Application of individualized differential expression analysis in human cancer proteome

Abstract Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics Vol. 23; no. 3
Main Authors: Liu, Yachen, Lin, Yalan, Yang, Wenxian, Lin, Yuxiang, Wu, Yujuan, Zhang, Zheyang, Lin, Nuoqi, Wang, Xianlong, Tong, Mengsha, Yu, Rongshan
Format: Journal Article
Language:English
Published: England Oxford University Press 13.05.2022
Oxford Publishing Limited (England)
Subjects:
ISSN:1467-5463, 1477-4054, 1477-4054
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition.
AbstractList Liquid chromatography-mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition.Liquid chromatography-mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition.
Abstract Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition.
Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition.
Author Lin, Nuoqi
Zhang, Zheyang
Tong, Mengsha
Wang, Xianlong
Lin, Yuxiang
Yu, Rongshan
Liu, Yachen
Lin, Yalan
Yang, Wenxian
Wu, Yujuan
Author_xml – sequence: 1
  givenname: Yachen
  orcidid: 0000-0001-6782-2197
  surname: Liu
  fullname: Liu, Yachen
  email: ychliu@stu.xmu.edu.cn
  organization: School of Informatics, Xiamen University, Xiamen, Fujian 316000, China
– sequence: 2
  givenname: Yalan
  surname: Lin
  fullname: Lin, Yalan
  email: 842346750@qq.com
  organization: School of Informatics, Xiamen University, Xiamen, Fujian 316000, China
– sequence: 3
  givenname: Wenxian
  surname: Yang
  fullname: Yang, Wenxian
  email: wx@aginome.com
  organization: Aginome Scientific, Xiamen, Fujian 316005, China
– sequence: 4
  givenname: Yuxiang
  surname: Lin
  fullname: Lin, Yuxiang
  email: 727682308@qq.com
  organization: National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 316005, China
– sequence: 5
  givenname: Yujuan
  surname: Wu
  fullname: Wu, Yujuan
  email: 714703740@qq.com
  organization: School of Informatics, Xiamen University, Xiamen, Fujian 316000, China
– sequence: 6
  givenname: Zheyang
  surname: Zhang
  fullname: Zhang, Zheyang
  email: zzhang@stu.xmu.edu.cn
  organization: National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 316005, China
– sequence: 7
  givenname: Nuoqi
  surname: Lin
  fullname: Lin, Nuoqi
  email: linnoemi0327@gmail.com
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
– sequence: 8
  givenname: Xianlong
  orcidid: 0000-0001-8195-2027
  surname: Wang
  fullname: Wang, Xianlong
  email: wang.xianlong@139.com
  organization: Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350122, China
– sequence: 9
  givenname: Mengsha
  surname: Tong
  fullname: Tong, Mengsha
  email: mstong@xmu.edu.cn
  organization: National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 316005, China
– sequence: 10
  givenname: Rongshan
  orcidid: 0000-0003-2179-173X
  surname: Yu
  fullname: Yu, Rongshan
  email: rsyu@xmu.edu.cn
  organization: School of Informatics, Xiamen University, Xiamen, Fujian 316000, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35368072$$D View this record in MEDLINE/PubMed
BookMark eNp90ctLJDEQB-AgyvrYPXmXBkEWltZk8uo-yrAPQfCi7DHkUcEM3UmbdC87_vXbszNeBvGUOnxVRep3ig5jioDQOcHXBLf0xgRzY4y2uBUH6IQwKWuGOTvc1ELWnAl6jE5LWWG8wLIhn9Ax5VQ0WC5O0O_bYeiC1WNIsUq-CtGFP8FNuguv4CoXvIcMcQy6q-DvkKGUjdRRd-sSyuyr56nXsbI6WsjVkNMIqYfP6MjrrsCX3XuGnn58f1z-qu8fft4tb-9rS1kz1h4cJ463GCghXlPNF8JqI5wBIRyz1GHWSCyJN7JxnhipreHSeI9b0gqgZ-jrdu68-GWCMqo-FAtdpyOkqaiFYKJlhDfNTC_36CpNef7IRknOmOSindXFTk2mB6eGHHqd1-rtZDMgW2BzKiWDVzaM_-83Zh06RbDaxKLmWNQulrnn217P29j39dVWp2n4EP4DppWdww
CitedBy_id crossref_primary_10_1002_prca_202400062
crossref_primary_10_1007_s10549_023_07208_3
crossref_primary_10_1186_s43556_025_00263_w
crossref_primary_10_1016_j_csbj_2024_05_011
crossref_primary_10_1093_bfgp_elad057
crossref_primary_10_3390_ijms242316753
Cites_doi 10.1093/nar/gkv007
10.1186/s12935-021-01878-z
10.1016/j.cell.2019.10.038
10.1016/j.cell.2021.07.016
10.1016/j.compbiolchem.2011.04.006
10.18632/oncotarget.17647
10.1126/science.1117679
10.1038/nmeth.4256
10.1016/j.cell.2020.06.013
10.1093/biostatistics/kxm042
10.1136/gutjnl-2018-317163
10.1093/bib/bbz160
10.1111/cas.13502
10.1016/j.cell.2016.05.069
10.1093/bioinformatics/bti631
10.1038/nprot.2016.136
10.1111/j.2517-6161.1995.tb02031.x
10.1038/s41467-021-25960-2
10.1093/biostatistics/kxl029
10.1038/nature18003
10.1007/s10147-019-01435-9
10.1038/s41467-018-07454-w
10.1186/gb-2013-14-9-r95
10.1016/j.cell.2020.05.043
10.1021/pr0701198
10.3390/cancers13061194
10.1038/nmeth.4612
10.1093/biostatistics/kxl005
10.1016/j.cell.2019.10.007
10.1016/j.cell.2021.08.023
10.1126/science.aaw9872
10.1038/nature13438
10.1371/journal.pcbi.1007869
10.1038/nrg2825
10.1093/bioinformatics/btaa523
10.1038/s41586-019-0987-8
10.1016/j.cell.2020.06.012
10.1038/s41467-018-03121-2
10.1016/j.cell.2021.02.055
10.1038/oncsis.2016.4
10.1093/nar/gkaa498
10.1093/nar/28.1.27
10.1038/s41467-018-07960-x
10.1101/gr.124321.111
10.1093/bioinformatics/btu522
10.2202/1544-6115.1071
10.1021/acs.jproteome.5b00826
10.1111/2041-210X.13601
10.1016/j.ccell.2020.12.007
10.1016/j.cell.2019.03.030
10.7150/ijbs.24548
10.1186/s12943-017-0666-z
10.1093/bib/bbx015
10.1016/j.neo.2019.04.007
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac096
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 35368072
10_1093_bib_bbac096
10.1093/bib/bbac096
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82002529
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2019J01294
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 20720210095
– fundername: Fujian Medical University
  grantid: XRCZX2017001
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
ROX
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c348t-fed51d590e311fa3a526cab6dbe66d4c3d0487071fb78df1b7acb57bff09196e3
IEDL.DBID TOX
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786040700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Fri Sep 05 06:16:27 EDT 2025
Mon Oct 06 17:05:07 EDT 2025
Tue Sep 30 00:37:17 EDT 2025
Tue Nov 18 21:09:55 EST 2025
Sat Nov 29 05:43:30 EST 2025
Wed Apr 02 07:05:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords individualized differential expression
comparative analysis
prognostic biomarkers
human cancer proteome
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-fed51d590e311fa3a526cab6dbe66d4c3d0487071fb78df1b7acb57bff09196e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6782-2197
0000-0001-8195-2027
0000-0003-2179-173X
PMID 35368072
PQID 2675447569
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2646941588
proquest_journals_2675447569
pubmed_primary_35368072
crossref_citationtrail_10_1093_bib_bbac096
crossref_primary_10_1093_bib_bbac096
oup_primary_10_1093_bib_bbac096
PublicationCentury 2000
PublicationDate 2022-05-13
PublicationDateYYYYMMDD 2022-05-13
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Bold (2022051813464282100_ref51) 2021; 13
Wang (2022051813464282100_ref20) 2015; 31
Soneson (2022051813464282100_ref40) 2018; 15
Kanehisa (2022051813464282100_ref42) 2000; 28
Cao (2022051813464282100_ref30) 2021; 184
Geman (2022051813464282100_ref18) 2004; 3
Ritchie (2022051813464282100_ref37) 2015; 43
Wang (2022051813464282100_ref17) 2011; 35
Tarazona (2022051813464282100_ref45) 2011; 21
Huang (2022051813464282100_ref2) 2021; 22
Peng (2022051813464282100_ref36) 2016; 5
(2022051813464282100_ref29) 2019; 179
(2022051813464282100_ref54) 2021; 8
Rodriguez (2022051813464282100_ref1) 2021; 184
Bi (2022051813464282100_ref53) 2021; 21
Ge (2022051813464282100_ref11) 2018; 9
Vasaikar (2022051813464282100_ref27) 2019; 177
Wu (2022051813464282100_ref14) 2007; 8
Xu (2022051813464282100_ref10) 2020; 182
Tomlins (2022051813464282100_ref12) 2005; 310
Yan (2022051813464282100_ref24) 2017; 8
Gillette (2022051813464282100_ref9) 2020; 182
Muntel (2022051813464282100_ref43) 2015; 14
Richard (2022051813464282100_ref21) 2020; 16
Satpathy (2022051813464282100_ref25) 2021; 184
Squair (2022051813464282100_ref47) 2021; 12
Ni (2022051813464282100_ref26) 2019; 10
Yan (2022051813464282100_ref22) 2018; 19
Benjamini (2022051813464282100_ref39) 1995; 57
Badgley (2022051813464282100_ref49) 2020; 368
Lian (2022051813464282100_ref15) 2008; 9
Chen (2022051813464282100_ref50) 2019; 21
Searle (2022051813464282100_ref34) 2018; 9
Liang (2022051813464282100_ref48) 2020; 69
Gao (2022051813464282100_ref6) 2019; 179
Rapaport (2022051813464282100_ref46) 2013; 14
Tibshirani (2022051813464282100_ref13) 2007; 8
(2022051813464282100_ref31) 2017; 14
Zaguri (2022051813464282100_ref44) 2021; 12
(2022051813464282100_ref7) 2019; 567
Leek (2022051813464282100_ref16) 2010; 11
Zhang (2022051813464282100_ref5) 2016; 166
Lin (2022051813464282100_ref55) 2018; 109
Peng (2022051813464282100_ref23) 2017; 16
Tyanova (2022051813464282100_ref32) 2016; 11
Huang (2022051813464282100_ref28) 2021; 39
(2022051813464282100_ref3) 2014; 513
Xie (2022051813464282100_ref41) 2020; 36
Wang (2022051813464282100_ref38) 2020; 48
(2022051813464282100_ref4) 2016; 534
Bjornson (2022051813464282100_ref33) 2008; 7
Tan (2022051813464282100_ref19) 2005; 21
Chen (2022051813464282100_ref8) 2020; 182
Yang (2022051813464282100_ref52) 2019; 24
Guo (2022051813464282100_ref56) 2018; 15
Cai (2022051813464282100_ref35) 2018; 14
References_xml – volume: 43
  start-page: e47
  issue: 7
  year: 2015
  ident: 2022051813464282100_ref37
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 8
  start-page: 470
  year: 2021
  ident: 2022051813464282100_ref54
  article-title: Identification and validation of immune-related gene signature for predicting lymph node metastasis and prognosis in lung adenocarcinoma
  publication-title: Front Mol Biosci
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 2022051813464282100_ref53
  article-title: Knockdown of GTF2E2 inhibits the growth and progression of lung adenocarcinoma via RPS4X in vitro and in vivo
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-021-01878-z
– volume: 179
  start-page: 1240
  issue: 5
  year: 2019
  ident: 2022051813464282100_ref6
  article-title: Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.038
– volume: 184
  start-page: 4348
  issue: 16
  year: 2021
  ident: 2022051813464282100_ref25
  article-title: A proteogenomic portrait of lung squamous cell carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2021.07.016
– volume: 35
  start-page: 126
  issue: 3
  year: 2011
  ident: 2022051813464282100_ref17
  article-title: Extensive increase of microarray signals in cancers calls for novel normalization assumptions
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2011.04.006
– volume: 8
  start-page: 47356
  issue: 29
  year: 2017
  ident: 2022051813464282100_ref24
  article-title: Identifying CpG sites with different differential methylation frequencies in colorectal cancer tissues based on individualized differential methylation analysis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17647
– volume: 310
  start-page: 644
  issue: 5748
  year: 2005
  ident: 2022051813464282100_ref12
  article-title: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer
  publication-title: Science
  doi: 10.1126/science.1117679
– volume: 14
  start-page: 513
  issue: 5
  year: 2017
  ident: 2022051813464282100_ref31
  article-title: MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4256
– volume: 182
  start-page: 200
  issue: 1
  year: 2020
  ident: 2022051813464282100_ref9
  article-title: Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.013
– volume: 9
  start-page: 411
  issue: 3
  year: 2008
  ident: 2022051813464282100_ref15
  article-title: MOST: detecting cancer differential gene expression
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm042
– volume: 69
  start-page: 888
  issue: 5
  year: 2020
  ident: 2022051813464282100_ref48
  article-title: Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer
  publication-title: Gut
  doi: 10.1136/gutjnl-2018-317163
– volume: 22
  start-page: 315
  issue: 1
  year: 2021
  ident: 2022051813464282100_ref2
  article-title: Human body-fluid proteome: quantitative profiling and computational prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz160
– volume: 109
  start-page: 732
  issue: 3
  year: 2018
  ident: 2022051813464282100_ref55
  article-title: Protocadherin-8 promotes invasion and metastasis via laminin subunit gamma2 in gastric cancer
  publication-title: Cancer Sci
  doi: 10.1111/cas.13502
– volume: 166
  start-page: 755
  issue: 3
  year: 2016
  ident: 2022051813464282100_ref5
  article-title: Integrated proteogenomic characterization of human high-grade serous ovarian cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.069
– volume: 21
  start-page: 3896
  issue: 20
  year: 2005
  ident: 2022051813464282100_ref19
  article-title: Simple decision rules for classifying human cancers from gene expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti631
– volume: 11
  start-page: 2301
  issue: 12
  year: 2016
  ident: 2022051813464282100_ref32
  article-title: The MaxQuant computational platform for mass spectrometry-based shotgun proteomics
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2016.136
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 2022051813464282100_ref39
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 12
  start-page: 5692
  issue: 1
  year: 2021
  ident: 2022051813464282100_ref47
  article-title: Confronting false discoveries in single-cell differential expression
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25960-2
– volume: 8
  start-page: 566
  issue: 3
  year: 2007
  ident: 2022051813464282100_ref14
  article-title: Cancer outlier differential gene expression detection
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxl029
– volume: 534
  start-page: 55
  issue: 7605
  year: 2016
  ident: 2022051813464282100_ref4
  article-title: Proteogenomics connects somatic mutations to signalling in breast cancer
  publication-title: Nature
  doi: 10.1038/nature18003
– volume: 24
  start-page: 1030
  issue: 9
  year: 2019
  ident: 2022051813464282100_ref52
  article-title: Identification of SERPINE1, PLAU and ACTA1 as biomarkers of head and neck squamous cell carcinoma based on integrated bioinformatics analysis
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-019-01435-9
– volume: 9
  start-page: 5128
  issue: 1
  year: 2018
  ident: 2022051813464282100_ref34
  article-title: Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07454-w
– volume: 14
  start-page: R95
  issue: 9
  year: 2013
  ident: 2022051813464282100_ref46
  article-title: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-9-r95
– volume: 182
  start-page: 245
  issue: 1
  year: 2020
  ident: 2022051813464282100_ref10
  article-title: Integrative proteomic characterization of human lung adenocarcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.043
– volume: 7
  start-page: 293
  issue: 1
  year: 2008
  ident: 2022051813464282100_ref33
  article-title: X!!Tandem, an improved method for running X!tandem in parallel on collections of commodity computers
  publication-title: J Proteome Res
  doi: 10.1021/pr0701198
– volume: 13
  issue: 6
  year: 2021
  ident: 2022051813464282100_ref51
  article-title: DNA damage response during replication correlates with CIN70 score and determines survival in HNSCC patients
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers13061194
– volume: 15
  start-page: 255
  issue: 4
  year: 2018
  ident: 2022051813464282100_ref40
  article-title: Bias, robustness and scalability in single-cell differential expression analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4612
– volume: 8
  start-page: 2
  issue: 1
  year: 2007
  ident: 2022051813464282100_ref13
  article-title: Outlier sums for differential gene expression analysis
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxl005
– volume: 179
  start-page: 964
  issue: 4
  year: 2019
  ident: 2022051813464282100_ref29
  article-title: Integrated proteogenomic characterization of clear cell renal cell carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.007
– volume: 184
  start-page: 5031
  issue: 19
  year: 2021
  ident: 2022051813464282100_ref30
  article-title: Proteogenomic characterization of pancreatic ductal adenocarcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2021.08.023
– volume: 15
  start-page: 5505
  issue: 4
  year: 2018
  ident: 2022051813464282100_ref56
  article-title: Prognostic value of alcohol dehydrogenase mRNA expression in gastric cancer
  publication-title: Oncol Lett
– volume: 368
  start-page: 85
  issue: 6486
  year: 2020
  ident: 2022051813464282100_ref49
  article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice
  publication-title: Science
  doi: 10.1126/science.aaw9872
– volume: 513
  start-page: 382
  issue: 7518
  year: 2014
  ident: 2022051813464282100_ref3
  article-title: Proteogenomic characterization of human colon and rectal cancer
  publication-title: Nature
  doi: 10.1038/nature13438
– volume: 16
  start-page: e1007869
  issue: 5
  year: 2020
  ident: 2022051813464282100_ref21
  article-title: PenDA, a rank-based method for personalized differential analysis: application to lung cancer
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007869
– volume: 11
  start-page: 733
  issue: 10
  year: 2010
  ident: 2022051813464282100_ref16
  article-title: Tackling the widespread and critical impact of batch effects in high-throughput data
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2825
– volume: 36
  start-page: 4283
  issue: 15
  year: 2020
  ident: 2022051813464282100_ref41
  article-title: Identification of population-level differentially expressed genes in one-phenotype data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa523
– volume: 567
  start-page: 257
  issue: 7747
  year: 2019
  ident: 2022051813464282100_ref7
  article-title: Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma
  publication-title: Nature
  doi: 10.1038/s41586-019-0987-8
– volume: 182
  start-page: 226
  issue: 1
  year: 2020
  ident: 2022051813464282100_ref8
  article-title: Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.012
– volume: 9
  start-page: 1012
  issue: 1
  year: 2018
  ident: 2022051813464282100_ref11
  article-title: A proteomic landscape of diffuse-type gastric cancer
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03121-2
– volume: 184
  start-page: 1661
  issue: 7
  year: 2021
  ident: 2022051813464282100_ref1
  article-title: The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.055
– volume: 5
  start-page: e194
  year: 2016
  ident: 2022051813464282100_ref36
  article-title: Identification of differentially expressed miRNAs in individual breast cancer patient and application in personalized medicine
  publication-title: Oncogenesis
  doi: 10.1038/oncsis.2016.4
– volume: 48
  start-page: e83
  issue: 14
  year: 2020
  ident: 2022051813464282100_ref38
  article-title: NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa498
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 2022051813464282100_ref42
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 10
  start-page: 39
  issue: 1
  year: 2019
  ident: 2022051813464282100_ref26
  article-title: A region-resolved mucosa proteome of the human stomach
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07960-x
– volume: 21
  start-page: 2213
  issue: 12
  year: 2011
  ident: 2022051813464282100_ref45
  article-title: Differential expression in RNA-seq: a matter of depth
  publication-title: Genome Res
  doi: 10.1101/gr.124321.111
– volume: 31
  start-page: 62
  issue: 1
  year: 2015
  ident: 2022051813464282100_ref20
  article-title: Individual-level analysis of differential expression of genes and pathways for personalized medicine
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu522
– volume: 3
  start-page: Article19
  year: 2004
  ident: 2022051813464282100_ref18
  article-title: Classifying gene expression profiles from pairwise mRNA comparisons
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1071
– volume: 14
  start-page: 4752
  issue: 11
  year: 2015
  ident: 2022051813464282100_ref43
  article-title: Advancing urinary protein biomarker discovery by data-independent acquisition on a quadrupole-orbitrap mass spectrometer
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b00826
– volume: 12
  year: 2021
  ident: 2022051813464282100_ref44
  article-title: Protein quantification in ecological studies: a literature review and empirical comparisons of standard methodologies
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13601
– volume: 39
  start-page: 361
  issue: 3
  year: 2021
  ident: 2022051813464282100_ref28
  article-title: Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.12.007
– volume: 177
  start-page: 1035
  issue: 4
  year: 2019
  ident: 2022051813464282100_ref27
  article-title: Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.030
– volume: 14
  start-page: 892
  issue: 8
  year: 2018
  ident: 2022051813464282100_ref35
  article-title: Identifying differentially expressed genes from cross-site integrated data based on relative expression orderings
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.24548
– volume: 16
  start-page: 1
  issue: 1
  year: 2017
  ident: 2022051813464282100_ref23
  article-title: Differential expression analysis at the individual level reveals a lncRNA prognostic signature for lung adenocarcinoma
  publication-title: Mol Cancer
  doi: 10.1186/s12943-017-0666-z
– volume: 19
  start-page: 793
  issue: 5
  year: 2018
  ident: 2022051813464282100_ref22
  article-title: Individualized analysis of differentially expressed miRNAs with application to the identification of miRNAs deregulated commonly in lung cancer tissues
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx015
– volume: 21
  start-page: 641
  issue: 7
  year: 2019
  ident: 2022051813464282100_ref50
  article-title: Determination of pyruvate metabolic fates modulates head and neck tumorigenesis
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2019.04.007
SSID ssj0020781
Score 2.3585837
Snippet Abstract Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and...
Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been...
Liquid chromatography-mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Big Data
Biological properties
Biological samples
Biomarkers
Biomedical data
Cancer
Cancer research
Carcinogenesis
Carcinogens
Data science
Deregulation
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Pattern recognition
Population (statistical)
Precision medicine
Proteins
Proteomes
Proteomics
Ribonucleic acid
RNA
Statistical methods
Tumors
Title Application of individualized differential expression analysis in human cancer proteome
URI https://www.ncbi.nlm.nih.gov/pubmed/35368072
https://www.proquest.com/docview/2675447569
https://www.proquest.com/docview/2646941588
Volume 23
WOSCitedRecordID wos000786040700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UFLz4fqyuGmFPQtm2aR49iigeRD342FvJExbWruyuov56kzZb8YF66SVTUjIzzRcm3zcAHaIo94ETGUJIlOnYpZQhMmIO2xOjjaRVl4i7C3Z5yXu9_DpckB3_UMLPcVf2ZVdKoRzYdr_ahHAfzjdXveZc5fVqahIRi7y6e6DhfXn308bzicz2DVNWe8vZ8n-_agWWAnpEx7W7V2HGlGuwUPeTfF2H--OPcjQaWtRv2Fb9N6PRtBmKS-oBMi_hCmyJRBAmcfao6tmHlI-FEapEHIYPZgNuz05vTs6j0DkhUjjjk8gaTRJN8tjgJLECC5JSJSTV0lCqM4W1S1zm0IWVjGubSCaUJExa6-BDTg3ehLlyWJptQFhoN8it4JxkWlNhY_fwMn9pTNxxqAVH02UtVJAV990tBkVd3saFW6kirFQLOo3xY62m8bPZgfPP7xbtqe-KkHTjIqVezY8RmrfgsBl26eJrIKI0wydvk3nqLuG8BVu1z5t5MMGUxyzd-XP6XVhMPQ3Cq7jiNsxNRk9mD-bV86Q_Hu3DLOvx_SpG3wEtkuOJ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+individualized+differential+expression+analysis+in+human+cancer+proteome&rft.jtitle=Briefings+in+bioinformatics&rft.au=Liu%2C+Yachen&rft.au=Lin%2C+Yalan&rft.au=Yang%2C+Wenxian&rft.au=Lin%2C+Yuxiang&rft.date=2022-05-13&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1093%2Fbib%2Fbbac096&rft.externalDocID=10.1093%2Fbib%2Fbbac096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon