Effect of temperature on inversion concentration of NO2 differential absorption lidar and optimized algorithm
•The absorption cross section of nitrogen dioxide changes with the change of temperature, which will affect the concentration inversion of nitrogen dioxide differential absorption lidar.•The temperature decreases with the increase of altitude, so the absorption cross section of nitrogen dioxide must...
Gespeichert in:
| Veröffentlicht in: | Journal of quantitative spectroscopy & radiative transfer Jg. 277; S. 107975 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.01.2022
|
| Schlagworte: | |
| ISSN: | 0022-4073, 1879-1352 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The absorption cross section of nitrogen dioxide changes with the change of temperature, which will affect the concentration inversion of nitrogen dioxide differential absorption lidar.•The temperature decreases with the increase of altitude, so the absorption cross section of nitrogen dioxide must be corrected in the concentration inversion.•It is generally considered that the temperature is constant in horizontal detection, but the temperature is different in different seasons or different times of the day, so the absorption cross section of nitrogen dioxide must be corrected.•Therefore, when using differential absorption lidar to detect the concentration of nitrogen dioxide in the atmosphere, whether it is horizontal or vertical detection, the absorption cross section must be corrected.
A differential absorption lidar (DIAL) for measurement of atmospheric nitrogen dioxide (NO2) concentration is developed based on atmospheric backscattered signals. Two Nd:YAG lasers are used to pump into two dye lasers to produce two wavelengths λon (448.1 nm) and λoff (446.6 nm), respectively. The NO2 absorption cross section varies with the change of ambient temperature. The changes of NO2 absorption cross section and the influence of inversion concentration are analyzed. The results show that when the horizontal profile is measured with the absorption cross section at room temperature of 20 °C as the reference value, the relative error of 1% can be caused by the temperature change of 1 °C. In vertical profile measurement, on the ground below 3 km, every 100 m increase in altitude can bring a relative error of 0.6%. By correcting the absorption cross section affected by temperature, the relative error of the measured concentration is less than 5%.On this basis, the experimental observation of atmospheric NO2 concentration profiles was carried out, and errors induced by temperature change were corrected. The experimental results show that the system is stable and reliable, and the temperature correction algorithm is effective. |
|---|---|
| AbstractList | •The absorption cross section of nitrogen dioxide changes with the change of temperature, which will affect the concentration inversion of nitrogen dioxide differential absorption lidar.•The temperature decreases with the increase of altitude, so the absorption cross section of nitrogen dioxide must be corrected in the concentration inversion.•It is generally considered that the temperature is constant in horizontal detection, but the temperature is different in different seasons or different times of the day, so the absorption cross section of nitrogen dioxide must be corrected.•Therefore, when using differential absorption lidar to detect the concentration of nitrogen dioxide in the atmosphere, whether it is horizontal or vertical detection, the absorption cross section must be corrected.
A differential absorption lidar (DIAL) for measurement of atmospheric nitrogen dioxide (NO2) concentration is developed based on atmospheric backscattered signals. Two Nd:YAG lasers are used to pump into two dye lasers to produce two wavelengths λon (448.1 nm) and λoff (446.6 nm), respectively. The NO2 absorption cross section varies with the change of ambient temperature. The changes of NO2 absorption cross section and the influence of inversion concentration are analyzed. The results show that when the horizontal profile is measured with the absorption cross section at room temperature of 20 °C as the reference value, the relative error of 1% can be caused by the temperature change of 1 °C. In vertical profile measurement, on the ground below 3 km, every 100 m increase in altitude can bring a relative error of 0.6%. By correcting the absorption cross section affected by temperature, the relative error of the measured concentration is less than 5%.On this basis, the experimental observation of atmospheric NO2 concentration profiles was carried out, and errors induced by temperature change were corrected. The experimental results show that the system is stable and reliable, and the temperature correction algorithm is effective. |
| ArticleNumber | 107975 |
| Author | Yang, Jie Jian, Huang Hu, Shunxing Liu, Qiuwu Chen, Yafeng |
| Author_xml | – sequence: 1 givenname: Qiuwu surname: Liu fullname: Liu, Qiuwu email: qwliu@hstc.edu.cn organization: College of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou 521041, China – sequence: 2 givenname: Yafeng surname: Chen fullname: Chen, Yafeng organization: The 38th Research Institute of China Electronic Technology Corporation, Hefei 230030, China – sequence: 3 givenname: Jie surname: Yang fullname: Yang, Jie organization: Anhui University Of Science & Technolog, Huainan 232001, China – sequence: 4 givenname: Huang surname: Jian fullname: Jian, Huang organization: Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China – sequence: 5 givenname: Shunxing surname: Hu fullname: Hu, Shunxing organization: Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China |
| BookMark | eNqFkMtOAyEUhompiW31CdzwAlO5zDAzCxemqZfE2I2uCQMHpZkZKmATfXpp68qFroD_8J3k_2ZoMvoRELqkZEEJFVebxeY9hrRghNGc1G1dnaApbeq2oLxiEzQlhLGiJDU_Q7MYN4QQzqmYomFlLeiEvcUJhi0ElT4CYD9iN-4gRJdv2o8axpRH-1f--bRm2LgMhhw71WPVRR-2h3HvjApYjQb7HAzuCwxW_asPLr0N5-jUqj7Cxc85Ry-3q-flffG4vntY3jwWmpdNKmzNm1KL2rSqsbVQZSV416oKtGK2KTkpgXZgFVGGMtuBFo3RxJaMC0OVEHyO-HGvDj7GAFZugxtU-JSUyL0xuZEHY3JvTB6NZar9RWmXDqVzd9f_w14fWci1dg6CjNpB9mZcyH6l8e5P_hujbY4O |
| CitedBy_id | crossref_primary_10_1002_mop_70184 crossref_primary_10_3390_su15075779 crossref_primary_10_3390_atmos15121472 |
| Cites_doi | 10.1016/S0301-0104(97)00149-3 10.1175/1520-0450(1974)013<0071:EITLMO>2.0.CO;2 10.1021/jp049461n 10.1016/S1010-6030(01)00650-5 10.5194/essd-5-365-2013 10.1364/AO.24.002827 10.1016/S0022-4073(97)00197-0 10.1364/AO.36.001245 10.5194/acp-14-7909-2014 10.1097/00001648-200003000-00012 10.1364/AO.20.004181 10.1117/1.602068 10.1117/1.1525274 10.1038/nature04092 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.jqsrt.2021.107975 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-1352 |
| ExternalDocumentID | 10_1016_j_jqsrt_2021_107975 S0022407321004672 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SES SEW SPC SPCBC SPD SPG SSK SSQ SSZ T5K UHS VH1 VOH WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c348t-f7384c67d9a8f76a4563b9a5eca2f84304e1befa0ad12fbec68dc0f4236d1a663 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718040900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-4073 |
| IngestDate | Sat Nov 29 07:28:24 EST 2025 Tue Nov 18 21:45:37 EST 2025 Fri Feb 23 02:40:49 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differential absorption lidar Temperature change Nitrogen dioxide Optimized algorithm Absorption cross section |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-f7384c67d9a8f76a4563b9a5eca2f84304e1befa0ad12fbec68dc0f4236d1a663 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jqsrt.2021.107975 |
| ParticipantIDs | crossref_primary_10_1016_j_jqsrt_2021_107975 crossref_citationtrail_10_1016_j_jqsrt_2021_107975 elsevier_sciencedirect_doi_10_1016_j_jqsrt_2021_107975 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of quantitative spectroscopy & radiative transfer |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Richter, Burrows, Nu (bib0002) 2005; 437 Pikhart, Bobak, Kriz (bib0001) 2000; 11 Nizkorodov, Sander, Brown (bib0013) 2004; 108 Schotland (bib0006) 1974; 13 Burrows, Dehn, Deters, Himmelmann, Richter, Voigt (bib0012) 1998; 60 Wang, Nakane, Hu (bib0010) 1997; 36 Browell, Ismail, Shipley (bib0009) 1985; 24 KANAYA, IRIE, TAKASHIMA (bib0004) 2014; 14 Schotland (bib0005) 1966 Fukuchi, Nayuki, Cao (bib0007) 2003; 42 Fukuchi, Naohiko, Takashi (bib0008) 1999; 38 Voigt, Orphal, Burrows (bib0016) 2002; 149 Yoshino, Esmond, Parkinson (bib0014) 1997; 221 Keller, Moortgat, Sande, Sörensen (bib0015) 2013; 5 Fredriksson, Galle, Nystrom, Svanberg (bib0003) 1981; 20 Vandaele, Hermans, Fally, Carleer, Colin, Jenouvrier (bib0011) 2002; 107 Fukuchi (10.1016/j.jqsrt.2021.107975_bib0008) 1999; 38 Richter (10.1016/j.jqsrt.2021.107975_bib0002) 2005; 437 Fukuchi (10.1016/j.jqsrt.2021.107975_bib0007) 2003; 42 Nizkorodov (10.1016/j.jqsrt.2021.107975_bib0013) 2004; 108 Keller (10.1016/j.jqsrt.2021.107975_bib0015) 2013; 5 Pikhart (10.1016/j.jqsrt.2021.107975_bib0001) 2000; 11 Schotland (10.1016/j.jqsrt.2021.107975_bib0005) 1966 Vandaele (10.1016/j.jqsrt.2021.107975_bib0011) 2002; 107 Yoshino (10.1016/j.jqsrt.2021.107975_bib0014) 1997; 221 Burrows (10.1016/j.jqsrt.2021.107975_bib0012) 1998; 60 Voigt (10.1016/j.jqsrt.2021.107975_bib0016) 2002; 149 Browell (10.1016/j.jqsrt.2021.107975_bib0009) 1985; 24 KANAYA (10.1016/j.jqsrt.2021.107975_bib0004) 2014; 14 Fredriksson (10.1016/j.jqsrt.2021.107975_bib0003) 1981; 20 Wang (10.1016/j.jqsrt.2021.107975_bib0010) 1997; 36 Schotland (10.1016/j.jqsrt.2021.107975_bib0006) 1974; 13 |
| References_xml | – volume: 38 start-page: 141 year: 1999 end-page: 145 ident: bib0008 article-title: Error analysis of SO publication-title: Opt Eng – volume: 107 year: 2002 ident: bib0011 article-title: High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: temperature and pressure effects publication-title: J Geophys Res – volume: 108 start-page: 4864 year: 2004 end-page: 4872 ident: bib0013 article-title: Temperature dependence of high-resolution air-broadened absorption cross sections of NO2 (415-525nm) publication-title: J Phys Chem – volume: 14 start-page: 7909 year: 2014 end-page: 7927 ident: bib0004 article-title: Long-term MAX-DOAS network observations of NO publication-title: Atmos Chem Phys – volume: 221 start-page: 169 year: 1997 end-page: 174 ident: bib0014 article-title: High-resolution absorption cross section measurements of NO2 in the UV and visible region publication-title: Chem Phys – volume: 5 start-page: 365 year: 2013 end-page: 373 ident: bib0015 article-title: The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest publication-title: Earth Syst Sci Data – volume: 20 start-page: 4181 year: 1981 end-page: 4189 ident: bib0003 article-title: Mobile lidar system for environmental probing publication-title: Appl Opt – volume: 13 start-page: 71 year: 1974 end-page: 77 ident: bib0006 article-title: Errors in the lidar measurement of atmospheric gases by differential absorption publication-title: J Appl Meteorol – volume: 11 start-page: 153 year: 2000 end-page: 160 ident: bib0001 article-title: Outdoor air concentrations of nitrogen dioxide and sulfur dioxide and prevalence of wheezing in school children publication-title: Epidemiology – volume: 437 start-page: 129 year: 2005 end-page: 132 ident: bib0002 article-title: Increase in tropospheric nitrogen dioxide over China observed from space publication-title: Nature – year: 1966 ident: bib0005 article-title: Some observations of the vertical profile of water vapor by means of a laser optical radar [C] publication-title: Proceedings of the 4th symposium on remote sensing of the environment – volume: 36 start-page: 1245 year: 1997 end-page: 1252 ident: bib0010 article-title: Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols publication-title: Appl Opt – volume: 60 start-page: 1025 year: 1998 end-page: 1031 ident: bib0012 article-title: Atmospheric remote-sensing reference data from GOME: Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794nm range publication-title: J Quant Spectrosc Radiat Transf – volume: 149 start-page: 1 year: 2002 end-page: 7 ident: bib0016 article-title: The temperature and pressure dependence of the absorption cross-sections of NO publication-title: J Photochem Photobiol A – volume: 42 start-page: 98 year: 2003 end-page: 104 ident: bib0007 article-title: Differential absorption lidar system for simultaneous measurement of O publication-title: Opt Eng – volume: 24 start-page: 2827 year: 1985 end-page: 2836 ident: bib0009 article-title: Ultraviolet DIAL measurements of O publication-title: Appl Opt – volume: 221 start-page: 169 year: 1997 ident: 10.1016/j.jqsrt.2021.107975_bib0014 article-title: High-resolution absorption cross section measurements of NO2 in the UV and visible region publication-title: Chem Phys doi: 10.1016/S0301-0104(97)00149-3 – volume: 107 issue: D18 year: 2002 ident: 10.1016/j.jqsrt.2021.107975_bib0011 article-title: High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: temperature and pressure effects publication-title: J Geophys Res – volume: 13 start-page: 71 year: 1974 ident: 10.1016/j.jqsrt.2021.107975_bib0006 article-title: Errors in the lidar measurement of atmospheric gases by differential absorption publication-title: J Appl Meteorol doi: 10.1175/1520-0450(1974)013<0071:EITLMO>2.0.CO;2 – volume: 108 start-page: 4864 year: 2004 ident: 10.1016/j.jqsrt.2021.107975_bib0013 article-title: Temperature dependence of high-resolution air-broadened absorption cross sections of NO2 (415-525nm) publication-title: J Phys Chem doi: 10.1021/jp049461n – volume: 149 start-page: 1 year: 2002 ident: 10.1016/j.jqsrt.2021.107975_bib0016 article-title: The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250-800nm region measured by Fourier-transform spectroscopy publication-title: J Photochem Photobiol A doi: 10.1016/S1010-6030(01)00650-5 – volume: 5 start-page: 365 year: 2013 ident: 10.1016/j.jqsrt.2021.107975_bib0015 article-title: The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest publication-title: Earth Syst Sci Data doi: 10.5194/essd-5-365-2013 – volume: 24 start-page: 2827 year: 1985 ident: 10.1016/j.jqsrt.2021.107975_bib0009 article-title: Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols publication-title: Appl Opt doi: 10.1364/AO.24.002827 – volume: 60 start-page: 1025 year: 1998 ident: 10.1016/j.jqsrt.2021.107975_bib0012 article-title: Atmospheric remote-sensing reference data from GOME: Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794nm range publication-title: J Quant Spectrosc Radiat Transf doi: 10.1016/S0022-4073(97)00197-0 – volume: 36 start-page: 1245 issue: 6 year: 1997 ident: 10.1016/j.jqsrt.2021.107975_bib0010 article-title: Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols publication-title: Appl Opt doi: 10.1364/AO.36.001245 – volume: 14 start-page: 7909 issue: 15 year: 2014 ident: 10.1016/j.jqsrt.2021.107975_bib0004 article-title: Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations [J] publication-title: Atmos Chem Phys doi: 10.5194/acp-14-7909-2014 – volume: 11 start-page: 153 issue: 2 year: 2000 ident: 10.1016/j.jqsrt.2021.107975_bib0001 article-title: Outdoor air concentrations of nitrogen dioxide and sulfur dioxide and prevalence of wheezing in school children publication-title: Epidemiology doi: 10.1097/00001648-200003000-00012 – volume: 20 start-page: 4181 issue: 24 year: 1981 ident: 10.1016/j.jqsrt.2021.107975_bib0003 article-title: Mobile lidar system for environmental probing publication-title: Appl Opt doi: 10.1364/AO.20.004181 – volume: 38 start-page: 141 issue: 1 year: 1999 ident: 10.1016/j.jqsrt.2021.107975_bib0008 article-title: Error analysis of SO2 measurement by multi-wavelength differential absorption lidar publication-title: Opt Eng doi: 10.1117/1.602068 – year: 1966 ident: 10.1016/j.jqsrt.2021.107975_bib0005 article-title: Some observations of the vertical profile of water vapor by means of a laser optical radar [C] – volume: 42 start-page: 98 issue: 1 year: 2003 ident: 10.1016/j.jqsrt.2021.107975_bib0007 article-title: Differential absorption lidar system for simultaneous measurement of O3 and NO2: system development and measurement error estimation publication-title: Opt Eng doi: 10.1117/1.1525274 – volume: 437 start-page: 129 issue: 7055 year: 2005 ident: 10.1016/j.jqsrt.2021.107975_bib0002 article-title: Increase in tropospheric nitrogen dioxide over China observed from space publication-title: Nature doi: 10.1038/nature04092 |
| SSID | ssj0003316 |
| Score | 2.3468845 |
| Snippet | •The absorption cross section of nitrogen dioxide changes with the change of temperature, which will affect the concentration inversion of nitrogen dioxide... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107975 |
| SubjectTerms | Absorption cross section Differential absorption lidar Nitrogen dioxide Optimized algorithm Temperature change |
| Title | Effect of temperature on inversion concentration of NO2 differential absorption lidar and optimized algorithm |
| URI | https://dx.doi.org/10.1016/j.jqsrt.2021.107975 |
| Volume | 277 |
| WOSCitedRecordID | wos000718040900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003316 issn: 0022-4073 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKBhKXiZ9iDJAP3CBTYruJc5zQ0KimAtJA5RS5ib2lapMuTcvE38MfyrOdOBmDih24RJXrOFHfp-fPr997D6HXJAolCTItkqLCYxkLvGlGmUezQPmBoL4y3Rq-nkbjMZ9M4k-Dwc82F2Yzj4qCX13Fy_9qahgDY-vU2VuY2y0KA_AZjA5XMDtc_8nwTT1i_d-_BE5saya_MYrGjQ2Oaam5FWW2dHH8kbhWKbWOoYvpqqysN5nnmbBCyxIGFvkPoKhifl5WeX2x-Au3vVyLwmSvaV2SSebURTPLpZXnVLoegvmqNrS5Ewif5mtt88_5-vu6Ex5Yz_hNKNlss9pLNXHuUe6QOcptMPcEHn7ej2YQ0otmdNkFcMikfQ9Nmk4v1sfCgTW23VZuuH8biZgdzi5XlRbKkuCwm3292PZvm6CTJraqt1liFkn0Iold5A7aJdEwBt-5e_TheDJyOz6lpsWue_e2upXREd54lz8zoB6rOXuA9hqT4SMLo4doIItH6J6RBaerx2hhwYRLhXtgwmWBHZjwNTDpmQAm3AcT7sCEDZgwgAk7MGEHpifoy_vjs3cnXtOgw0sp47WnIspZGkZZLLiKQgFknE5jMZSpIIoz6jMZTKUSvsgCosBbhDxLfQUMPswCAVz3KdopykI-QziUPBUhETxIOWORin2mhnCUVVIqLuN0H5H2R0vSpnq9bqIyT7YYbB-9dTctbfGW7dPD1hpJwz8tr0wAX9tufH675xyg-x30X6CdulrLl-huuqnzVfWqAdcvK7Gt_A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+temperature+on+inversion+concentration+of+NO2+differential+absorption+lidar+and+optimized+algorithm&rft.jtitle=Journal+of+quantitative+spectroscopy+%26+radiative+transfer&rft.au=Liu%2C+Qiuwu&rft.au=Chen%2C+Yafeng&rft.au=Yang%2C+Jie&rft.au=Jian%2C+Huang&rft.date=2022-01-01&rft.issn=0022-4073&rft.volume=277&rft.spage=107975&rft_id=info:doi/10.1016%2Fj.jqsrt.2021.107975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jqsrt_2021_107975 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4073&client=summon |