Using spectral Geodesic and spatial Euclidean weights of neighbourhood pixels for hyperspectral Endmember Extraction preprocessing
Spectral Mixture Analysis is one of the fundamental subjects encountered when dealing with remotely sensed hyperspectral images. Its goal is to identify constituent elements of mixed-pixels called Endmembers (EMs) and their associated abundance maps. In this paper, a novel Geodesic and Euclidean dis...
Gespeichert in:
| Veröffentlicht in: | ISPRS journal of photogrammetry and remote sensing Jg. 158; S. 201 - 218 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2019
|
| Schlagworte: | |
| ISSN: | 0924-2716, 1872-8235 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Spectral Mixture Analysis is one of the fundamental subjects encountered when dealing with remotely sensed hyperspectral images. Its goal is to identify constituent elements of mixed-pixels called Endmembers (EMs) and their associated abundance maps. In this paper, a novel Geodesic and Euclidean distances-based preprocessing (GEPP) is addressed which is coupled with the classical spectral-based EM Extraction algorithms (EEs). It combines both spatial and spectral information utilizing two approaches with the purpose of searching for spectrally pure and spatially homogenous pixels that may be identified as the EM candidates in subsequent EEs. GEPP reduces EE processing time by introducing a new correlation coefficient similarity function (CCSF) on the spectrally pure and spatially homogenous pixels pick up with the help of spectral weighting computations, unsupervised Fuzzy C-means (FCM) clustering algorithm and a spatial neighbourhood system using Markov Random Field (MRF) so that processing a large amount of mixed and heterogeneous pixels developed by EEs is avoided. Moreover, CCSF exploits the spatial Euclidean and novel spectral Geodesic weights to compute the final mean vector which is able to improve recognition of spatially homogenous regions that are highly spectrally correlated such that it leads to better results of unmixing accuracy. According to experimental results on three synthetic and four real hyperspectral scenes, hyperspectral unmixing outcomes are relatively improved in terms of SAD and RMSE-based error metrics and higher computation speed can be realized by our proposal in comparison with the state-of-the-arttechniques. |
|---|---|
| AbstractList | Spectral Mixture Analysis is one of the fundamental subjects encountered when dealing with remotely sensed hyperspectral images. Its goal is to identify constituent elements of mixed-pixels called Endmembers (EMs) and their associated abundance maps. In this paper, a novel Geodesic and Euclidean distances-based preprocessing (GEPP) is addressed which is coupled with the classical spectral-based EM Extraction algorithms (EEs). It combines both spatial and spectral information utilizing two approaches with the purpose of searching for spectrally pure and spatially homogenous pixels that may be identified as the EM candidates in subsequent EEs. GEPP reduces EE processing time by introducing a new correlation coefficient similarity function (CCSF) on the spectrally pure and spatially homogenous pixels pick up with the help of spectral weighting computations, unsupervised Fuzzy C-means (FCM) clustering algorithm and a spatial neighbourhood system using Markov Random Field (MRF) so that processing a large amount of mixed and heterogeneous pixels developed by EEs is avoided. Moreover, CCSF exploits the spatial Euclidean and novel spectral Geodesic weights to compute the final mean vector which is able to improve recognition of spatially homogenous regions that are highly spectrally correlated such that it leads to better results of unmixing accuracy. According to experimental results on three synthetic and four real hyperspectral scenes, hyperspectral unmixing outcomes are relatively improved in terms of SAD and RMSE-based error metrics and higher computation speed can be realized by our proposal in comparison with the state-of-the-arttechniques. |
| Author | Kowkabi, Fatemeh Keshavarz, Ahmad |
| Author_xml | – sequence: 1 givenname: Fatemeh surname: Kowkabi fullname: Kowkabi, Fatemeh email: fatemehkowkabi@miau.ac.ir organization: Department of Electrical Engineering, College of Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht 73711-13119, Iran – sequence: 2 givenname: Ahmad surname: Keshavarz fullname: Keshavarz, Ahmad email: a.keshavarz@pgu.ac.ir organization: Electrical Engineering Department, Scholar Engineering, Persian Gulf University, Bushehr 75168, Iran |
| BookMark | eNqNkD9v2zAQxYkiBeqk-Qzh2EUuSYmUPHQIAjcpEKBLMxP8c4xpyKTKk9tkzScPBRcZurTDgYfHe-9wv3NylnICQq44W3PG1ef9OuJUcF9rLRjfVHXNmHxHVnzoRTOIVp6RFduIrhE9Vx_IOeKeMcalGlbk5QFjeqQ4gZuLGektZA8YHTXJV9XMsYrboxujB5Pob4iPuxlpDjQtrc3HssvZ0yk-wYg05EJ3zxOUt8Bt8gc4WCh0-1QFN8ec6FRgKtkBLss_kvfBjAiXf94L8vB1--Pmrrn_fvvt5vq-cW03zE0Izqph46zppeoG6XnfMdnzIUgBllvpQLHOdcyr0Iu-dSCsZcwFa9tOiU17QT6dcuvqn0fAWR8iOhhHkyAfUVdQohNSqraO9qdRVzJigaCnEg-mPGvO9EJd7_Ubdb1QXz4q9er88pfTxdksR9fj4_gf_uuTv9KEXxGKRhchOfCxVKLa5_jPjFcYFKsc |
| CitedBy_id | crossref_primary_10_3390_s21134257 crossref_primary_10_1109_TGRS_2022_3187867 crossref_primary_10_1117_1_JRS_16_036513 crossref_primary_10_1016_j_bspc_2024_106436 crossref_primary_10_1109_TGRS_2024_3354046 crossref_primary_10_1016_j_envsoft_2025_106405 crossref_primary_10_3390_rs13040713 crossref_primary_10_1007_s11760_022_02140_3 crossref_primary_10_1016_j_ophoto_2025_100086 crossref_primary_10_1109_JSTARS_2025_3568537 crossref_primary_10_1016_j_asoc_2024_112679 crossref_primary_10_1109_TGRS_2022_3207766 crossref_primary_10_1109_JSTARS_2021_3065534 crossref_primary_10_1109_JSTARS_2022_3172120 |
| Cites_doi | 10.1109/LGRS.2005.856701 10.1109/JSTARS.2016.2577638 10.1109/JSTARS.2017.2694439 10.1109/TGRS.2002.802494 10.1109/TGRS.2011.2167193 10.1109/LGRS.2012.2229689 10.1016/j.rse.2014.03.034 10.1109/36.911111 10.1109/79.974727 10.1109/TGRS.2010.2068053 10.1016/j.isprsjprs.2017.03.004 10.1117/12.366289 10.1016/j.isprsjprs.2018.03.021 10.1109/TGRS.2013.2268539 10.1109/TGRS.2008.918089 10.1109/TGRS.2008.2002882 10.1016/j.isprsjprs.2016.04.008 10.1109/LGRS.2017.2779477 10.1145/2851613.2851644 10.1016/j.isprsjprs.2017.02.005 10.1109/IGARSS.2018.8518082 10.1016/j.isprsjprs.2016.05.013 10.4095/219526 10.1109/TGRS.2004.842292 10.1016/j.isprsjprs.2016.12.009 10.1109/JSTARS.2012.2192472 10.1109/LGRS.2013.2250905 10.1109/TGRS.2005.844293 10.1109/LGRS.2016.2544839 10.1109/TGRS.2009.2014945 10.1016/j.isprsjprs.2013.02.020 10.1109/TGRS.2011.2162098 10.1109/TGRS.2003.819189 10.1109/JSTARS.2014.2319261 10.1016/j.isprsjprs.2015.08.009 10.1109/IGARSS.2016.7729874 10.1109/TGRS.2011.2163822 10.1109/JSTARS.2014.2330364 10.1109/TGRS.2011.2169680 10.1109/TGRS.2017.2728104 10.1109/TGRS.2011.2163160 10.1007/s12524-014-0408-2 10.1109/LGRS.2014.2325874 10.1016/j.isprsjprs.2017.08.001 10.1109/JSTARS.2016.2645718 10.1109/TIP.2014.2363423 10.1109/TGRS.2006.881803 10.1109/LGRS.2011.2107877 10.1109/JSTARS.2017.2707541 10.1109/TGRS.2016.2633279 10.1109/TGRS.2006.888466 10.1109/IGARSS.2015.7326967 10.1109/JSTARS.2012.2194696 10.1016/j.isprsjprs.2016.12.010 10.1016/j.rse.2007.02.019 10.1109/TGRS.2010.2046671 10.1109/36.298007 10.1109/JSTARS.2016.2539286 10.1109/JSTARS.2016.2640274 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.isprsjprs.2019.10.005 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1872-8235 |
| EndPage | 218 |
| ExternalDocumentID | 10_1016_j_isprsjprs_2019_10_005 S0924271619302424 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c348t-ffcb689cba756485d17405718f52eb1b5ce604c40d6f7273ce2bb00cfbb346293 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501404100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-2716 |
| IngestDate | Thu Oct 02 04:10:19 EDT 2025 Sat Nov 29 07:13:44 EST 2025 Tue Nov 18 21:39:00 EST 2025 Fri Feb 23 02:28:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spectral Geodesic and Euclidean distances-based preprocessing (GEPP) Spatial Endmember Extraction (EE) Hyperspectral Unmixing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-ffcb689cba756485d17405718f52eb1b5ce604c40d6f7273ce2bb00cfbb346293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2352425563 |
| PQPubID | 24069 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2352425563 crossref_primary_10_1016_j_isprsjprs_2019_10_005 crossref_citationtrail_10_1016_j_isprsjprs_2019_10_005 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_10_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Rajabi, Ghassemian (b0220) 2015; 12 Keshava, Mustard (b0090) 2002; 19 Liu, Xia, Wang, Zhang (b0150) 2011; 49 Rogge, Rivard, Zhang, Sanchez, Harris, Feng (b0230) 2007; 110 Torres-Madronero, Velez-Reyes (b0260) 2014; 7 Cao, Yu, Sanchez-Azofeifa, Feng, Rivard, Gu (b0030) 2015; 109 Qian, Xiong, Zeng, Zhou, Yan Tang (b0215) 2016; 55 Cohen, Gillis (b0060) 2018; 15 Jiménez, Sánchez, Martín, Plaza, Plaza (b0085) 2017; 10 Nascimento, Bioucas-Dias (b0195) 2005; 43 Sun, Yang, Wu, Li, Zhang (b0255) 2017; 131 Chang, Wu, Liu, Ouyang (b0055) 2006; 44 Martin, Plaza (b0175) 2012; 5 Li, Prasad, Fowler (b0140) 2014; 11 Sun, W., Ma. J., Yang G., D, B., Zhang, L., 2017. A Poisson nonnegative matrix factorization method with parameter subspace clustering constraint for endmember extraction in hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 128, 27–39. Mei, He, Wang, Feng (b0185) 2010; 48 Chang, Plaza (b0050) 2006; 3 Zhang, Agathos, Li (b0285) 2017; 55 Plaza, A., Du, Q., Bioucas-Dias, J., Jia, X., Kruse, F., 2011. Foreword to the special issue on spectral unmixing of remotely sensed data. IEEE Trans. Geosci. Remote Sens. 49(11), 4103–4110. Bachmann, Ainsworth, Fusina (b0005) 2005; 43 Makki, Younes, Francis, Bianchi, Zucchetti (b0165) 2017; 124 Lopez, Moure, Plaza, Callico, Lopez, Sarmiento (b0155) 2013; 10 Kowkabi, F., Ghassemian, H., Keshavarz, A., 2015. Endmember extraction using a novel cluster-based spatial border removal preprocessor. In: 2015 IEEE Geoscience and Remote Sensing Symposium (IGARSS2015), 26-31 July, pp. 5047–5050. Bioucas-Dias, Nascimento (b0020) 2008; 46 Harsanyi, Chang (b0070) 1994; 32 Stagakis, Vanikiotis, Sykioti (b0245) 2016; 119 Canham, Schlamm, Ziemann, Basener, Messinger (b0025) 2011; 49 Zhong, Wang, Zhao, Feng, Zhang, Xu (b0290) 2016; 119 Li, Zhang (b0130) 2011; 49 Bernabé, Botella, Martín, Prieto-Matias, Plaza (b0010) 2017; 10 Chang, Du (b0040) 2004; 42 Kowkabi, Ghassemian, Keshavarz (b0105) 2016; 13 Zanotta, Haertel, Shimabukuro, Renno (bib307) 2014; 52 Kowkabi, Ghassemian, Keshavarz (b0120) 2017; 10 Chang, Li, Wu, Song (b0045) 2017; 10 Zhanga, Qina, Zhanga, Suna, Chenb (b0275) 2017; 126 Neville, R.A., Staenz, K., Szeredi, T., Lefebvre, J., Hauff, P., 1999. Automatic Endmember Extraction from Hyperspectral Data for Mineral Exploration. In: 21st Canadian Symposium on Remote Sensing, 21-24 June, pp. 21-24. Zortea, Plaza (b0305) 2009; 47 Luo, Yan, Li, Yang (b0160) 2015; 2015 Geng, Xiao, Ji, Zhao, Wang (b0065) 2013; 79 Zhu, F., 2017. Hyperspectral unmixing:ground truth labeling, datasets, benchmark performances and survey. arXiv:1708.05125v2. Plaza, Martinez, Perez, Plaza (b0210) 2002; 40 Liu, Zhang, Du (b0145) 2017; 10 Heinz, Chang (b0075) 2001; 39 Kowkabi, Ghassemian, Keshavarz (b0115) 2016; 9 Rajabi, Ghassemian (b0225) 2014; 43 Jia, Qian (b0080) 2009; 47 Kizel, Shoshany (b0095) 2018; 141 Mei, He, Zhang, Wang, Feng (b0190) 2011; 49 Kowkabi, F., Keshavarz, A., 2018. Hyperspectral endmember extraction preprocessing using combination of Euclidean and Geodesic distances. In: 2018 IEEE Geoscience and Remote Sensing Symposium (IGARSS2018), 22-27 July, pp. 4265–4268. Kowkabi, F., Ghassemian, H., Keshavarz, A., 2016. Hyperspectral endmember extraction and unmixing by a novel spatial-spectral preprocessing module. In: 2016 IEEE Geoscience and Remote Sensing Symposium (IGARSS2016), 10-15 July, pp. 3382–3385. Zhu, Wang, Fan, Xiang, Meng, Pan (b0300) 2014; 23 Zhang, J., Pechenizkiy, M., Pei, Y., Efremova, J., 2016. A robust density-based clustering algorithm for multi-manifold structure. In: 31st ACM/SIGAPP Symposium on Applied Computing (SAC 2016), DM Track, April 4-8, pp. 832–838. Li, Zhang, Chen, Gao, Peng (b0135) 2011; 5 Castrodad, Xing, Greer, Bosch, Carin, Sapiro (b0035) 2011; 49 Martin, Plaza (b0170) 2011; 8 Winter, M.E.,1999. N-FINDR: An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data. In SPIE Proceedings, 3753, Imaging Spectrometry V, 266, pp. 266–277. Ertürk, Çeşmeci, Güllü, Gerçek, Ertürk (bib306) 2014; 7 Shi, Wang (b0240) 2014; 149 Shepard (b0235) 1968 Miao, Qi (b0180) 2007; 45 Bioucas-Dias, Plaza, Dobigeon, Parente, Du, Gader, Chanussot (b0015) 2012; 5 Xu, Shi (b0265) 2017; 124 10.1016/j.isprsjprs.2019.10.005_b0200 Zhanga (10.1016/j.isprsjprs.2019.10.005_b0275) 2017; 126 10.1016/j.isprsjprs.2019.10.005_b0125 10.1016/j.isprsjprs.2019.10.005_b0205 Jiménez (10.1016/j.isprsjprs.2019.10.005_b0085) 2017; 10 Lopez (10.1016/j.isprsjprs.2019.10.005_b0155) 2013; 10 Luo (10.1016/j.isprsjprs.2019.10.005_b0160) 2015; 2015 Miao (10.1016/j.isprsjprs.2019.10.005_b0180) 2007; 45 Li (10.1016/j.isprsjprs.2019.10.005_b0130) 2011; 49 Chang (10.1016/j.isprsjprs.2019.10.005_b0055) 2006; 44 10.1016/j.isprsjprs.2019.10.005_b0280 Sun (10.1016/j.isprsjprs.2019.10.005_b0255) 2017; 131 Zhang (10.1016/j.isprsjprs.2019.10.005_b0285) 2017; 55 Zhong (10.1016/j.isprsjprs.2019.10.005_b0290) 2016; 119 Xu (10.1016/j.isprsjprs.2019.10.005_b0265) 2017; 124 Kizel (10.1016/j.isprsjprs.2019.10.005_b0095) 2018; 141 Zanotta (10.1016/j.isprsjprs.2019.10.005_bib307) 2014; 52 Chang (10.1016/j.isprsjprs.2019.10.005_b0045) 2017; 10 Li (10.1016/j.isprsjprs.2019.10.005_b0140) 2014; 11 Makki (10.1016/j.isprsjprs.2019.10.005_b0165) 2017; 124 Kowkabi (10.1016/j.isprsjprs.2019.10.005_b0115) 2016; 9 Qian (10.1016/j.isprsjprs.2019.10.005_b0215) 2016; 55 Cao (10.1016/j.isprsjprs.2019.10.005_b0030) 2015; 109 Jia (10.1016/j.isprsjprs.2019.10.005_b0080) 2009; 47 Cohen (10.1016/j.isprsjprs.2019.10.005_b0060) 2018; 15 Rogge (10.1016/j.isprsjprs.2019.10.005_b0230) 2007; 110 10.1016/j.isprsjprs.2019.10.005_b0295 Bernabé (10.1016/j.isprsjprs.2019.10.005_b0010) 2017; 10 10.1016/j.isprsjprs.2019.10.005_b0250 Stagakis (10.1016/j.isprsjprs.2019.10.005_b0245) 2016; 119 Ertürk (10.1016/j.isprsjprs.2019.10.005_bib306) 2014; 7 Harsanyi (10.1016/j.isprsjprs.2019.10.005_b0070) 1994; 32 10.1016/j.isprsjprs.2019.10.005_b0100 Bioucas-Dias (10.1016/j.isprsjprs.2019.10.005_b0020) 2008; 46 Plaza (10.1016/j.isprsjprs.2019.10.005_b0210) 2002; 40 Castrodad (10.1016/j.isprsjprs.2019.10.005_b0035) 2011; 49 Heinz (10.1016/j.isprsjprs.2019.10.005_b0075) 2001; 39 Bioucas-Dias (10.1016/j.isprsjprs.2019.10.005_b0015) 2012; 5 Geng (10.1016/j.isprsjprs.2019.10.005_b0065) 2013; 79 Liu (10.1016/j.isprsjprs.2019.10.005_b0145) 2017; 10 Liu (10.1016/j.isprsjprs.2019.10.005_b0150) 2011; 49 Keshava (10.1016/j.isprsjprs.2019.10.005_b0090) 2002; 19 Bachmann (10.1016/j.isprsjprs.2019.10.005_b0005) 2005; 43 Kowkabi (10.1016/j.isprsjprs.2019.10.005_b0105) 2016; 13 Shi (10.1016/j.isprsjprs.2019.10.005_b0240) 2014; 149 Shepard (10.1016/j.isprsjprs.2019.10.005_b0235) 1968 Martin (10.1016/j.isprsjprs.2019.10.005_b0175) 2012; 5 Chang (10.1016/j.isprsjprs.2019.10.005_b0050) 2006; 3 10.1016/j.isprsjprs.2019.10.005_b0110 Nascimento (10.1016/j.isprsjprs.2019.10.005_b0195) 2005; 43 Zhu (10.1016/j.isprsjprs.2019.10.005_b0300) 2014; 23 Canham (10.1016/j.isprsjprs.2019.10.005_b0025) 2011; 49 Kowkabi (10.1016/j.isprsjprs.2019.10.005_b0120) 2017; 10 Zortea (10.1016/j.isprsjprs.2019.10.005_b0305) 2009; 47 Mei (10.1016/j.isprsjprs.2019.10.005_b0185) 2010; 48 Rajabi (10.1016/j.isprsjprs.2019.10.005_b0225) 2014; 43 Chang (10.1016/j.isprsjprs.2019.10.005_b0040) 2004; 42 Mei (10.1016/j.isprsjprs.2019.10.005_b0190) 2011; 49 Torres-Madronero (10.1016/j.isprsjprs.2019.10.005_b0260) 2014; 7 Martin (10.1016/j.isprsjprs.2019.10.005_b0170) 2011; 8 Li (10.1016/j.isprsjprs.2019.10.005_b0135) 2011; 5 Rajabi (10.1016/j.isprsjprs.2019.10.005_b0220) 2015; 12 10.1016/j.isprsjprs.2019.10.005_b0270 |
| References_xml | – volume: 8 start-page: 745 year: 2011 end-page: 749 ident: b0170 article-title: Region-based spatial preprocessing for endmember extraction and spectral unmixing publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 124 start-page: 54 year: 2017 end-page: 69 ident: b0265 article-title: Multi-objective based spectral unmixing for hyperspectral images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 52 start-page: 3005 year: 2014 end-page: 3012 ident: bib307 article-title: Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 79 start-page: 211 year: 2013 end-page: 218 ident: b0065 article-title: A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 48 start-page: 3434 year: 2010 end-page: 3445 ident: b0185 article-title: Spatial purity based endmember extraction for spectral mixture analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 782 year: 2016 end-page: 786 ident: b0105 article-title: A fast spatial-spectral preprocessing module for hyperspectral endmember extraction publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Kowkabi, F., Keshavarz, A., 2018. Hyperspectral endmember extraction preprocessing using combination of Euclidean and Geodesic distances. In: 2018 IEEE Geoscience and Remote Sensing Symposium (IGARSS2018), 22-27 July, pp. 4265–4268. – volume: 32 start-page: 779 year: 1994 end-page: 785 ident: b0070 article-title: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 start-page: 1247 year: 2017 end-page: 1255 ident: b0085 article-title: Parallel implementation of spatial-spectral endmember extraction on graphic processing units publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 45 year: 2007 ident: b0180 article-title: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 42 start-page: 608 year: 2004 end-page: 619 ident: b0040 article-title: Estimation of number of spectrally distinct signal sources in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 43 start-page: 898 year: 2005 end-page: 910 ident: b0195 article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 23 start-page: 5412 year: 2014 end-page: 5427 ident: b0300 article-title: Spectral unmixing via data-guided sparity publication-title: IEEE Trans. Image process. – reference: Plaza, A., Du, Q., Bioucas-Dias, J., Jia, X., Kruse, F., 2011. Foreword to the special issue on spectral unmixing of remotely sensed data. IEEE Trans. Geosci. Remote Sens. 49(11), 4103–4110. – volume: 49 start-page: 4248 year: 2011 end-page: 4262 ident: b0025 article-title: Spatially adaptive hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 15 start-page: 63 year: 2018 end-page: 67 ident: b0060 article-title: Spectral unmixing with multiple dictionaries publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 2452 year: 2017 end-page: 2461 ident: b0010 article-title: Parallel implementation of a full hyperspectral unmixing chain using OpenCL publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 49 start-page: 757 year: 2011 end-page: 772 ident: b0150 article-title: An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 131 start-page: 147 year: 2017 end-page: 159 ident: b0255 article-title: Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 39 start-page: 529 year: 2001 end-page: 545 ident: b0075 article-title: Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 49 start-page: 4263 year: 2011 end-page: 4281 ident: b0035 article-title: Learning Discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Zhu, F., 2017. Hyperspectral unmixing:ground truth labeling, datasets, benchmark performances and survey. arXiv:1708.05125v2. – volume: 43 start-page: 441 year: 2005 end-page: 454 ident: b0005 article-title: Exploitin manifold geometry in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 5 start-page: 354 year: 2012 end-page: 379 ident: b0015 article-title: Hyperspectral unmixing overview: geometrical, statistical and sparse regression-based approaches publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens – volume: 55 start-page: 6431 year: 2017 end-page: 6439 ident: b0285 article-title: Robust minimum volume simplex analysis for hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 start-page: 1610 year: 2017 end-page: 1631 ident: b0145 article-title: A novel endmember extraction method for hyperspectral imagery based on quantum-behaved particle Swarm Optimization publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 10 start-page: 2940 year: 2017 end-page: 2949 ident: b0120 article-title: Hybrid preprocessing algorithm for endmember extraction using clustering, over-segmentation, and local entropy criterion publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. – volume: 126 start-page: 108 year: 2017 end-page: 119 ident: b0275 article-title: Endmember extraction from hyperspectral image based on discrete firefly algorithm (EE-DFA) publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 149 start-page: 70 year: 2014 end-page: 87 ident: b0240 article-title: Incorporating spatial information in spectral unmixing: a review publication-title: Remote Sens. Environ. – volume: 119 start-page: 49 year: 2016 end-page: 63 ident: b0290 article-title: Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 43 start-page: 269 year: 2014 end-page: 278 ident: b0225 article-title: Sparsity constrained graph regularized NMF for spectral unmixing of hyperspectral data publication-title: J. Indian Soc. Remote. Sens. – volume: 109 start-page: 17 year: 2015 end-page: 29 ident: b0030 article-title: Mapping tropical dry forest succession using multiple criteria spectral mixture analysis publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 47 start-page: 2679 year: 2009 end-page: 2693 ident: b0305 article-title: Spatial preprocessing for endmember extraction publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 5 start-page: 053538-1 year: 2011 end-page: 11 ident: b0135 article-title: Adaptive support vector machine and Markov random field model for classifying hyperspectral imagery publication-title: J. Appl. Rem. Sens. (SPIE) – volume: 2015 start-page: 1 year: 2015 end-page: 13 ident: b0160 article-title: Local and Global geometric structure preserving and application to hyperspectral image classification. Mathematical Problems in Engineering publication-title: Hindawi Publishing Corporation – start-page: 517 year: 1968 end-page: 524 ident: b0235 article-title: A two-dimensional interpolation function for irregularly-spaced data publication-title: Proceedings of the 1968 ACM National Conference – reference: Winter, M.E.,1999. N-FINDR: An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data. In SPIE Proceedings, 3753, Imaging Spectrometry V, 266, pp. 266–277. – volume: 44 start-page: 2804 year: 2006 end-page: 2819 ident: b0055 article-title: A new growing method for simplex-based endmember extraction algorithm publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 49 start-page: 4210 year: 2011 end-page: 4222 ident: b0190 article-title: Improving spatial-spectral endmember extraction in the presence of anomalous ground objects publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 1985 year: 2014 end-page: 1993 ident: b0260 article-title: Integrating spatial information in unsupervised unmixing of hyperspectral imagery using multiscale representation publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – reference: Kowkabi, F., Ghassemian, H., Keshavarz, A., 2015. Endmember extraction using a novel cluster-based spatial border removal preprocessor. In: 2015 IEEE Geoscience and Remote Sensing Symposium (IGARSS2015), 26-31 July, pp. 5047–5050. – reference: Neville, R.A., Staenz, K., Szeredi, T., Lefebvre, J., Hauff, P., 1999. Automatic Endmember Extraction from Hyperspectral Data for Mineral Exploration. In: 21st Canadian Symposium on Remote Sensing, 21-24 June, pp. 21-24. – volume: 5 start-page: 380 year: 2012 end-page: 395 ident: b0175 article-title: Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. – volume: 141 start-page: 185 year: 2018 end-page: 207 ident: b0095 article-title: Spatially adaptive hyperspectral unmixing through endmembers analytical localization based on sums of anisotropic 2D Gaussians publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 3 start-page: 63 year: 2006 end-page: 67 ident: b0050 article-title: A fast iterative algorithm for implementation of pixel purity index publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 19 start-page: 44 year: 2002 end-page: 57 ident: b0090 article-title: Spectral unmixing publication-title: IEEE Signal Process. Mag. – reference: Kowkabi, F., Ghassemian, H., Keshavarz, A., 2016. Hyperspectral endmember extraction and unmixing by a novel spatial-spectral preprocessing module. In: 2016 IEEE Geoscience and Remote Sensing Symposium (IGARSS2016), 10-15 July, pp. 3382–3385. – volume: 7 start-page: 3630 year: 2014 end-page: 3639 ident: bib306 article-title: Endmember Extraction Guided by Anomalies and Homogeneous Regions for Hyperspectral Images publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – reference: Sun, W., Ma. J., Yang G., D, B., Zhang, L., 2017. A Poisson nonnegative matrix factorization method with parameter subspace clustering constraint for endmember extraction in hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 128, 27–39. – volume: 46 start-page: 2435 year: 2008 end-page: 2445 ident: b0020 article-title: Hyperspectral subspace identification publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Zhang, J., Pechenizkiy, M., Pei, Y., Efremova, J., 2016. A robust density-based clustering algorithm for multi-manifold structure. In: 31st ACM/SIGAPP Symposium on Applied Computing (SAC 2016), DM Track, April 4-8, pp. 832–838. – volume: 55 start-page: 1776 year: 2016 end-page: 1792 ident: b0215 article-title: Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 49 start-page: 4223 year: 2011 end-page: 4238 ident: b0130 article-title: A hybrid automatic endmember extraction algorithm based on a local window publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 11 start-page: 153 year: 2014 end-page: 157 ident: b0140 article-title: Hyperspectral image classification using gaussian mixture models and markov random fields publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 296 year: 2017 end-page: 308 ident: b0045 article-title: Recursive geometric simplex growing analysis for finding endmembers in hyperspectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 12 start-page: 38 year: 2015 end-page: 42 ident: b0220 article-title: Spectral unmixing of hyperspectral imagery using multilayer NMF publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 1070 year: 2013 end-page: 1074 ident: b0155 article-title: A new preprocessing technique for fast hyperspectral endmember extraction publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 124 start-page: 40 year: 2017 end-page: 53 ident: b0165 article-title: A survey of landmine detection using hyperspectral imaging publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 47 start-page: 161 year: 2009 end-page: 173 ident: b0080 article-title: Constrained nonnegative matrix factorization for hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 110 start-page: 287 year: 2007 end-page: 303 ident: b0230 article-title: Integration of spatial-spectral information for the improved extraction of endmembers publication-title: Remote Sens. Environ. – volume: 40 start-page: 2025 year: 2002 end-page: 2041 ident: b0210 article-title: Spatial/spectral endmember extraction by multidimensional morphological operations publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 119 start-page: 79 year: 2016 end-page: 89 ident: b0245 article-title: Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 9 start-page: 2400 year: 2016 end-page: 2413 ident: b0115 article-title: Enhancing hyperspectral endmember extraction using clustering and oversegmentation-based preprocessing publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. – volume: 3 start-page: 63 issue: 1 year: 2006 ident: 10.1016/j.isprsjprs.2019.10.005_b0050 article-title: A fast iterative algorithm for implementation of pixel purity index publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.856701 – volume: 10 start-page: 296 issue: 1 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0045 article-title: Recursive geometric simplex growing analysis for finding endmembers in hyperspectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2577638 – volume: 10 start-page: 2940 issue: 6 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0120 article-title: Hybrid preprocessing algorithm for endmember extraction using clustering, over-segmentation, and local entropy criterion publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2017.2694439 – volume: 5 start-page: 053538-1 year: 2011 ident: 10.1016/j.isprsjprs.2019.10.005_b0135 article-title: Adaptive support vector machine and Markov random field model for classifying hyperspectral imagery publication-title: J. Appl. Rem. Sens. (SPIE) – volume: 40 start-page: 2025 issue: 9 year: 2002 ident: 10.1016/j.isprsjprs.2019.10.005_b0210 article-title: Spatial/spectral endmember extraction by multidimensional morphological operations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.802494 – ident: 10.1016/j.isprsjprs.2019.10.005_b0205 doi: 10.1109/TGRS.2011.2167193 – volume: 10 start-page: 1070 issue: 5 year: 2013 ident: 10.1016/j.isprsjprs.2019.10.005_b0155 article-title: A new preprocessing technique for fast hyperspectral endmember extraction publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2229689 – volume: 149 start-page: 70 year: 2014 ident: 10.1016/j.isprsjprs.2019.10.005_b0240 article-title: Incorporating spatial information in spectral unmixing: a review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.034 – volume: 39 start-page: 529 issue: 3 year: 2001 ident: 10.1016/j.isprsjprs.2019.10.005_b0075 article-title: Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.911111 – volume: 19 start-page: 44 year: 2002 ident: 10.1016/j.isprsjprs.2019.10.005_b0090 article-title: Spectral unmixing publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.974727 – volume: 49 start-page: 757 year: 2011 ident: 10.1016/j.isprsjprs.2019.10.005_b0150 article-title: An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2068053 – ident: 10.1016/j.isprsjprs.2019.10.005_b0250 doi: 10.1016/j.isprsjprs.2017.03.004 – ident: 10.1016/j.isprsjprs.2019.10.005_b0270 doi: 10.1117/12.366289 – volume: 141 start-page: 185 year: 2018 ident: 10.1016/j.isprsjprs.2019.10.005_b0095 article-title: Spatially adaptive hyperspectral unmixing through endmembers analytical localization based on sums of anisotropic 2D Gaussians publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.03.021 – volume: 52 start-page: 3005 issue: 5 year: 2014 ident: 10.1016/j.isprsjprs.2019.10.005_bib307 article-title: Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2268539 – volume: 46 start-page: 2435 issue: 8 year: 2008 ident: 10.1016/j.isprsjprs.2019.10.005_b0020 article-title: Hyperspectral subspace identification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.918089 – volume: 47 start-page: 161 year: 2009 ident: 10.1016/j.isprsjprs.2019.10.005_b0080 article-title: Constrained nonnegative matrix factorization for hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2002882 – volume: 119 start-page: 49 year: 2016 ident: 10.1016/j.isprsjprs.2019.10.005_b0290 article-title: Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.04.008 – volume: 15 start-page: 63 issue: 2 year: 2018 ident: 10.1016/j.isprsjprs.2019.10.005_b0060 article-title: Spectral unmixing with multiple dictionaries publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2779477 – ident: 10.1016/j.isprsjprs.2019.10.005_b0280 doi: 10.1145/2851613.2851644 – volume: 126 start-page: 108 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0275 article-title: Endmember extraction from hyperspectral image based on discrete firefly algorithm (EE-DFA) publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.02.005 – ident: 10.1016/j.isprsjprs.2019.10.005_b0125 doi: 10.1109/IGARSS.2018.8518082 – volume: 119 start-page: 79 year: 2016 ident: 10.1016/j.isprsjprs.2019.10.005_b0245 article-title: Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.05.013 – ident: 10.1016/j.isprsjprs.2019.10.005_b0200 doi: 10.4095/219526 – volume: 43 start-page: 441 issue: 3 year: 2005 ident: 10.1016/j.isprsjprs.2019.10.005_b0005 article-title: Exploitin manifold geometry in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.842292 – volume: 124 start-page: 40 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0165 article-title: A survey of landmine detection using hyperspectral imaging publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.12.009 – volume: 5 start-page: 380 issue: 2 year: 2012 ident: 10.1016/j.isprsjprs.2019.10.005_b0175 article-title: Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2012.2192472 – volume: 11 start-page: 153 issue: 1 year: 2014 ident: 10.1016/j.isprsjprs.2019.10.005_b0140 article-title: Hyperspectral image classification using gaussian mixture models and markov random fields publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2250905 – volume: 43 start-page: 898 issue: 4 year: 2005 ident: 10.1016/j.isprsjprs.2019.10.005_b0195 article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.844293 – volume: 13 start-page: 782 issue: 6 year: 2016 ident: 10.1016/j.isprsjprs.2019.10.005_b0105 article-title: A fast spatial-spectral preprocessing module for hyperspectral endmember extraction publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2544839 – volume: 47 start-page: 2679 issue: 8 year: 2009 ident: 10.1016/j.isprsjprs.2019.10.005_b0305 article-title: Spatial preprocessing for endmember extraction publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2014945 – volume: 79 start-page: 211 year: 2013 ident: 10.1016/j.isprsjprs.2019.10.005_b0065 article-title: A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.02.020 – start-page: 517 year: 1968 ident: 10.1016/j.isprsjprs.2019.10.005_b0235 article-title: A two-dimensional interpolation function for irregularly-spaced data – volume: 49 start-page: 4223 issue: 11 year: 2011 ident: 10.1016/j.isprsjprs.2019.10.005_b0130 article-title: A hybrid automatic endmember extraction algorithm based on a local window publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2162098 – volume: 42 start-page: 608 issue: 3 year: 2004 ident: 10.1016/j.isprsjprs.2019.10.005_b0040 article-title: Estimation of number of spectrally distinct signal sources in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.819189 – volume: 7 start-page: 1985 issue: 6 year: 2014 ident: 10.1016/j.isprsjprs.2019.10.005_b0260 article-title: Integrating spatial information in unsupervised unmixing of hyperspectral imagery using multiscale representation publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2014.2319261 – volume: 109 start-page: 17 year: 2015 ident: 10.1016/j.isprsjprs.2019.10.005_b0030 article-title: Mapping tropical dry forest succession using multiple criteria spectral mixture analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.08.009 – ident: 10.1016/j.isprsjprs.2019.10.005_b0110 doi: 10.1109/IGARSS.2016.7729874 – volume: 49 start-page: 4263 year: 2011 ident: 10.1016/j.isprsjprs.2019.10.005_b0035 article-title: Learning Discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2163822 – volume: 7 start-page: 3630 issue: 8 year: 2014 ident: 10.1016/j.isprsjprs.2019.10.005_bib306 article-title: Endmember Extraction Guided by Anomalies and Homogeneous Regions for Hyperspectral Images publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2014.2330364 – ident: 10.1016/j.isprsjprs.2019.10.005_b0295 – volume: 49 start-page: 4248 issue: 11 year: 2011 ident: 10.1016/j.isprsjprs.2019.10.005_b0025 article-title: Spatially adaptive hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2169680 – volume: 55 start-page: 6431 issue: 11 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0285 article-title: Robust minimum volume simplex analysis for hyperspectral unmixing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2728104 – volume: 49 start-page: 4210 issue: 11 year: 2011 ident: 10.1016/j.isprsjprs.2019.10.005_b0190 article-title: Improving spatial-spectral endmember extraction in the presence of anomalous ground objects publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2163160 – volume: 43 start-page: 269 issue: 2 year: 2014 ident: 10.1016/j.isprsjprs.2019.10.005_b0225 article-title: Sparsity constrained graph regularized NMF for spectral unmixing of hyperspectral data publication-title: J. Indian Soc. Remote. Sens. doi: 10.1007/s12524-014-0408-2 – volume: 12 start-page: 38 issue: 1 year: 2015 ident: 10.1016/j.isprsjprs.2019.10.005_b0220 article-title: Spectral unmixing of hyperspectral imagery using multilayer NMF publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2325874 – volume: 131 start-page: 147 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0255 article-title: Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.08.001 – volume: 10 start-page: 1247 issue: 4 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0085 article-title: Parallel implementation of spatial-spectral endmember extraction on graphic processing units publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2645718 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.isprsjprs.2019.10.005_b0160 article-title: Local and Global geometric structure preserving and application to hyperspectral image classification. Mathematical Problems in Engineering publication-title: Hindawi Publishing Corporation – volume: 23 start-page: 5412 issue: 12 year: 2014 ident: 10.1016/j.isprsjprs.2019.10.005_b0300 article-title: Spectral unmixing via data-guided sparity publication-title: IEEE Trans. Image process. doi: 10.1109/TIP.2014.2363423 – volume: 44 start-page: 2804 issue: 10 year: 2006 ident: 10.1016/j.isprsjprs.2019.10.005_b0055 article-title: A new growing method for simplex-based endmember extraction algorithm publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.881803 – volume: 8 start-page: 745 issue: 4 year: 2011 ident: 10.1016/j.isprsjprs.2019.10.005_b0170 article-title: Region-based spatial preprocessing for endmember extraction and spectral unmixing publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2107877 – volume: 10 start-page: 2452 issue: 6 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0010 article-title: Parallel implementation of a full hyperspectral unmixing chain using OpenCL publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2017.2707541 – volume: 55 start-page: 1776 issue: 3 year: 2016 ident: 10.1016/j.isprsjprs.2019.10.005_b0215 article-title: Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2633279 – volume: 45 issue: 3 year: 2007 ident: 10.1016/j.isprsjprs.2019.10.005_b0180 article-title: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.888466 – ident: 10.1016/j.isprsjprs.2019.10.005_b0100 doi: 10.1109/IGARSS.2015.7326967 – volume: 5 start-page: 354 issue: 2 year: 2012 ident: 10.1016/j.isprsjprs.2019.10.005_b0015 article-title: Hyperspectral unmixing overview: geometrical, statistical and sparse regression-based approaches publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2012.2194696 – volume: 124 start-page: 54 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0265 article-title: Multi-objective based spectral unmixing for hyperspectral images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.12.010 – volume: 110 start-page: 287 issue: 3 year: 2007 ident: 10.1016/j.isprsjprs.2019.10.005_b0230 article-title: Integration of spatial-spectral information for the improved extraction of endmembers publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.019 – volume: 48 start-page: 3434 issue: 9 year: 2010 ident: 10.1016/j.isprsjprs.2019.10.005_b0185 article-title: Spatial purity based endmember extraction for spectral mixture analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2046671 – volume: 32 start-page: 779 issue: 4 year: 1994 ident: 10.1016/j.isprsjprs.2019.10.005_b0070 article-title: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.298007 – volume: 9 start-page: 2400 issue: 6 year: 2016 ident: 10.1016/j.isprsjprs.2019.10.005_b0115 article-title: Enhancing hyperspectral endmember extraction using clustering and oversegmentation-based preprocessing publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2539286 – volume: 10 start-page: 1610 issue: 4 year: 2017 ident: 10.1016/j.isprsjprs.2019.10.005_b0145 article-title: A novel endmember extraction method for hyperspectral imagery based on quantum-behaved particle Swarm Optimization publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2640274 |
| SSID | ssj0001568 |
| Score | 2.3564708 |
| Snippet | Spectral Mixture Analysis is one of the fundamental subjects encountered when dealing with remotely sensed hyperspectral images. Its goal is to identify... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 201 |
| SubjectTerms | algorithms Endmember Extraction (EE) Geodesic and Euclidean distances-based preprocessing (GEPP) Hyperspectral hyperspectral imagery probabilistic models processing time remote sensing Spatial Spectral Unmixing |
| Title | Using spectral Geodesic and spatial Euclidean weights of neighbourhood pixels for hyperspectral Endmember Extraction preprocessing |
| URI | https://dx.doi.org/10.1016/j.isprsjprs.2019.10.005 https://www.proquest.com/docview/2352425563 |
| Volume | 158 |
| WOSCitedRecordID | wos000501404100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLaqDgk4IBggxpeMxG0KShPHcXarUAfjME1sSL1FiWOr7dokStKuZ_7L_ievP5K201DZgUOjKo2ttO9Tvx953scIfSYRTTPqU8dnQqpqVepEwgscKTxOotRN4HO92UR4fs7G4-ii17tte2FW8zDP2Xodlf_V1HAOjK1aZx9g7m5SOAHvwehwBLPD8Z8Mb0gAuoNSNd9_E0UmaqvKWiv-tFISXvL5NFNF-BtdGjV8DvVWFTm10nE5XYPb1CzECeSqVTfhKM8WQm0jcjxaN5XdarxU4pi65aB1hTbgPbu8-Hm5rU9RTopGU8IWoqmM-FMlAC_iuFZcejtaN-PcXCepJhucQkC8EJONc6gnySqpdO17OFkk2XbtYhBt8UBsEdIjjheabstuPTZa7u2Kaq8Xdn1l9677pgQxg1nLqp7BS5H2oi-atxdsXF37eP-OB-x4iS3lbRZ3E8VqIjgba6XcAy8MItZHB8Oz0fhH5_IHpuey-zo7RMJ77-lvYdCdgEBHOVfP0TObnuChgdUL1BP5IXq6JVp5iB4DoozM-Uv0W4MNt9jALdgwmBVbsOEObNiCDRcS74ANG7BhABveARvuwIY3YMM7YHuFfp2Orr5-d-yuHg73CWscKXlKWcTTJAwoYUEGOTEkDQMmAw8ChzTggrqEEzejUgXXXHgp-AYu09QnFKLT16ifF7l4gzClbsghJE4SFpAslJDrkySUkkASFoSCHCHa_sgxt5L3aueVebzH0EfI7QaWRvVl_5CT1oqxDV5NUBoDRvcP_tTaPYblXT2zS3JRLOEiSJCIkgn03z78nt6hJ5t_3XvUb6ql-IAe8VUzrauPFsR_APVM10U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+spectral+Geodesic+and+spatial+Euclidean+weights+of+neighbourhood+pixels+for+hyperspectral+Endmember+Extraction+preprocessing&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Kowkabi%2C+Fatemeh&rft.au=Keshavarz%2C+Ahmad&rft.date=2019-12-01&rft.issn=0924-2716&rft.volume=158&rft.spage=201&rft.epage=218&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.10.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2019_10_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |