Application of individualized differential expression analysis in human cancer proteome
Abstract Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is...
Saved in:
| Published in: | Briefings in bioinformatics Vol. 23; no. 3 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
13.05.2022
Oxford Publishing Limited (England) |
| Subjects: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract
Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition. |
|---|---|
| AbstractList | Liquid chromatography-mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition.Liquid chromatography-mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition. Abstract Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition. Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been increasingly applied in cancer research. Identifying differentially expressed proteins (DEPs) between tumors and normal controls is commonly used to investigate carcinogenesis mechanisms. While differential expression analysis (DEA) at an individual level is desired to identify patient-specific molecular defects for better patient stratification, most statistical DEP analysis methods only identify deregulated proteins at the population level. To date, robust individualized DEA algorithms have been proposed for ribonucleic acid data, but their performance on proteomics data is underexplored. Herein, we performed a systematic evaluation on five individualized DEA algorithms for proteins on cancer proteomic datasets from seven cancer types. Results show that the within-sample relative expression orderings (REOs) of protein pairs in normal tissues were highly stable, providing the basis for individualized DEA for proteins using REOs. Moreover, individualized DEA algorithms achieve higher precision in detecting sample-specific deregulated proteins than population-level methods. To facilitate the utilization of individualized DEA algorithms in proteomics for prognostic biomarker discovery and personalized medicine, we provide Individualized DEP Analysis IDEPAXMBD (XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.) (https://github.com/xmuyulab/IDEPA-XMBD), which is a user-friendly and open-source Python toolkit that integrates individualized DEA algorithms for DEP-associated deregulation pattern recognition. |
| Author | Lin, Nuoqi Zhang, Zheyang Tong, Mengsha Wang, Xianlong Lin, Yuxiang Yu, Rongshan Liu, Yachen Lin, Yalan Yang, Wenxian Wu, Yujuan |
| Author_xml | – sequence: 1 givenname: Yachen orcidid: 0000-0001-6782-2197 surname: Liu fullname: Liu, Yachen email: ychliu@stu.xmu.edu.cn organization: School of Informatics, Xiamen University, Xiamen, Fujian 316000, China – sequence: 2 givenname: Yalan surname: Lin fullname: Lin, Yalan email: 842346750@qq.com organization: School of Informatics, Xiamen University, Xiamen, Fujian 316000, China – sequence: 3 givenname: Wenxian surname: Yang fullname: Yang, Wenxian email: wx@aginome.com organization: Aginome Scientific, Xiamen, Fujian 316005, China – sequence: 4 givenname: Yuxiang surname: Lin fullname: Lin, Yuxiang email: 727682308@qq.com organization: National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 316005, China – sequence: 5 givenname: Yujuan surname: Wu fullname: Wu, Yujuan email: 714703740@qq.com organization: School of Informatics, Xiamen University, Xiamen, Fujian 316000, China – sequence: 6 givenname: Zheyang surname: Zhang fullname: Zhang, Zheyang email: zzhang@stu.xmu.edu.cn organization: National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 316005, China – sequence: 7 givenname: Nuoqi surname: Lin fullname: Lin, Nuoqi email: linnoemi0327@gmail.com organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China – sequence: 8 givenname: Xianlong orcidid: 0000-0001-8195-2027 surname: Wang fullname: Wang, Xianlong email: wang.xianlong@139.com organization: Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350122, China – sequence: 9 givenname: Mengsha surname: Tong fullname: Tong, Mengsha email: mstong@xmu.edu.cn organization: National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 316005, China – sequence: 10 givenname: Rongshan orcidid: 0000-0003-2179-173X surname: Yu fullname: Yu, Rongshan email: rsyu@xmu.edu.cn organization: School of Informatics, Xiamen University, Xiamen, Fujian 316000, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35368072$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90ctLJDEQB-AgyvrYPXmXBkEWltZk8uo-yrAPQfCi7DHkUcEM3UmbdC87_vXbszNeBvGUOnxVRep3ig5jioDQOcHXBLf0xgRzY4y2uBUH6IQwKWuGOTvc1ELWnAl6jE5LWWG8wLIhn9Ax5VQ0WC5O0O_bYeiC1WNIsUq-CtGFP8FNuguv4CoXvIcMcQy6q-DvkKGUjdRRd-sSyuyr56nXsbI6WsjVkNMIqYfP6MjrrsCX3XuGnn58f1z-qu8fft4tb-9rS1kz1h4cJ463GCghXlPNF8JqI5wBIRyz1GHWSCyJN7JxnhipreHSeI9b0gqgZ-jrdu68-GWCMqo-FAtdpyOkqaiFYKJlhDfNTC_36CpNef7IRknOmOSindXFTk2mB6eGHHqd1-rtZDMgW2BzKiWDVzaM_-83Zh06RbDaxKLmWNQulrnn217P29j39dVWp2n4EP4DppWdww |
| CitedBy_id | crossref_primary_10_1002_prca_202400062 crossref_primary_10_1007_s10549_023_07208_3 crossref_primary_10_1186_s43556_025_00263_w crossref_primary_10_1016_j_csbj_2024_05_011 crossref_primary_10_1093_bfgp_elad057 crossref_primary_10_3390_ijms242316753 |
| Cites_doi | 10.1093/nar/gkv007 10.1186/s12935-021-01878-z 10.1016/j.cell.2019.10.038 10.1016/j.cell.2021.07.016 10.1016/j.compbiolchem.2011.04.006 10.18632/oncotarget.17647 10.1126/science.1117679 10.1038/nmeth.4256 10.1016/j.cell.2020.06.013 10.1093/biostatistics/kxm042 10.1136/gutjnl-2018-317163 10.1093/bib/bbz160 10.1111/cas.13502 10.1016/j.cell.2016.05.069 10.1093/bioinformatics/bti631 10.1038/nprot.2016.136 10.1111/j.2517-6161.1995.tb02031.x 10.1038/s41467-021-25960-2 10.1093/biostatistics/kxl029 10.1038/nature18003 10.1007/s10147-019-01435-9 10.1038/s41467-018-07454-w 10.1186/gb-2013-14-9-r95 10.1016/j.cell.2020.05.043 10.1021/pr0701198 10.3390/cancers13061194 10.1038/nmeth.4612 10.1093/biostatistics/kxl005 10.1016/j.cell.2019.10.007 10.1016/j.cell.2021.08.023 10.1126/science.aaw9872 10.1038/nature13438 10.1371/journal.pcbi.1007869 10.1038/nrg2825 10.1093/bioinformatics/btaa523 10.1038/s41586-019-0987-8 10.1016/j.cell.2020.06.012 10.1038/s41467-018-03121-2 10.1016/j.cell.2021.02.055 10.1038/oncsis.2016.4 10.1093/nar/gkaa498 10.1093/nar/28.1.27 10.1038/s41467-018-07960-x 10.1101/gr.124321.111 10.1093/bioinformatics/btu522 10.2202/1544-6115.1071 10.1021/acs.jproteome.5b00826 10.1111/2041-210X.13601 10.1016/j.ccell.2020.12.007 10.1016/j.cell.2019.03.030 10.7150/ijbs.24548 10.1186/s12943-017-0666-z 10.1093/bib/bbx015 10.1016/j.neo.2019.04.007 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
| DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| DOI | 10.1093/bib/bbac096 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Genetics Abstracts CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | 35368072 10_1093_bib_bbac096 10.1093/bib/bbac096 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 82002529 – fundername: Natural Science Foundation of Fujian Province grantid: 2019J01294 – fundername: Fundamental Research Funds for the Central Universities grantid: 20720210095 – fundername: Fujian Medical University grantid: XRCZX2017001 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX AHGBF CITATION ROX NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c348t-fed51d590e311fa3a526cab6dbe66d4c3d0487071fb78df1b7acb57bff09196e3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786040700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Fri Sep 05 06:16:27 EDT 2025 Mon Oct 06 17:05:07 EDT 2025 Tue Sep 30 00:37:17 EDT 2025 Tue Nov 18 21:09:55 EST 2025 Sat Nov 29 05:43:30 EST 2025 Wed Apr 02 07:05:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | individualized differential expression comparative analysis prognostic biomarkers human cancer proteome |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-fed51d590e311fa3a526cab6dbe66d4c3d0487071fb78df1b7acb57bff09196e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6782-2197 0000-0001-8195-2027 0000-0003-2179-173X |
| PMID | 35368072 |
| PQID | 2675447569 |
| PQPubID | 26846 |
| ParticipantIDs | proquest_miscellaneous_2646941588 proquest_journals_2675447569 pubmed_primary_35368072 crossref_citationtrail_10_1093_bib_bbac096 crossref_primary_10_1093_bib_bbac096 oup_primary_10_1093_bib_bbac096 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-13 |
| PublicationDateYYYYMMDD | 2022-05-13 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2022 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Bold (2022051813464282100_ref51) 2021; 13 Wang (2022051813464282100_ref20) 2015; 31 Soneson (2022051813464282100_ref40) 2018; 15 Kanehisa (2022051813464282100_ref42) 2000; 28 Cao (2022051813464282100_ref30) 2021; 184 Geman (2022051813464282100_ref18) 2004; 3 Ritchie (2022051813464282100_ref37) 2015; 43 Wang (2022051813464282100_ref17) 2011; 35 Tarazona (2022051813464282100_ref45) 2011; 21 Huang (2022051813464282100_ref2) 2021; 22 Peng (2022051813464282100_ref36) 2016; 5 (2022051813464282100_ref29) 2019; 179 (2022051813464282100_ref54) 2021; 8 Rodriguez (2022051813464282100_ref1) 2021; 184 Bi (2022051813464282100_ref53) 2021; 21 Ge (2022051813464282100_ref11) 2018; 9 Vasaikar (2022051813464282100_ref27) 2019; 177 Wu (2022051813464282100_ref14) 2007; 8 Xu (2022051813464282100_ref10) 2020; 182 Tomlins (2022051813464282100_ref12) 2005; 310 Yan (2022051813464282100_ref24) 2017; 8 Gillette (2022051813464282100_ref9) 2020; 182 Muntel (2022051813464282100_ref43) 2015; 14 Richard (2022051813464282100_ref21) 2020; 16 Satpathy (2022051813464282100_ref25) 2021; 184 Squair (2022051813464282100_ref47) 2021; 12 Ni (2022051813464282100_ref26) 2019; 10 Yan (2022051813464282100_ref22) 2018; 19 Benjamini (2022051813464282100_ref39) 1995; 57 Badgley (2022051813464282100_ref49) 2020; 368 Lian (2022051813464282100_ref15) 2008; 9 Chen (2022051813464282100_ref50) 2019; 21 Searle (2022051813464282100_ref34) 2018; 9 Liang (2022051813464282100_ref48) 2020; 69 Gao (2022051813464282100_ref6) 2019; 179 Rapaport (2022051813464282100_ref46) 2013; 14 Tibshirani (2022051813464282100_ref13) 2007; 8 (2022051813464282100_ref31) 2017; 14 Zaguri (2022051813464282100_ref44) 2021; 12 (2022051813464282100_ref7) 2019; 567 Leek (2022051813464282100_ref16) 2010; 11 Zhang (2022051813464282100_ref5) 2016; 166 Lin (2022051813464282100_ref55) 2018; 109 Peng (2022051813464282100_ref23) 2017; 16 Tyanova (2022051813464282100_ref32) 2016; 11 Huang (2022051813464282100_ref28) 2021; 39 (2022051813464282100_ref3) 2014; 513 Xie (2022051813464282100_ref41) 2020; 36 Wang (2022051813464282100_ref38) 2020; 48 (2022051813464282100_ref4) 2016; 534 Bjornson (2022051813464282100_ref33) 2008; 7 Tan (2022051813464282100_ref19) 2005; 21 Chen (2022051813464282100_ref8) 2020; 182 Yang (2022051813464282100_ref52) 2019; 24 Guo (2022051813464282100_ref56) 2018; 15 Cai (2022051813464282100_ref35) 2018; 14 |
| References_xml | – volume: 43 start-page: e47 issue: 7 year: 2015 ident: 2022051813464282100_ref37 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 8 start-page: 470 year: 2021 ident: 2022051813464282100_ref54 article-title: Identification and validation of immune-related gene signature for predicting lymph node metastasis and prognosis in lung adenocarcinoma publication-title: Front Mol Biosci – volume: 21 start-page: 1 issue: 1 year: 2021 ident: 2022051813464282100_ref53 article-title: Knockdown of GTF2E2 inhibits the growth and progression of lung adenocarcinoma via RPS4X in vitro and in vivo publication-title: Cancer Cell Int doi: 10.1186/s12935-021-01878-z – volume: 179 start-page: 1240 issue: 5 year: 2019 ident: 2022051813464282100_ref6 article-title: Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma publication-title: Cell doi: 10.1016/j.cell.2019.10.038 – volume: 184 start-page: 4348 issue: 16 year: 2021 ident: 2022051813464282100_ref25 article-title: A proteogenomic portrait of lung squamous cell carcinoma publication-title: Cell doi: 10.1016/j.cell.2021.07.016 – volume: 35 start-page: 126 issue: 3 year: 2011 ident: 2022051813464282100_ref17 article-title: Extensive increase of microarray signals in cancers calls for novel normalization assumptions publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2011.04.006 – volume: 8 start-page: 47356 issue: 29 year: 2017 ident: 2022051813464282100_ref24 article-title: Identifying CpG sites with different differential methylation frequencies in colorectal cancer tissues based on individualized differential methylation analysis publication-title: Oncotarget doi: 10.18632/oncotarget.17647 – volume: 310 start-page: 644 issue: 5748 year: 2005 ident: 2022051813464282100_ref12 article-title: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer publication-title: Science doi: 10.1126/science.1117679 – volume: 14 start-page: 513 issue: 5 year: 2017 ident: 2022051813464282100_ref31 article-title: MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics publication-title: Nat Methods doi: 10.1038/nmeth.4256 – volume: 182 start-page: 200 issue: 1 year: 2020 ident: 2022051813464282100_ref9 article-title: Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma publication-title: Cell doi: 10.1016/j.cell.2020.06.013 – volume: 9 start-page: 411 issue: 3 year: 2008 ident: 2022051813464282100_ref15 article-title: MOST: detecting cancer differential gene expression publication-title: Biostatistics doi: 10.1093/biostatistics/kxm042 – volume: 69 start-page: 888 issue: 5 year: 2020 ident: 2022051813464282100_ref48 article-title: Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer publication-title: Gut doi: 10.1136/gutjnl-2018-317163 – volume: 22 start-page: 315 issue: 1 year: 2021 ident: 2022051813464282100_ref2 article-title: Human body-fluid proteome: quantitative profiling and computational prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbz160 – volume: 109 start-page: 732 issue: 3 year: 2018 ident: 2022051813464282100_ref55 article-title: Protocadherin-8 promotes invasion and metastasis via laminin subunit gamma2 in gastric cancer publication-title: Cancer Sci doi: 10.1111/cas.13502 – volume: 166 start-page: 755 issue: 3 year: 2016 ident: 2022051813464282100_ref5 article-title: Integrated proteogenomic characterization of human high-grade serous ovarian cancer publication-title: Cell doi: 10.1016/j.cell.2016.05.069 – volume: 21 start-page: 3896 issue: 20 year: 2005 ident: 2022051813464282100_ref19 article-title: Simple decision rules for classifying human cancers from gene expression profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti631 – volume: 11 start-page: 2301 issue: 12 year: 2016 ident: 2022051813464282100_ref32 article-title: The MaxQuant computational platform for mass spectrometry-based shotgun proteomics publication-title: Nat Protoc doi: 10.1038/nprot.2016.136 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 2022051813464282100_ref39 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 12 start-page: 5692 issue: 1 year: 2021 ident: 2022051813464282100_ref47 article-title: Confronting false discoveries in single-cell differential expression publication-title: Nat Commun doi: 10.1038/s41467-021-25960-2 – volume: 8 start-page: 566 issue: 3 year: 2007 ident: 2022051813464282100_ref14 article-title: Cancer outlier differential gene expression detection publication-title: Biostatistics doi: 10.1093/biostatistics/kxl029 – volume: 534 start-page: 55 issue: 7605 year: 2016 ident: 2022051813464282100_ref4 article-title: Proteogenomics connects somatic mutations to signalling in breast cancer publication-title: Nature doi: 10.1038/nature18003 – volume: 24 start-page: 1030 issue: 9 year: 2019 ident: 2022051813464282100_ref52 article-title: Identification of SERPINE1, PLAU and ACTA1 as biomarkers of head and neck squamous cell carcinoma based on integrated bioinformatics analysis publication-title: Int J Clin Oncol doi: 10.1007/s10147-019-01435-9 – volume: 9 start-page: 5128 issue: 1 year: 2018 ident: 2022051813464282100_ref34 article-title: Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry publication-title: Nat Commun doi: 10.1038/s41467-018-07454-w – volume: 14 start-page: R95 issue: 9 year: 2013 ident: 2022051813464282100_ref46 article-title: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data publication-title: Genome Biol doi: 10.1186/gb-2013-14-9-r95 – volume: 182 start-page: 245 issue: 1 year: 2020 ident: 2022051813464282100_ref10 article-title: Integrative proteomic characterization of human lung adenocarcinoma publication-title: Cell doi: 10.1016/j.cell.2020.05.043 – volume: 7 start-page: 293 issue: 1 year: 2008 ident: 2022051813464282100_ref33 article-title: X!!Tandem, an improved method for running X!tandem in parallel on collections of commodity computers publication-title: J Proteome Res doi: 10.1021/pr0701198 – volume: 13 issue: 6 year: 2021 ident: 2022051813464282100_ref51 article-title: DNA damage response during replication correlates with CIN70 score and determines survival in HNSCC patients publication-title: Cancers (Basel) doi: 10.3390/cancers13061194 – volume: 15 start-page: 255 issue: 4 year: 2018 ident: 2022051813464282100_ref40 article-title: Bias, robustness and scalability in single-cell differential expression analysis publication-title: Nat Methods doi: 10.1038/nmeth.4612 – volume: 8 start-page: 2 issue: 1 year: 2007 ident: 2022051813464282100_ref13 article-title: Outlier sums for differential gene expression analysis publication-title: Biostatistics doi: 10.1093/biostatistics/kxl005 – volume: 179 start-page: 964 issue: 4 year: 2019 ident: 2022051813464282100_ref29 article-title: Integrated proteogenomic characterization of clear cell renal cell carcinoma publication-title: Cell doi: 10.1016/j.cell.2019.10.007 – volume: 184 start-page: 5031 issue: 19 year: 2021 ident: 2022051813464282100_ref30 article-title: Proteogenomic characterization of pancreatic ductal adenocarcinoma publication-title: Cell doi: 10.1016/j.cell.2021.08.023 – volume: 15 start-page: 5505 issue: 4 year: 2018 ident: 2022051813464282100_ref56 article-title: Prognostic value of alcohol dehydrogenase mRNA expression in gastric cancer publication-title: Oncol Lett – volume: 368 start-page: 85 issue: 6486 year: 2020 ident: 2022051813464282100_ref49 article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice publication-title: Science doi: 10.1126/science.aaw9872 – volume: 513 start-page: 382 issue: 7518 year: 2014 ident: 2022051813464282100_ref3 article-title: Proteogenomic characterization of human colon and rectal cancer publication-title: Nature doi: 10.1038/nature13438 – volume: 16 start-page: e1007869 issue: 5 year: 2020 ident: 2022051813464282100_ref21 article-title: PenDA, a rank-based method for personalized differential analysis: application to lung cancer publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007869 – volume: 11 start-page: 733 issue: 10 year: 2010 ident: 2022051813464282100_ref16 article-title: Tackling the widespread and critical impact of batch effects in high-throughput data publication-title: Nat Rev Genet doi: 10.1038/nrg2825 – volume: 36 start-page: 4283 issue: 15 year: 2020 ident: 2022051813464282100_ref41 article-title: Identification of population-level differentially expressed genes in one-phenotype data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa523 – volume: 567 start-page: 257 issue: 7747 year: 2019 ident: 2022051813464282100_ref7 article-title: Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma publication-title: Nature doi: 10.1038/s41586-019-0987-8 – volume: 182 start-page: 226 issue: 1 year: 2020 ident: 2022051813464282100_ref8 article-title: Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression publication-title: Cell doi: 10.1016/j.cell.2020.06.012 – volume: 9 start-page: 1012 issue: 1 year: 2018 ident: 2022051813464282100_ref11 article-title: A proteomic landscape of diffuse-type gastric cancer publication-title: Nat Commun doi: 10.1038/s41467-018-03121-2 – volume: 184 start-page: 1661 issue: 7 year: 2021 ident: 2022051813464282100_ref1 article-title: The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment publication-title: Cell doi: 10.1016/j.cell.2021.02.055 – volume: 5 start-page: e194 year: 2016 ident: 2022051813464282100_ref36 article-title: Identification of differentially expressed miRNAs in individual breast cancer patient and application in personalized medicine publication-title: Oncogenesis doi: 10.1038/oncsis.2016.4 – volume: 48 start-page: e83 issue: 14 year: 2020 ident: 2022051813464282100_ref38 article-title: NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa498 – volume: 28 start-page: 27 issue: 1 year: 2000 ident: 2022051813464282100_ref42 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 10 start-page: 39 issue: 1 year: 2019 ident: 2022051813464282100_ref26 article-title: A region-resolved mucosa proteome of the human stomach publication-title: Nat Commun doi: 10.1038/s41467-018-07960-x – volume: 21 start-page: 2213 issue: 12 year: 2011 ident: 2022051813464282100_ref45 article-title: Differential expression in RNA-seq: a matter of depth publication-title: Genome Res doi: 10.1101/gr.124321.111 – volume: 31 start-page: 62 issue: 1 year: 2015 ident: 2022051813464282100_ref20 article-title: Individual-level analysis of differential expression of genes and pathways for personalized medicine publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu522 – volume: 3 start-page: Article19 year: 2004 ident: 2022051813464282100_ref18 article-title: Classifying gene expression profiles from pairwise mRNA comparisons publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1071 – volume: 14 start-page: 4752 issue: 11 year: 2015 ident: 2022051813464282100_ref43 article-title: Advancing urinary protein biomarker discovery by data-independent acquisition on a quadrupole-orbitrap mass spectrometer publication-title: J Proteome Res doi: 10.1021/acs.jproteome.5b00826 – volume: 12 year: 2021 ident: 2022051813464282100_ref44 article-title: Protein quantification in ecological studies: a literature review and empirical comparisons of standard methodologies publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13601 – volume: 39 start-page: 361 issue: 3 year: 2021 ident: 2022051813464282100_ref28 article-title: Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.12.007 – volume: 177 start-page: 1035 issue: 4 year: 2019 ident: 2022051813464282100_ref27 article-title: Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities publication-title: Cell doi: 10.1016/j.cell.2019.03.030 – volume: 14 start-page: 892 issue: 8 year: 2018 ident: 2022051813464282100_ref35 article-title: Identifying differentially expressed genes from cross-site integrated data based on relative expression orderings publication-title: Int J Biol Sci doi: 10.7150/ijbs.24548 – volume: 16 start-page: 1 issue: 1 year: 2017 ident: 2022051813464282100_ref23 article-title: Differential expression analysis at the individual level reveals a lncRNA prognostic signature for lung adenocarcinoma publication-title: Mol Cancer doi: 10.1186/s12943-017-0666-z – volume: 19 start-page: 793 issue: 5 year: 2018 ident: 2022051813464282100_ref22 article-title: Individualized analysis of differentially expressed miRNAs with application to the identification of miRNAs deregulated commonly in lung cancer tissues publication-title: Brief Bioinform doi: 10.1093/bib/bbx015 – volume: 21 start-page: 641 issue: 7 year: 2019 ident: 2022051813464282100_ref50 article-title: Determination of pyruvate metabolic fates modulates head and neck tumorigenesis publication-title: Neoplasia doi: 10.1016/j.neo.2019.04.007 |
| SSID | ssj0020781 |
| Score | 2.3585837 |
| Snippet | Abstract
Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and... Liquid chromatography–mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been... Liquid chromatography-mass spectrometry-based quantitative proteomics can measure the expression of thousands of proteins from biological samples and has been... |
| SourceID | proquest pubmed crossref oup |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Algorithms Big Data Biological properties Biological samples Biomarkers Biomedical data Cancer Cancer research Carcinogenesis Carcinogens Data science Deregulation Liquid chromatography Mass spectrometry Mass spectroscopy Pattern recognition Population (statistical) Precision medicine Proteins Proteomes Proteomics Ribonucleic acid RNA Statistical methods Tumors |
| Title | Application of individualized differential expression analysis in human cancer proteome |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35368072 https://www.proquest.com/docview/2675447569 https://www.proquest.com/docview/2646941588 |
| Volume | 23 |
| WOSCitedRecordID | wos000786040700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UFLz4fqyuGmFPQtm2aR49iigeRD342FvJExbWruyuov56kzZb8YF66SVTUjIzzRcm3zcAHaIo94ETGUJIlOnYpZQhMmIO2xOjjaRVl4i7C3Z5yXu9_DpckB3_UMLPcVf2ZVdKoRzYdr_ahHAfzjdXveZc5fVqahIRi7y6e6DhfXn308bzicz2DVNWe8vZ8n-_agWWAnpEx7W7V2HGlGuwUPeTfF2H--OPcjQaWtRv2Fb9N6PRtBmKS-oBMi_hCmyJRBAmcfao6tmHlI-FEapEHIYPZgNuz05vTs6j0DkhUjjjk8gaTRJN8tjgJLECC5JSJSTV0lCqM4W1S1zm0IWVjGubSCaUJExa6-BDTg3ehLlyWJptQFhoN8it4JxkWlNhY_fwMn9pTNxxqAVH02UtVJAV990tBkVd3saFW6kirFQLOo3xY62m8bPZgfPP7xbtqe-KkHTjIqVezY8RmrfgsBl26eJrIKI0wydvk3nqLuG8BVu1z5t5MMGUxyzd-XP6XVhMPQ3Cq7jiNsxNRk9mD-bV86Q_Hu3DLOvx_SpG3wEtkuOJ |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+individualized+differential+expression+analysis+in+human+cancer+proteome&rft.jtitle=Briefings+in+bioinformatics&rft.au=Liu%2C+Yachen&rft.au=Lin%2C+Yalan&rft.au=Yang%2C+Wenxian&rft.au=Lin%2C+Yuxiang&rft.date=2022-05-13&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1093%2Fbib%2Fbbac096&rft.externalDocID=10.1093%2Fbib%2Fbbac096 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |