GPU‐accelerated Bloch simulations and MR‐STAT reconstructions using the Julia programming language

MR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR-STAT. In this work we leverage GPU hardware to reduce MR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 92; H. 2; S. 618 - 630
Hauptverfasser: van der Heide, Oscar, van den Berg, Cornelis A. T., Sbrizzi, Alessandro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.08.2024
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract MR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR-STAT. In this work we leverage GPU hardware to reduce MR-STAT reconstruction times. A highly optimized, GPU-compatible Bloch simulation toolbox is developed as part of this work that can be utilized for other quantitative MRI techniques as well. The Julia programming language was used to develop a flexible yet highly performant and GPU-compatible Bloch simulation toolbox called BlochSimulators.jl. The runtime performance of the toolbox is benchmarked against other Bloch simulation toolboxes. Furthermore, a (partially matrix-free) modification of a previously presented (matrix-free) MR-STAT reconstruction algorithm is proposed and implemented using the Julia language on GPU hardware. The proposed algorithm is combined with BlochSimulators.jl and the resulting MR-STAT reconstruction times on GPU hardware are compared to previously presented MR-STAT reconstruction times. The BlochSimulators.jl package demonstrates superior runtime performance on both CPU and GPU hardware when compared to other existing Bloch simulation toolboxes. The GPU-accelerated partially matrix-free MR-STAT reconstruction algorithm, which relies on BlochSimulators.jl, allows for reconstructions of 68 seconds per two-dimensional (2D slice). By combining the proposed Bloch simulation toolbox and the partially matrix-free reconstruction algorithm, 2D MR-STAT reconstructions can be performed in the order of one minute on a modern GPU card. The Bloch simulation toolbox can be utilized for other quantitative MRI techniques as well, for example for online dictionary generation for MR Fingerprinting.
AbstractList MR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR-STAT. In this work we leverage GPU hardware to reduce MR-STAT reconstruction times. A highly optimized, GPU-compatible Bloch simulation toolbox is developed as part of this work that can be utilized for other quantitative MRI techniques as well. The Julia programming language was used to develop a flexible yet highly performant and GPU-compatible Bloch simulation toolbox called BlochSimulators.jl. The runtime performance of the toolbox is benchmarked against other Bloch simulation toolboxes. Furthermore, a (partially matrix-free) modification of a previously presented (matrix-free) MR-STAT reconstruction algorithm is proposed and implemented using the Julia language on GPU hardware. The proposed algorithm is combined with BlochSimulators.jl and the resulting MR-STAT reconstruction times on GPU hardware are compared to previously presented MR-STAT reconstruction times. The BlochSimulators.jl package demonstrates superior runtime performance on both CPU and GPU hardware when compared to other existing Bloch simulation toolboxes. The GPU-accelerated partially matrix-free MR-STAT reconstruction algorithm, which relies on BlochSimulators.jl, allows for reconstructions of 68 seconds per two-dimensional (2D slice). By combining the proposed Bloch simulation toolbox and the partially matrix-free reconstruction algorithm, 2D MR-STAT reconstructions can be performed in the order of one minute on a modern GPU card. The Bloch simulation toolbox can be utilized for other quantitative MRI techniques as well, for example for online dictionary generation for MR Fingerprinting.
PurposeMR‐STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large‐scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR‐STAT. In this work we leverage GPU hardware to reduce MR‐STAT reconstruction times. A highly optimized, GPU‐compatible Bloch simulation toolbox is developed as part of this work that can be utilized for other quantitative MRI techniques as well.MethodsThe Julia programming language was used to develop a flexible yet highly performant and GPU‐compatible Bloch simulation toolbox called BlochSimulators.jl. The runtime performance of the toolbox is benchmarked against other Bloch simulation toolboxes. Furthermore, a (partially matrix‐free) modification of a previously presented (matrix‐free) MR‐STAT reconstruction algorithm is proposed and implemented using the Julia language on GPU hardware. The proposed algorithm is combined with BlochSimulators.jl and the resulting MR‐STAT reconstruction times on GPU hardware are compared to previously presented MR‐STAT reconstruction times.ResultsThe BlochSimulators.jl package demonstrates superior runtime performance on both CPU and GPU hardware when compared to other existing Bloch simulation toolboxes. The GPU‐accelerated partially matrix‐free MR‐STAT reconstruction algorithm, which relies on BlochSimulators.jl, allows for reconstructions of 68 seconds per two‐dimensional (2D slice).ConclusionBy combining the proposed Bloch simulation toolbox and the partially matrix‐free reconstruction algorithm, 2D MR‐STAT reconstructions can be performed in the order of one minute on a modern GPU card. The Bloch simulation toolbox can be utilized for other quantitative MRI techniques as well, for example for online dictionary generation for MR Fingerprinting.
MR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR-STAT. In this work we leverage GPU hardware to reduce MR-STAT reconstruction times. A highly optimized, GPU-compatible Bloch simulation toolbox is developed as part of this work that can be utilized for other quantitative MRI techniques as well.PURPOSEMR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR-STAT. In this work we leverage GPU hardware to reduce MR-STAT reconstruction times. A highly optimized, GPU-compatible Bloch simulation toolbox is developed as part of this work that can be utilized for other quantitative MRI techniques as well.The Julia programming language was used to develop a flexible yet highly performant and GPU-compatible Bloch simulation toolbox called BlochSimulators.jl. The runtime performance of the toolbox is benchmarked against other Bloch simulation toolboxes. Furthermore, a (partially matrix-free) modification of a previously presented (matrix-free) MR-STAT reconstruction algorithm is proposed and implemented using the Julia language on GPU hardware. The proposed algorithm is combined with BlochSimulators.jl and the resulting MR-STAT reconstruction times on GPU hardware are compared to previously presented MR-STAT reconstruction times.METHODSThe Julia programming language was used to develop a flexible yet highly performant and GPU-compatible Bloch simulation toolbox called BlochSimulators.jl. The runtime performance of the toolbox is benchmarked against other Bloch simulation toolboxes. Furthermore, a (partially matrix-free) modification of a previously presented (matrix-free) MR-STAT reconstruction algorithm is proposed and implemented using the Julia language on GPU hardware. The proposed algorithm is combined with BlochSimulators.jl and the resulting MR-STAT reconstruction times on GPU hardware are compared to previously presented MR-STAT reconstruction times.The BlochSimulators.jl package demonstrates superior runtime performance on both CPU and GPU hardware when compared to other existing Bloch simulation toolboxes. The GPU-accelerated partially matrix-free MR-STAT reconstruction algorithm, which relies on BlochSimulators.jl, allows for reconstructions of 68 seconds per two-dimensional (2D slice).RESULTSThe BlochSimulators.jl package demonstrates superior runtime performance on both CPU and GPU hardware when compared to other existing Bloch simulation toolboxes. The GPU-accelerated partially matrix-free MR-STAT reconstruction algorithm, which relies on BlochSimulators.jl, allows for reconstructions of 68 seconds per two-dimensional (2D slice).By combining the proposed Bloch simulation toolbox and the partially matrix-free reconstruction algorithm, 2D MR-STAT reconstructions can be performed in the order of one minute on a modern GPU card. The Bloch simulation toolbox can be utilized for other quantitative MRI techniques as well, for example for online dictionary generation for MR Fingerprinting.CONCLUSIONBy combining the proposed Bloch simulation toolbox and the partially matrix-free reconstruction algorithm, 2D MR-STAT reconstructions can be performed in the order of one minute on a modern GPU card. The Bloch simulation toolbox can be utilized for other quantitative MRI techniques as well, for example for online dictionary generation for MR Fingerprinting.
Author Sbrizzi, Alessandro
van den Berg, Cornelis A. T.
van der Heide, Oscar
Author_xml – sequence: 1
  givenname: Oscar
  orcidid: 0000-0002-8451-525X
  surname: van der Heide
  fullname: van der Heide, Oscar
  organization: Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences University Medical Center Utrecht Utrecht The Netherlands, Department of Radiotherapy, Division of Imaging and Oncology University Medical Center Utrecht Utrecht The Netherlands
– sequence: 2
  givenname: Cornelis A. T.
  orcidid: 0000-0002-5565-6889
  surname: van den Berg
  fullname: van den Berg, Cornelis A. T.
  organization: Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences University Medical Center Utrecht Utrecht The Netherlands, Department of Radiotherapy, Division of Imaging and Oncology University Medical Center Utrecht Utrecht The Netherlands
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0003-3276-4542
  surname: Sbrizzi
  fullname: Sbrizzi, Alessandro
  organization: Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences University Medical Center Utrecht Utrecht The Netherlands, Department of Radiotherapy, Division of Imaging and Oncology University Medical Center Utrecht Utrecht The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38441315$$D View this record in MEDLINE/PubMed
BookMark eNplkctOwzAQRS1URB-w4AdQJDawSOtnEy9LBQVUBIJ2bTmO06bKo9jxgh2fwDfyJbivTdnMSNdnRtdzu6BV1ZUG4BLBPoIQD0pT9gmEET0BHcQwDjHjtAU6XoEhQZy2QdfaFYSQ84iegTaJKUUEsQ7IJm_z3-8fqZQutJGNToO7olbLwOalK2ST15UNZJUGL-8e-5iNZoHRyouNcWr36mxeLYJmqYNnV-QyWJt6YWRZbtRCVgsnF_ocnGaysPpi33tg_nA_Gz-G09fJ03g0DRWhcRNmTMuYxgwRqghkcQYZj1LJpIIxSlnElSIZ4ThLqPYVDuOU0pSzNElUhmNEeuBmt9eb-HTaNqLMrf-a96FrZwXmJIogiRD36PURuqqdqbw7QeAQR5iQIfXU1Z5ySalTsTZ5Kc2XOFzQA4MdoExtrdGZUHmzvVtjZF4IBMUmI-EzEtuM_MTt0cRh6X_2D_pzkyA
CitedBy_id crossref_primary_10_1007_s10334_025_01281_z
crossref_primary_10_1007_s10334_025_01236_4
Cites_doi 10.1145/1366230.1366276
10.1016/j.mri.2019.11.015
10.1002/mrm.22406
10.1109/TMI.2020.3003893
10.1002/mrm.29071
10.1002/mrm.28792
10.1109/TMI.2022.3168436
10.1109/TMI.2016.2620961
10.1002/mrm.22487
10.1002/cmr.1820030302
10.1002/mrm.25559
10.1103/PhysRev.98.1099
10.1145/355984.355989
10.1145/3458817.3476165
10.1137/141000671
10.1002/nbm.4527
10.1002/jmri.24619
10.1002/cmr.1820030402
10.1109/TPDS.2018.2872064
10.1016/j.mri.2023.01.017
10.1002/mrm.26202
10.21037/qims.2018.03.07
10.1038/nature11971
10.1016/j.zemedi.2020.04.001
10.1016/j.mri.2017.10.015
10.1002/nbm.4251
10.1002/mrm.29635
10.1016/j.neuroimage.2019.116120
ContentType Journal Article
Copyright 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30074
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Biochemistry Abstracts 1
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 630
ExternalDocumentID 38441315
10_1002_mrm_30074
Genre Journal Article
GrantInformation_xml – fundername: Dutch Technology Foundation
  grantid: 17986
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c348t-f5ea8485134c3058f0597da5ac081d579cc3f392fb4e92f068d44d95dbbcf2813
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001178243900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Sep 04 16:51:14 EDT 2025
Sat Nov 29 14:52:13 EST 2025
Mon Jul 21 05:13:41 EDT 2025
Sat Nov 29 06:34:39 EST 2025
Tue Nov 18 21:42:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CUDA
Julia
quantitative MRI
Bloch simulations
MR-STAT
Language English
License 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-f5ea8485134c3058f0597da5ac081d579cc3f392fb4e92f068d44d95dbbcf2813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5565-6889
0000-0002-8451-525X
0000-0003-3276-4542
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30074
PMID 38441315
PQID 3062723364
PQPubID 1016391
PageCount 13
ParticipantIDs proquest_miscellaneous_2937703719
proquest_journals_3062723364
pubmed_primary_38441315
crossref_citationtrail_10_1002_mrm_30074
crossref_primary_10_1002_mrm_30074
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Moses W (e_1_2_8_36_1) 2020
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – ident: e_1_2_8_7_1
  doi: 10.1145/1366230.1366276
– ident: e_1_2_8_13_1
  doi: 10.1016/j.mri.2019.11.015
– ident: e_1_2_8_12_1
  doi: 10.1002/mrm.22406
– ident: e_1_2_8_6_1
  doi: 10.1109/TMI.2020.3003893
– ident: e_1_2_8_34_1
  doi: 10.1002/mrm.29071
– ident: e_1_2_8_11_1
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.28792
– ident: e_1_2_8_5_1
  doi: 10.1109/TMI.2022.3168436
– ident: e_1_2_8_15_1
  doi: 10.1109/TMI.2016.2620961
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.22487
– ident: e_1_2_8_28_1
– ident: e_1_2_8_32_1
– ident: e_1_2_8_19_1
  doi: 10.1002/cmr.1820030302
– ident: e_1_2_8_25_1
  doi: 10.1002/mrm.25559
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRev.98.1099
– ident: e_1_2_8_16_1
  doi: 10.1145/355984.355989
– ident: e_1_2_8_37_1
  doi: 10.1145/3458817.3476165
– ident: e_1_2_8_9_1
  doi: 10.1137/141000671
– ident: e_1_2_8_27_1
  doi: 10.1002/nbm.4527
– ident: e_1_2_8_21_1
  doi: 10.1002/jmri.24619
– ident: e_1_2_8_20_1
  doi: 10.1002/cmr.1820030402
– ident: e_1_2_8_10_1
  doi: 10.1109/TPDS.2018.2872064
– ident: e_1_2_8_35_1
  doi: 10.1016/j.mri.2023.01.017
– ident: e_1_2_8_24_1
  doi: 10.1002/mrm.26202
– start-page: 12472
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: e_1_2_8_36_1
– ident: e_1_2_8_38_1
– ident: e_1_2_8_8_1
  doi: 10.21037/qims.2018.03.07
– ident: e_1_2_8_30_1
– ident: e_1_2_8_2_1
  doi: 10.1038/nature11971
– ident: e_1_2_8_18_1
– ident: e_1_2_8_29_1
  doi: 10.1016/j.zemedi.2020.04.001
– ident: e_1_2_8_3_1
  doi: 10.1016/j.mri.2017.10.015
– ident: e_1_2_8_4_1
  doi: 10.1002/nbm.4251
– ident: e_1_2_8_14_1
  doi: 10.1002/mrm.29635
– ident: e_1_2_8_23_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.neuroimage.2019.116120
– ident: e_1_2_8_26_1
SSID ssj0009974
Score 2.4650037
Snippet MR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear...
PurposeMR‐STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large‐scale...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 618
SubjectTerms Algorithms
DNA fingerprinting
Fingerprinting
Graphics processing units
Hardware
Image reconstruction
Magnetic resonance imaging
Programming languages
Run time (computers)
Simulation
Title GPU‐accelerated Bloch simulations and MR‐STAT reconstructions using the Julia programming language
URI https://www.ncbi.nlm.nih.gov/pubmed/38441315
https://www.proquest.com/docview/3062723364
https://www.proquest.com/docview/2937703719
Volume 92
WOSCitedRecordID wos001178243900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLa6DiYuCAaMwpgM4oAUpbSxEyfHbjA40DGVVuotsh0HIrXpVK_TtBM_gb_CX-KX8JzEabaCNA5crMp2mrTfl_ee7efPCL1WihNzpK1LiGdEtZPUFUqlrmQcrF8_7XEmisMm2MlJOJ1Gp63WT7sX5mLG8jy8vIzO_ivUUAdgm62z_wB3_aVQAZ8BdCgBdihvBfyH00mdwcClBLdi1CAS5xDc1jdHZ_OVTX8rcixGdecv48HYKQbItaisdlba7qcyO6m5zeeam1o719kMcIf8a65KXWgT5BuzkeUbK_hm05QRsShUtgzKn7Xky-utuXNYpZ4dLZa5mmXaGXSdcbeeExLL7Ooqq3bpaM2N9EJzEsOjdQqdtXWMGndQnnfcVZUthnEyjM5o01hHXoOUXsPyBpUZL514UC72bPiHUm92vpx3iQme1k7QLvzf8I11xmKp7uzFcGlcXLqFtj3mR2Ebbb8bHU8-rZWeo1L62_4iK2fV897W970eBP1lZFNEOOMH6H41NMGDklIPUUvlu2hnWEG3i-4W2cJSP0IpcOzX9x8NduGCXbjBLgx44OEIuhle4Ru8wgWvMPAKF7zCDV5hy6vHaHL8fnz00a0O7HAloeG5m_qKhxRieEIl-JEwhdidJdznEgLPxGeRlCSFgDwVVEHZC8KE0iTyEyFk6oV98gS180WuniKsqAgh-k8jITiFEFoQGQUe9yMRJKJPaQe9sf9gLCs1e3OoyizeQKqDXtVdz0oJlz912rcwxNXLrKEl8JhHSADNL-tmsL9mUY3narHSMYTLjBndy6iD9kr46ruQEAYbpO8_u80TPEf31m_GPmoDIuoFuiMvzjO9PEBbbBoeVFz7DW69stk
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPU%E2%80%90accelerated+Bloch+simulations+and+MR%E2%80%90STAT+reconstructions+using+the+Julia+programming+language&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=van+der+Heide%2C+Oscar&rft.au=van+den+Berg%2C+Cornelis+A.+T.&rft.au=Sbrizzi%2C+Alessandro&rft.date=2024-08-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=2&rft.spage=618&rft.epage=630&rft_id=info:doi/10.1002%2Fmrm.30074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon