgxt5L3aueVebzH0EfI7QaWRvVl_5CT1oqxDV5NUBoDRvcP_tTaPYblXT2zS3JRLOEiSJCIkgn03z78nt6hJ5t_3XvUb6ql-IAe8VUzrauPFsR_APVM10U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+spectral+Geodesic+and+spatial+Euclidean+weights+of+neighbourhood+pixels+for+hyperspectral+Endmember+Extraction+preprocessing&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Kowkabi%2C+Fatemeh&rft.au=Keshavarz%2C+Ahmad&rft.date=2019-12-01&rft.issn=0924-2716&rft.volume=158&rft.spage=201&rft.epage=218&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.10.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2019_10_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon