Effect of temperature on inversion concentration of NO2 differential absorption lidar and optimized algorithm

•The absorption cross section of nitrogen dioxide changes with the change of temperature, which will affect the concentration inversion of nitrogen dioxide differential absorption lidar.•The temperature decreases with the increase of altitude, so the absorption cross section of nitrogen dioxide must...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer Jg. 277; S. 107975
Hauptverfasser: Liu, Qiuwu, Chen, Yafeng, Yang, Jie, Jian, Huang, Hu, Shunxing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2022
Schlagworte:
ISSN:0022-4073, 1879-1352
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The absorption cross section of nitrogen dioxide changes with the change of temperature, which will affect the concentration inversion of nitrogen dioxide differential absorption lidar.•The temperature decreases with the increase of altitude, so the absorption cross section of nitrogen dioxide must be corrected in the concentration inversion.•It is generally considered that the temperature is constant in horizontal detection, but the temperature is different in different seasons or different times of the day, so the absorption cross section of nitrogen dioxide must be corrected.•Therefore, when using differential absorption lidar to detect the concentration of nitrogen dioxide in the atmosphere, whether it is horizontal or vertical detection, the absorption cross section must be corrected. A differential absorption lidar (DIAL) for measurement of atmospheric nitrogen dioxide (NO2) concentration is developed based on atmospheric backscattered signals. Two Nd:YAG lasers are used to pump into two dye lasers to produce two wavelengths λon (448.1 nm) and λoff (446.6 nm), respectively. The NO2 absorption cross section varies with the change of ambient temperature. The changes of NO2 absorption cross section and the influence of inversion concentration are analyzed. The results show that when the horizontal profile is measured with the absorption cross section at room temperature of 20 °C as the reference value, the relative error of 1% can be caused by the temperature change of 1 °C. In vertical profile measurement, on the ground below 3 km, every 100 m increase in altitude can bring a relative error of 0.6%. By correcting the absorption cross section affected by temperature, the relative error of the measured concentration is less than 5%.On this basis, the experimental observation of atmospheric NO2 concentration profiles was carried out, and errors induced by temperature change were corrected. The experimental results show that the system is stable and reliable, and the temperature correction algorithm is effective.
AbstractList •The absorption cross section of nitrogen dioxide changes with the change of temperature, which will affect the concentration inversion of nitrogen dioxide differential absorption lidar.•The temperature decreases with the increase of altitude, so the absorption cross section of nitrogen dioxide must be corrected in the concentration inversion.•It is generally considered that the temperature is constant in horizontal detection, but the temperature is different in different seasons or different times of the day, so the absorption cross section of nitrogen dioxide must be corrected.•Therefore, when using differential absorption lidar to detect the concentration of nitrogen dioxide in the atmosphere, whether it is horizontal or vertical detection, the absorption cross section must be corrected. A differential absorption lidar (DIAL) for measurement of atmospheric nitrogen dioxide (NO2) concentration is developed based on atmospheric backscattered signals. Two Nd:YAG lasers are used to pump into two dye lasers to produce two wavelengths λon (448.1 nm) and λoff (446.6 nm), respectively. The NO2 absorption cross section varies with the change of ambient temperature. The changes of NO2 absorption cross section and the influence of inversion concentration are analyzed. The results show that when the horizontal profile is measured with the absorption cross section at room temperature of 20 °C as the reference value, the relative error of 1% can be caused by the temperature change of 1 °C. In vertical profile measurement, on the ground below 3 km, every 100 m increase in altitude can bring a relative error of 0.6%. By correcting the absorption cross section affected by temperature, the relative error of the measured concentration is less than 5%.On this basis, the experimental observation of atmospheric NO2 concentration profiles was carried out, and errors induced by temperature change were corrected. The experimental results show that the system is stable and reliable, and the temperature correction algorithm is effective.
ArticleNumber 107975
Author Yang, Jie
Jian, Huang
Hu, Shunxing
Liu, Qiuwu
Chen, Yafeng
Author_xml – sequence: 1
  givenname: Qiuwu
  surname: Liu
  fullname: Liu, Qiuwu
  email: qwliu@hstc.edu.cn
  organization: College of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou 521041, China
– sequence: 2
  givenname: Yafeng
  surname: Chen
  fullname: Chen, Yafeng
  organization: The 38th Research Institute of China Electronic Technology Corporation, Hefei 230030, China
– sequence: 3
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
  organization: Anhui University Of Science & Technolog, Huainan 232001, China
– sequence: 4
  givenname: Huang
  surname: Jian
  fullname: Jian, Huang
  organization: Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 5
  givenname: Shunxing
  surname: Hu
  fullname: Hu, Shunxing
  organization: Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
BookMark eNqFkMtOAyEUhompiW31CdzwAlO5zDAzCxemqZfE2I2uCQMHpZkZKmATfXpp68qFroD_8J3k_2ZoMvoRELqkZEEJFVebxeY9hrRghNGc1G1dnaApbeq2oLxiEzQlhLGiJDU_Q7MYN4QQzqmYomFlLeiEvcUJhi0ElT4CYD9iN-4gRJdv2o8axpRH-1f--bRm2LgMhhw71WPVRR-2h3HvjApYjQb7HAzuCwxW_asPLr0N5-jUqj7Cxc85Ry-3q-flffG4vntY3jwWmpdNKmzNm1KL2rSqsbVQZSV416oKtGK2KTkpgXZgFVGGMtuBFo3RxJaMC0OVEHyO-HGvDj7GAFZugxtU-JSUyL0xuZEHY3JvTB6NZar9RWmXDqVzd9f_w14fWci1dg6CjNpB9mZcyH6l8e5P_hujbY4O
CitedBy_id crossref_primary_10_1002_mop_70184
crossref_primary_10_3390_su15075779
crossref_primary_10_3390_atmos15121472
Cites_doi 10.1016/S0301-0104(97)00149-3
10.1175/1520-0450(1974)013<0071:EITLMO>2.0.CO;2
10.1021/jp049461n
10.1016/S1010-6030(01)00650-5
10.5194/essd-5-365-2013
10.1364/AO.24.002827
10.1016/S0022-4073(97)00197-0
10.1364/AO.36.001245
10.5194/acp-14-7909-2014
10.1097/00001648-200003000-00012
10.1364/AO.20.004181
10.1117/1.602068
10.1117/1.1525274
10.1038/nature04092
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jqsrt.2021.107975
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-1352
ExternalDocumentID 10_1016_j_jqsrt_2021_107975
S0022407321004672
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSK
SSQ
SSZ
T5K
UHS
VH1
VOH
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c348t-f7384c67d9a8f76a4563b9a5eca2f84304e1befa0ad12fbec68dc0f4236d1a663
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718040900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-4073
IngestDate Sat Nov 29 07:28:24 EST 2025
Tue Nov 18 21:45:37 EST 2025
Fri Feb 23 02:40:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Differential absorption lidar
Temperature change
Nitrogen dioxide
Optimized algorithm
Absorption cross section
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-f7384c67d9a8f76a4563b9a5eca2f84304e1befa0ad12fbec68dc0f4236d1a663
OpenAccessLink https://dx.doi.org/10.1016/j.jqsrt.2021.107975
ParticipantIDs crossref_primary_10_1016_j_jqsrt_2021_107975
crossref_citationtrail_10_1016_j_jqsrt_2021_107975
elsevier_sciencedirect_doi_10_1016_j_jqsrt_2021_107975
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Journal of quantitative spectroscopy & radiative transfer
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Richter, Burrows, Nu (bib0002) 2005; 437
Pikhart, Bobak, Kriz (bib0001) 2000; 11
Nizkorodov, Sander, Brown (bib0013) 2004; 108
Schotland (bib0006) 1974; 13
Burrows, Dehn, Deters, Himmelmann, Richter, Voigt (bib0012) 1998; 60
Wang, Nakane, Hu (bib0010) 1997; 36
Browell, Ismail, Shipley (bib0009) 1985; 24
KANAYA, IRIE, TAKASHIMA (bib0004) 2014; 14
Schotland (bib0005) 1966
Fukuchi, Nayuki, Cao (bib0007) 2003; 42
Fukuchi, Naohiko, Takashi (bib0008) 1999; 38
Voigt, Orphal, Burrows (bib0016) 2002; 149
Yoshino, Esmond, Parkinson (bib0014) 1997; 221
Keller, Moortgat, Sande, Sörensen (bib0015) 2013; 5
Fredriksson, Galle, Nystrom, Svanberg (bib0003) 1981; 20
Vandaele, Hermans, Fally, Carleer, Colin, Jenouvrier (bib0011) 2002; 107
Fukuchi (10.1016/j.jqsrt.2021.107975_bib0008) 1999; 38
Richter (10.1016/j.jqsrt.2021.107975_bib0002) 2005; 437
Fukuchi (10.1016/j.jqsrt.2021.107975_bib0007) 2003; 42
Nizkorodov (10.1016/j.jqsrt.2021.107975_bib0013) 2004; 108
Keller (10.1016/j.jqsrt.2021.107975_bib0015) 2013; 5
Pikhart (10.1016/j.jqsrt.2021.107975_bib0001) 2000; 11
Schotland (10.1016/j.jqsrt.2021.107975_bib0005) 1966
Vandaele (10.1016/j.jqsrt.2021.107975_bib0011) 2002; 107
Yoshino (10.1016/j.jqsrt.2021.107975_bib0014) 1997; 221
Burrows (10.1016/j.jqsrt.2021.107975_bib0012) 1998; 60
Voigt (10.1016/j.jqsrt.2021.107975_bib0016) 2002; 149
Browell (10.1016/j.jqsrt.2021.107975_bib0009) 1985; 24
KANAYA (10.1016/j.jqsrt.2021.107975_bib0004) 2014; 14
Fredriksson (10.1016/j.jqsrt.2021.107975_bib0003) 1981; 20
Wang (10.1016/j.jqsrt.2021.107975_bib0010) 1997; 36
Schotland (10.1016/j.jqsrt.2021.107975_bib0006) 1974; 13
References_xml – volume: 38
  start-page: 141
  year: 1999
  end-page: 145
  ident: bib0008
  article-title: Error analysis of SO
  publication-title: Opt Eng
– volume: 107
  year: 2002
  ident: bib0011
  article-title: High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: temperature and pressure effects
  publication-title: J Geophys Res
– volume: 108
  start-page: 4864
  year: 2004
  end-page: 4872
  ident: bib0013
  article-title: Temperature dependence of high-resolution air-broadened absorption cross sections of NO2 (415-525nm)
  publication-title: J Phys Chem
– volume: 14
  start-page: 7909
  year: 2014
  end-page: 7927
  ident: bib0004
  article-title: Long-term MAX-DOAS network observations of NO
  publication-title: Atmos Chem Phys
– volume: 221
  start-page: 169
  year: 1997
  end-page: 174
  ident: bib0014
  article-title: High-resolution absorption cross section measurements of NO2 in the UV and visible region
  publication-title: Chem Phys
– volume: 5
  start-page: 365
  year: 2013
  end-page: 373
  ident: bib0015
  article-title: The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest
  publication-title: Earth Syst Sci Data
– volume: 20
  start-page: 4181
  year: 1981
  end-page: 4189
  ident: bib0003
  article-title: Mobile lidar system for environmental probing
  publication-title: Appl Opt
– volume: 13
  start-page: 71
  year: 1974
  end-page: 77
  ident: bib0006
  article-title: Errors in the lidar measurement of atmospheric gases by differential absorption
  publication-title: J Appl Meteorol
– volume: 11
  start-page: 153
  year: 2000
  end-page: 160
  ident: bib0001
  article-title: Outdoor air concentrations of nitrogen dioxide and sulfur dioxide and prevalence of wheezing in school children
  publication-title: Epidemiology
– volume: 437
  start-page: 129
  year: 2005
  end-page: 132
  ident: bib0002
  article-title: Increase in tropospheric nitrogen dioxide over China observed from space
  publication-title: Nature
– year: 1966
  ident: bib0005
  article-title: Some observations of the vertical profile of water vapor by means of a laser optical radar [C]
  publication-title: Proceedings of the 4th symposium on remote sensing of the environment
– volume: 36
  start-page: 1245
  year: 1997
  end-page: 1252
  ident: bib0010
  article-title: Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols
  publication-title: Appl Opt
– volume: 60
  start-page: 1025
  year: 1998
  end-page: 1031
  ident: bib0012
  article-title: Atmospheric remote-sensing reference data from GOME: Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794nm range
  publication-title: J Quant Spectrosc Radiat Transf
– volume: 149
  start-page: 1
  year: 2002
  end-page: 7
  ident: bib0016
  article-title: The temperature and pressure dependence of the absorption cross-sections of NO
  publication-title: J Photochem Photobiol A
– volume: 42
  start-page: 98
  year: 2003
  end-page: 104
  ident: bib0007
  article-title: Differential absorption lidar system for simultaneous measurement of O
  publication-title: Opt Eng
– volume: 24
  start-page: 2827
  year: 1985
  end-page: 2836
  ident: bib0009
  article-title: Ultraviolet DIAL measurements of O
  publication-title: Appl Opt
– volume: 221
  start-page: 169
  year: 1997
  ident: 10.1016/j.jqsrt.2021.107975_bib0014
  article-title: High-resolution absorption cross section measurements of NO2 in the UV and visible region
  publication-title: Chem Phys
  doi: 10.1016/S0301-0104(97)00149-3
– volume: 107
  issue: D18
  year: 2002
  ident: 10.1016/j.jqsrt.2021.107975_bib0011
  article-title: High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross-section: temperature and pressure effects
  publication-title: J Geophys Res
– volume: 13
  start-page: 71
  year: 1974
  ident: 10.1016/j.jqsrt.2021.107975_bib0006
  article-title: Errors in the lidar measurement of atmospheric gases by differential absorption
  publication-title: J Appl Meteorol
  doi: 10.1175/1520-0450(1974)013<0071:EITLMO>2.0.CO;2
– volume: 108
  start-page: 4864
  year: 2004
  ident: 10.1016/j.jqsrt.2021.107975_bib0013
  article-title: Temperature dependence of high-resolution air-broadened absorption cross sections of NO2 (415-525nm)
  publication-title: J Phys Chem
  doi: 10.1021/jp049461n
– volume: 149
  start-page: 1
  year: 2002
  ident: 10.1016/j.jqsrt.2021.107975_bib0016
  article-title: The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250-800nm region measured by Fourier-transform spectroscopy
  publication-title: J Photochem Photobiol A
  doi: 10.1016/S1010-6030(01)00650-5
– volume: 5
  start-page: 365
  year: 2013
  ident: 10.1016/j.jqsrt.2021.107975_bib0015
  article-title: The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-5-365-2013
– volume: 24
  start-page: 2827
  year: 1985
  ident: 10.1016/j.jqsrt.2021.107975_bib0009
  article-title: Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols
  publication-title: Appl Opt
  doi: 10.1364/AO.24.002827
– volume: 60
  start-page: 1025
  year: 1998
  ident: 10.1016/j.jqsrt.2021.107975_bib0012
  article-title: Atmospheric remote-sensing reference data from GOME: Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794nm range
  publication-title: J Quant Spectrosc Radiat Transf
  doi: 10.1016/S0022-4073(97)00197-0
– volume: 36
  start-page: 1245
  issue: 6
  year: 1997
  ident: 10.1016/j.jqsrt.2021.107975_bib0010
  article-title: Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols
  publication-title: Appl Opt
  doi: 10.1364/AO.36.001245
– volume: 14
  start-page: 7909
  issue: 15
  year: 2014
  ident: 10.1016/j.jqsrt.2021.107975_bib0004
  article-title: Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations [J]
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-14-7909-2014
– volume: 11
  start-page: 153
  issue: 2
  year: 2000
  ident: 10.1016/j.jqsrt.2021.107975_bib0001
  article-title: Outdoor air concentrations of nitrogen dioxide and sulfur dioxide and prevalence of wheezing in school children
  publication-title: Epidemiology
  doi: 10.1097/00001648-200003000-00012
– volume: 20
  start-page: 4181
  issue: 24
  year: 1981
  ident: 10.1016/j.jqsrt.2021.107975_bib0003
  article-title: Mobile lidar system for environmental probing
  publication-title: Appl Opt
  doi: 10.1364/AO.20.004181
– volume: 38
  start-page: 141
  issue: 1
  year: 1999
  ident: 10.1016/j.jqsrt.2021.107975_bib0008
  article-title: Error analysis of SO2 measurement by multi-wavelength differential absorption lidar
  publication-title: Opt Eng
  doi: 10.1117/1.602068
– year: 1966
  ident: 10.1016/j.jqsrt.2021.107975_bib0005
  article-title: Some observations of the vertical profile of water vapor by means of a laser optical radar [C]
– volume: 42
  start-page: 98
  issue: 1
  year: 2003
  ident: 10.1016/j.jqsrt.2021.107975_bib0007
  article-title: Differential absorption lidar system for simultaneous measurement of O3 and NO2: system development and measurement error estimation
  publication-title: Opt Eng
  doi: 10.1117/1.1525274
– volume: 437
  start-page: 129
  issue: 7055
  year: 2005
  ident: 10.1016/j.jqsrt.2021.107975_bib0002
  article-title: Increase in tropospheric nitrogen dioxide over China observed from space
  publication-title: Nature
  doi: 10.1038/nature04092
SSID ssj0003316
Score 2.3468845
Snippet •The absorption cross section of nitrogen dioxide changes with the change of temperature, which will affect the concentration inversion of nitrogen dioxide...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107975
SubjectTerms Absorption cross section
Differential absorption lidar
Nitrogen dioxide
Optimized algorithm
Temperature change
Title Effect of temperature on inversion concentration of NO2 differential absorption lidar and optimized algorithm
URI https://dx.doi.org/10.1016/j.jqsrt.2021.107975
Volume 277
WOSCitedRecordID wos000718040900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003316
  issn: 0022-4073
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKBhKXiZ9iDJAP3CBTYruJc5zQ0KimAtJA5RS5ib2lapMuTcvE38MfyrOdOBmDih24RJXrOFHfp-fPr997D6HXJAolCTItkqLCYxkLvGlGmUezQPmBoL4y3Rq-nkbjMZ9M4k-Dwc82F2Yzj4qCX13Fy_9qahgDY-vU2VuY2y0KA_AZjA5XMDtc_8nwTT1i_d-_BE5saya_MYrGjQ2Oaam5FWW2dHH8kbhWKbWOoYvpqqysN5nnmbBCyxIGFvkPoKhifl5WeX2x-Au3vVyLwmSvaV2SSebURTPLpZXnVLoegvmqNrS5Ewif5mtt88_5-vu6Ex5Yz_hNKNlss9pLNXHuUe6QOcptMPcEHn7ej2YQ0otmdNkFcMikfQ9Nmk4v1sfCgTW23VZuuH8biZgdzi5XlRbKkuCwm3292PZvm6CTJraqt1liFkn0Iold5A7aJdEwBt-5e_TheDJyOz6lpsWue_e2upXREd54lz8zoB6rOXuA9hqT4SMLo4doIItH6J6RBaerx2hhwYRLhXtgwmWBHZjwNTDpmQAm3AcT7sCEDZgwgAk7MGEHpifoy_vjs3cnXtOgw0sp47WnIspZGkZZLLiKQgFknE5jMZSpIIoz6jMZTKUSvsgCosBbhDxLfQUMPswCAVz3KdopykI-QziUPBUhETxIOWORin2mhnCUVVIqLuN0H5H2R0vSpnq9bqIyT7YYbB-9dTctbfGW7dPD1hpJwz8tr0wAX9tufH675xyg-x30X6CdulrLl-huuqnzVfWqAdcvK7Gt_A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+temperature+on+inversion+concentration+of+NO2+differential+absorption+lidar+and+optimized+algorithm&rft.jtitle=Journal+of+quantitative+spectroscopy+%26+radiative+transfer&rft.au=Liu%2C+Qiuwu&rft.au=Chen%2C+Yafeng&rft.au=Yang%2C+Jie&rft.au=Jian%2C+Huang&rft.date=2022-01-01&rft.issn=0022-4073&rft.volume=277&rft.spage=107975&rft_id=info:doi/10.1016%2Fj.jqsrt.2021.107975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jqsrt_2021_107975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4073&client=summon