Powers in Orbits of Rational Functions: Cases of an Arithmetic Dynamical Mordell–Lang Conjecture

Let $K$ be a finitely generated field of characteristic zero. For fixed $m\geqslant 2$ , we study the rational functions $\unicode[STIX]{x1D719}$ defined over $K$ that have a $K$ -orbit containing infinitely many distinct $m$ -th powers. For $m\geqslant 5$ we show that the only such functions are th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Canadian journal of mathematics Ročník 71; číslo 4; s. 773 - 817
Hlavní autoři: Cahn, Jordan, Jones, Rafe, Spear, Jacob
Médium: Journal Article
Jazyk:angličtina
Vydáno: Canada Canadian Mathematical Society 01.08.2019
Cambridge University Press
Témata:
ISSN:0008-414X, 1496-4279
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Let $K$ be a finitely generated field of characteristic zero. For fixed $m\geqslant 2$ , we study the rational functions $\unicode[STIX]{x1D719}$ defined over $K$ that have a $K$ -orbit containing infinitely many distinct $m$ -th powers. For $m\geqslant 5$ we show that the only such functions are those of the form $cx^{j}(\unicode[STIX]{x1D713}(x))^{m}$ with $\unicode[STIX]{x1D713}\in K(x)$ , and for $m\leqslant 4$ we show that the only additional cases are certain Lattès maps and four families of rational functions whose special properties appear not to have been studied before. With additional analysis, we show that the index set $\{n\geqslant 0:\unicode[STIX]{x1D719}^{n}(a)\in \unicode[STIX]{x1D706}(\mathbb{P}^{1}(K))\}$ is a union of finitely many arithmetic progressions, where $\unicode[STIX]{x1D719}^{n}$ denotes the $n$ -th iterate of $\unicode[STIX]{x1D719}$ and $\unicode[STIX]{x1D706}\in K(x)$ is any map Möbius-conjugate over $K$ to $x^{m}$ . When the index set is infinite, we give bounds on the number and moduli of the arithmetic progressions involved. These results are similar in flavor to the dynamical Mordell–Lang conjecture, and motivate a new conjecture on the intersection of an orbit with the value set of a morphism. A key ingredient in our proofs is a study of the curves $y^{m}=\unicode[STIX]{x1D719}^{n}(x)$ . We describe all $\unicode[STIX]{x1D719}$ for which these curves have an irreducible component of genus at most 1, and show that such $\unicode[STIX]{x1D719}$ must have two distinct iterates that are equal in $K(x)^{\ast }/K(x)^{\ast m}$ .
AbstractList Let $K$ be a finitely generated field of characteristic zero. For fixed $m\geqslant 2$ , we study the rational functions $\unicode[STIX]{x1D719}$ defined over $K$ that have a $K$ -orbit containing infinitely many distinct $m$ -th powers. For $m\geqslant 5$ we show that the only such functions are those of the form $cx^{j}(\unicode[STIX]{x1D713}(x))^{m}$ with $\unicode[STIX]{x1D713}\in K(x)$ , and for $m\leqslant 4$ we show that the only additional cases are certain Lattès maps and four families of rational functions whose special properties appear not to have been studied before. With additional analysis, we show that the index set $\{n\geqslant 0:\unicode[STIX]{x1D719}^{n}(a)\in \unicode[STIX]{x1D706}(\mathbb{P}^{1}(K))\}$ is a union of finitely many arithmetic progressions, where $\unicode[STIX]{x1D719}^{n}$ denotes the $n$ -th iterate of $\unicode[STIX]{x1D719}$ and $\unicode[STIX]{x1D706}\in K(x)$ is any map Möbius-conjugate over $K$ to $x^{m}$ . When the index set is infinite, we give bounds on the number and moduli of the arithmetic progressions involved. These results are similar in flavor to the dynamical Mordell–Lang conjecture, and motivate a new conjecture on the intersection of an orbit with the value set of a morphism. A key ingredient in our proofs is a study of the curves $y^{m}=\unicode[STIX]{x1D719}^{n}(x)$ . We describe all $\unicode[STIX]{x1D719}$ for which these curves have an irreducible component of genus at most 1, and show that such $\unicode[STIX]{x1D719}$ must have two distinct iterates that are equal in $K(x)^{\ast }/K(x)^{\ast m}$ .
Let $K$ be a finitely generated field of characteristic zero. For fixed $m\geqslant 2$ , we study the rational functions $\unicode[STIX]{x1D719}$ defined over $K$ that have a $K$ -orbit containing infinitely many distinct $m$ -th powers. For $m\geqslant 5$ we show that the only such functions are those of the form $cx^{j}(\unicode[STIX]{x1D713}(x))^{m}$ with $\unicode[STIX]{x1D713}\in K(x)$ , and for $m\leqslant 4$ we show that the only additional cases are certain Lattès maps and four families of rational functions whose special properties appear not to have been studied before. With additional analysis, we show that the index set $\{n\geqslant 0:\unicode[STIX]{x1D719}^{n}(a)\in \unicode[STIX]{x1D706}(\mathbb{P}^{1}(K))\}$ is a union of finitely many arithmetic progressions, where $\unicode[STIX]{x1D719}^{n}$ denotes the $n$ -th iterate of $\unicode[STIX]{x1D719}$ and $\unicode[STIX]{x1D706}\in K(x)$ is any map Möbius-conjugate over $K$ to $x^{m}$ . When the index set is infinite, we give bounds on the number and moduli of the arithmetic progressions involved. These results are similar in flavor to the dynamical Mordell–Lang conjecture, and motivate a new conjecture on the intersection of an orbit with the value set of a morphism. A key ingredient in our proofs is a study of the curves $y^{m}=\unicode[STIX]{x1D719}^{n}(x)$ . We describe all $\unicode[STIX]{x1D719}$ for which these curves have an irreducible component of genus at most 1, and show that such $\unicode[STIX]{x1D719}$ must have two distinct iterates that are equal in $K(x)^{\ast }/K(x)^{\ast m}$ .
Let \(K\) be a finitely generated field of characteristic zero. For fixed \(m\geqslant 2\), we study the rational functions \(\unicode[STIX]{x1D719}\) defined over \(K\) that have a \(K\)-orbit containing infinitely many distinct \(m\)-th powers. For \(m\geqslant 5\) we show that the only such functions are those of the form \(cx^{j}(\unicode[STIX]{x1D713}(x))^{m}\) with \(\unicode[STIX]{x1D713}\in K(x)\), and for \(m\leqslant 4\) we show that the only additional cases are certain Lattès maps and four families of rational functions whose special properties appear not to have been studied before.With additional analysis, we show that the index set \(\{n\geqslant 0:\unicode[STIX]{x1D719}^{n}(a)\in \unicode[STIX]{x1D706}(\mathbb{P}^{1}(K))\}\) is a union of finitely many arithmetic progressions, where \(\unicode[STIX]{x1D719}^{n}\) denotes the \(n\)-th iterate of \(\unicode[STIX]{x1D719}\) and \(\unicode[STIX]{x1D706}\in K(x)\) is any map Möbius-conjugate over \(K\) to \(x^{m}\). When the index set is infinite, we give bounds on the number and moduli of the arithmetic progressions involved. These results are similar in flavor to the dynamical Mordell–Lang conjecture, and motivate a new conjecture on the intersection of an orbit with the value set of a morphism. A key ingredient in our proofs is a study of the curves \(y^{m}=\unicode[STIX]{x1D719}^{n}(x)\). We describe all \(\unicode[STIX]{x1D719}\) for which these curves have an irreducible component of genus at most 1, and show that such \(\unicode[STIX]{x1D719}\) must have two distinct iterates that are equal in \(K(x)^{\ast }/K(x)^{\ast m}\).
Author Spear, Jacob
Jones, Rafe
Cahn, Jordan
Author_xml – sequence: 1
  givenname: Jordan
  surname: Cahn
  fullname: Cahn, Jordan
  email: jordan.f.cahn@gmail.com
  organization: Department of Mathematics and Statistics, Carleton College, One North College Street, Northfield, MN 55057, USA Email: jordan.f.cahn@gmail.com rfjones@carleton.edu spearjm77@gmail.com
– sequence: 2
  givenname: Rafe
  surname: Jones
  fullname: Jones, Rafe
  email: jordan.f.cahn@gmail.com
  organization: Department of Mathematics and Statistics, Carleton College, One North College Street, Northfield, MN 55057, USA Email: jordan.f.cahn@gmail.com rfjones@carleton.edu spearjm77@gmail.com
– sequence: 3
  givenname: Jacob
  surname: Spear
  fullname: Spear, Jacob
  email: jordan.f.cahn@gmail.com
  organization: Department of Mathematics and Statistics, Carleton College, One North College Street, Northfield, MN 55057, USA Email: jordan.f.cahn@gmail.com rfjones@carleton.edu spearjm77@gmail.com
BookMark eNp1kE9LwzAYh4NMcFOvngOeO5MmaRtvozr_MJmIgreQtsnM6JKZZLjd_A5-Qz-JnQ4EwdObl_yekN8zAD3rrALgBKMhxYyclbd3SYpwkaA0S9Z7oI8pzxKa5rwH-gihIqGYPh-AQQjzbiUZw31Q3bs35QM0Fk59ZWKATsMHGY2zsoXjla23x3AOSxnU96W0cORNfFmoaGp4sbFyYeoue-d8o9r28_1jIu0Mls7OVR1XXh2BfS3boI538xA8jS8fy-tkMr26KUeTpCa0iInWjDeZThXGlCFSU00anXLJOaFUZozovGEaqTzLVc5oqnlTqTzXVHbtU8TIITj9eXfp3etKhSjmbuW7GkGkhOcFR6xAXWr4k6q9C8ErLZbeLKTfCIzE1qPoPIqtR9F5FOsOoH-A2sRvQdFL0_6PoR0mF5U3zUz9fucf5AuO5olz
CitedBy_id crossref_primary_10_1007_s11856_025_2765_7
crossref_primary_10_1080_00927872_2021_1968886
Cites_doi 10.1007/978-0-387-69904-2
10.1090/surv/210
10.2307/1969504
10.1112/blms/bdt049
10.1215/S0012-7094-93-07129-3
10.4064/aa99-3-2
10.4064/aa-95-3-261-288
10.1007/11792086_2
10.1090/S0002-9947-1922-1501189-9
10.1007/978-1-4612-1210-2
10.1007/978-1-4612-4422-6
10.1007/978-3-642-58227-1
10.1215/00127094-1598098
10.1023/B:COMP.0000018136.23898.65
10.3998/mpub.9690541
10.1016/j.jnt.2012.12.017
10.1080/17476930903394838
10.4171/011-1/1
10.1007/978-3-540-76878-4
10.1007/s00222-007-0087-5
10.4064/aa-25-3-225-258
ContentType Journal Article
Copyright Canadian Mathematical Society 2018
Copyright_xml – notice: Canadian Mathematical Society 2018
DBID AAYXX
CITATION
3V.
7SC
7XB
8FD
8FE
8FG
8FK
8FQ
8FV
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.4153/CJM-2018-026-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
Canadian Business & Current Affairs Database (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
CBCA Complete (Alumni Edition)
ProQuest One Applied & Life Sciences
ProQuest Central Korea
CBCA Complete
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate J. Cahn, R. Jones, and J. Spear
Powers in Orbits of Rational Functions
EISSN 1496-4279
EndPage 817
ExternalDocumentID 10_4153_CJM_2018_026_x
GroupedDBID --Z
-~X
09C
09E
186
3O-
69Q
6TJ
8FQ
AABWE
AAEED
AAGFV
AAIKC
AAMNW
AANRG
AASVR
AAUKB
AAYEQ
AAYJJ
ABBZL
ABCQX
ABEFU
ABGDZ
ABJNI
ABMYL
ABUWG
ABXAU
ABZCX
ABZEH
ACGFO
ACIPV
ACKIV
ACNCT
ACQFJ
ACYZP
ACZWT
ADDNB
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEBPU
AENCP
AFKQG
AFKRA
AFLVW
AGABE
AGBYD
AGJUD
AGOOT
AHRGI
AI.
AIOIP
AJCYY
AJPFC
ALEEW
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARAPS
ARZZG
ATUCA
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BLZWO
CCPQU
CCQAD
CCUQV
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
FRP
HCIFZ
HF~
IH6
IOO
JHPGK
K7-
KCGVB
KFECR
L7B
LW7
MVM
NHB
NZEOI
OHT
OK1
P2P
RCA
RCD
ROL
S10
UHB
VH1
WFFJZ
XJT
XOL
XSW
YYP
ZKB
ZMEZD
0R~
AAXMD
AAYXX
ABUFD
ABVKB
ABVZP
ABXHF
ACDLN
ADIYS
ADXHL
AFFHD
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
3V.
7SC
7XB
8FD
8FE
8FG
8FK
AECCQ
AZQEC
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c348t-ff59d6f2e114503c4f3df29a99344a653f7d5f0e767e7542f9dbe77f4a4152053
IEDL.DBID K7-
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476491200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-414X
IngestDate Sat Jul 26 02:31:50 EDT 2025
Tue Nov 18 22:02:49 EST 2025
Sat Nov 29 04:36:18 EST 2025
Wed Mar 13 05:57:25 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Lattès map
iteration of rational functions
11G05
37P15
37P05
genus of variables-separated curve
arithmetic dynamics
special orbits of rational function
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-ff59d6f2e114503c4f3df29a99344a653f7d5f0e767e7542f9dbe77f4a4152053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C294E2DF514470392D5A466A03B6D469/S0008414X1800055Xa.pdf/div-class-title-powers-in-orbits-of-rational-functions-cases-of-an-arithmetic-dynamical-mordell-lang-conjecture-div.pdf
PQID 2397890580
PQPubID 4573634
PageCount 45
ParticipantIDs proquest_journals_2397890580
crossref_primary_10_4153_CJM_2018_026_x
crossref_citationtrail_10_4153_CJM_2018_026_x
cambridge_journals_10_4153_CJM_2018_026_x
PublicationCentury 2000
PublicationDate 20190800
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 20190800
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
PublicationTitle Canadian journal of mathematics
PublicationTitleAlternate Can. J. Math.-J. Can. Math
PublicationYear 2019
Publisher Canadian Mathematical Society
Cambridge University Press
Publisher_xml – name: Canadian Mathematical Society
– name: Cambridge University Press
References Karpilovsky (S0008414X1800055X_r13) 1989
S0008414X1800055X_r11
S0008414X1800055X_r22
S0008414X1800055X_r12
S0008414X1800055X_r20
S0008414X1800055X_r21
S0008414X1800055X_r10
Stichtenoth (S0008414X1800055X_r23) 2009
S0008414X1800055X_r19
S0008414X1800055X_r17
S0008414X1800055X_r18
S0008414X1800055X_r9
S0008414X1800055X_r15
S0008414X1800055X_r16
S0008414X1800055X_r8
S0008414X1800055X_r7
S0008414X1800055X_r14
S0008414X1800055X_r6
S0008414X1800055X_r5
S0008414X1800055X_r4
S0008414X1800055X_r3
S0008414X1800055X_r2
S0008414X1800055X_r1
References_xml – ident: S0008414X1800055X_r22
  doi: 10.1007/978-0-387-69904-2
– volume-title: Topics in field theory
  year: 1989
  ident: S0008414X1800055X_r13
– ident: S0008414X1800055X_r5
  doi: 10.1090/surv/210
– ident: S0008414X1800055X_r17
– ident: S0008414X1800055X_r16
  doi: 10.2307/1969504
– ident: S0008414X1800055X_r11
  doi: 10.1112/blms/bdt049
– ident: S0008414X1800055X_r21
  doi: 10.1215/S0012-7094-93-07129-3
– ident: S0008414X1800055X_r2
  doi: 10.4064/aa99-3-2
– ident: S0008414X1800055X_r6
  doi: 10.4064/aa-95-3-261-288
– ident: S0008414X1800055X_r7
  doi: 10.1007/11792086_2
– ident: S0008414X1800055X_r19
  doi: 10.1090/S0002-9947-1922-1501189-9
– ident: S0008414X1800055X_r12
  doi: 10.1007/978-1-4612-1210-2
– ident: S0008414X1800055X_r4
  doi: 10.1007/978-1-4612-4422-6
– ident: S0008414X1800055X_r14
  doi: 10.1007/978-3-642-58227-1
– ident: S0008414X1800055X_r10
  doi: 10.1215/00127094-1598098
– ident: S0008414X1800055X_r3
  doi: 10.1023/B:COMP.0000018136.23898.65
– ident: S0008414X1800055X_r20
  doi: 10.3998/mpub.9690541
– ident: S0008414X1800055X_r1
  doi: 10.1016/j.jnt.2012.12.017
– ident: S0008414X1800055X_r18
  doi: 10.1080/17476930903394838
– ident: S0008414X1800055X_r15
  doi: 10.4171/011-1/1
– volume-title: Algebraic function fields and codes
  year: 2009
  ident: S0008414X1800055X_r23
  doi: 10.1007/978-3-540-76878-4
– ident: S0008414X1800055X_r9
  doi: 10.1007/s00222-007-0087-5
– ident: S0008414X1800055X_r8
  doi: 10.4064/aa-25-3-225-258
SSID ssj0003651
Score 2.2274215
Snippet Let $K$ be a finitely generated field of characteristic zero. For fixed $m\geqslant 2$ , we study the rational functions $\unicode[STIX]{x1D719}$ defined over...
Let \(K\) be a finitely generated field of characteristic zero. For fixed \(m\geqslant 2\), we study the rational functions \(\unicode[STIX]{x1D719}\) defined...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 773
SubjectTerms Mathematics
Numbers
Title Powers in Orbits of Rational Functions: Cases of an Arithmetic Dynamical Mordell–Lang Conjecture
URI https://www.cambridge.org/core/product/identifier/S0008414X1800055X/type/journal_article
https://www.proquest.com/docview/2397890580
Volume 71
WOSCitedRecordID wos000476491200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Canadian Business & Current Affairs Database
  customDbUrl:
  eissn: 1496-4279
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0003651
  issn: 0008-414X
  databaseCode: 8FQ
  dateStart: 20190201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/cbcacomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1496-4279
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0003651
  issn: 0008-414X
  databaseCode: K7-
  dateStart: 20190201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1496-4279
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0003651
  issn: 0008-414X
  databaseCode: BENPR
  dateStart: 20190201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOsChpTwEFFY-VKo4WOThJA6Xim5ZVYjdLgikvUV2bMOiJQubFHHsf-g_5Jd0nHgXOMClZ48sK9_MfONH5gP4EjOfKyw7KEeyp8z3c8pDE1MWCc_PuRVkNLXYRNLr8cEg7bsDt9I9q5zmxDpRq3Fuz8gPAiROnnoR977d3VOrGmVvV52Exjws-gEmYXspm9BZJg7jyCnmcVwGGzRNG5GywoP2SRcdxOcU9yD08WVjhdcE9To_16TT-fi_y12FD67cJEeNf3yCOV2swUp31qu1XAfZr4XSyLAgvyZyWJVkbMi5OyMkHeS92jUPSRsJrx4UBU44rK5v7Q-Q5EejaY-2XdvHczR6-vP3VBRXpD0ubpobig247BxftH9Sp7xA85DxihoTpSo2gcbdUuSFOTOhMkEqsJhhTMRRaBIVGU8ncaKthK5JldRJYpiw9QDG9SYsFONCbwGJpIyNklImGPmB1MJXnOWCcxXoUPhiG_Znnz5z8VNmuDWxMGUIU2ZhyhCm7HEb6BSaLHctzK2SxuhN-68z-7umeceblrtTGJ8X8YzhzvvDn2EZp0qbd4G7sFBNfus9WMofqmE5acE875y1YPH7ca9_3qo99B84met0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qpkjAgjeiD8ALEGJhNYntxEFCCKYdtXRmGFVFml1qJzadapopkxTaHf_Af_BRfAnXeUzpouy6YB3HiuPje3z9OAfgRch9meG0g0oke8p9P6WS2ZByoTw_lc6Q0VZmE9FwKMfjeLQEv9q7MO5YZRsTq0CdzVK3Rr4RIHHK2BPSe3fylTrXKLe72lpo1LDYNeffMWUr3u5sYv--DILe1n53mzauAjRlXJbUWhFnoQ0MZgLCYym3LLNBrJCoOVehYDbKhPVMFEbG2cPaONMmiixXjus85xKBIX-ZMx6KDix_2BqO9haxn4Wi8eiT2HA-rmUi8UW20f04QEj6kmLWQ8_-lnK4TImXGaGiud7d_-0H3YM7zYSavK9HwH1YMvkDuD1YqNEWD0GPKis4MsnJp7melAWZWbLXrIKSHjJ7NfjekC5SevVQ5VjhpDw8dlc8yeZ5ripVBTJwSqXT6e8fP_sq_0K6s_yo3oN5BJ-vpZGPoZPPcvMEiNA6tJnWOsLYFmij_EzyVEmZBYYpX63A60VXJ02EKBJMvhwsEoRF4mCRICySsxWgLRSStBFpd14h0yvLv1qUP6nlSa4sud7C5uIjLjCz-u_Hz-Hm9v6gn_R3hrtrcAurjetTkOvQKeen5incSL-Vk2L-rBkRBA6uG2N_AAoCRnE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qpgjBgjeiD8ALEGJhTRI7iYOEEMx0RGlnGFUgzS61Y5tONc2USQrtjn_gb_gcvoTrPKZ0UXZdsLZjJfHxPb5-nAPwLOK-0DjtoALJnnLfz6hgNqI8lJ6fCWfIaCuziXg0EpNJMl6BX-1dGHesso2JVaDW88ytkXcDJE6ReKHwurY5FjHuD94cf6XOQcrttLZ2GjVEdszZd0zfitfbfezr50Ew2PrUe08bhwGaMS5Kam2Y6MgGBrOC0GMZt0zbIJFI2pzLKGQ21qH1TBzFxlnF2kQrE8eWS8d7nnOMwPC_GjNMejqw-m5rNN5b8gCLwsavT-BP4JNaMhIfZN3ehyHC0xcUMyB6-resw0V6vMgOFeUNbv_PP-sO3Gom2uRtPTLuworJ78HN4VKltrgPalxZxJFpTj4u1LQsyNySvWZ1lAyQ8atB-Yr0kOqrQpljg9Py4Mhd_ST9s1xWagtk6BRMZ7PfP37uyvwL6c3zw3pv5gF8vpKPfAidfJ6bR0BCpSKrlVIxxrxAGelrwTMphA4Mk75cg5fLbk-byFGkmJQ5iKQIkdRBJEWIpKdrQFtYpFkj3u48RGaX1n-xrH9cy5ZcWnOzhdD5S5zjZ_3fxU_hOgIr3d0e7WzADWw1qQ9HbkKnXJyYx3At-1ZOi8WTZnAQ2L9qiP0B7yNPNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Powers+in+Orbits+of+Rational+Functions%3A+Cases+of+an+Arithmetic+Dynamical+Mordell%E2%80%93Lang+Conjecture&rft.jtitle=Canadian+journal+of+mathematics&rft.au=Cahn%2C+Jordan&rft.au=Jones%2C+Rafe&rft.au=Spear%2C+Jacob&rft.date=2019-08-01&rft.pub=Canadian+Mathematical+Society&rft.issn=0008-414X&rft.eissn=1496-4279&rft.volume=71&rft.issue=4&rft.spage=773&rft.epage=817&rft_id=info:doi/10.4153%2FCJM-2018-026-x&rft.externalDocID=10_4153_CJM_2018_026_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-414X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-414X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-414X&client=summon