Fast algorithms for nonparametric population modeling of large data sets
Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects. In the absence of a reliable mechanistic model, one can resort to the Bayesian nonparametric approach that models the individual curves as G...
Uloženo v:
| Vydáno v: | Automatica (Oxford) Ročník 45; číslo 1; s. 173 - 179 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
2009
Elsevier |
| Témata: | |
| ISSN: | 0005-1098, 1873-2836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects. In the absence of a reliable mechanistic model, one can resort to the Bayesian nonparametric approach that models the individual curves as Gaussian processes. This paper develops an efficient computational scheme for estimating the average and individual curves from large data sets collected in standardized experiments, i.e. with a fixed sampling schedule. It is shown that the overall scheme exhibits a “client–server” architecture. The server is in charge of handling and processing the collective data base of past experiments. The clients ask the server for the information needed to reconstruct the individual curve in a single new experiment. This architecture allows the clients to take advantage of the overall data set without violating possible privacy and confidentiality constraints and with negligible computational effort. |
|---|---|
| AbstractList | Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects. In the absence of a reliable mechanistic model, one can resort to the Bayesian nonparametric approach that models the individual curves as Gaussian processes. This paper develops an efficient computational scheme for estimating the average and individual curves from large data sets collected in standardized experiments, i.e. with a fixed sampling schedule. It is shown that the overall scheme exhibits a “client–server” architecture. The server is in charge of handling and processing the collective data base of past experiments. The clients ask the server for the information needed to reconstruct the individual curve in a single new experiment. This architecture allows the clients to take advantage of the overall data set without violating possible privacy and confidentiality constraints and with negligible computational effort. |
| Author | Chierici, Marco De Nicolao, Giuseppe Cobelli, Claudio Pillonetto, Gianluigi |
| Author_xml | – sequence: 1 givenname: Gianluigi surname: Pillonetto fullname: Pillonetto, Gianluigi email: giapi@dei.unipd.it organization: Dipartimento di Ingegneria dell’Informazione, University of Padova, Italy – sequence: 2 givenname: Giuseppe surname: De Nicolao fullname: De Nicolao, Giuseppe email: giuseppe.denicolao@unipv.it organization: Dipartimento di Informatica e Sistemistica, University of Pavia, Italy – sequence: 3 givenname: Marco surname: Chierici fullname: Chierici, Marco email: chierici@fbk.eu organization: Predictive Models for Biomedicine and Environment Unit, Fondazione Bruno Kessler, Trento, Italy – sequence: 4 givenname: Claudio surname: Cobelli fullname: Cobelli, Claudio email: cobelli@dei.unipd.it organization: Dipartimento di Ingegneria dell’Informazione, University of Padova, Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21058910$$DView record in Pascal Francis |
| BookMark | eNqNkE1r3DAQhkVIoJuk_0GXHO2OJH9oL4UmNEkhkEt7FrPj0VaLbRlJCfTf1-m2BHJpTsPAvM_LPOfidI4zCyEV1ApU9-lQ41OJE5ZAWGsAW0NXA5gTsVG2N5W2pjsVGwBoKwVb-0Gc53xY10ZZvRH3t5iLxHEfUyg_pyx9THKtWDDhxCUFkktcnsaVH2c5xYHHMO9l9HLEtGc5YEGZueRLceZxzPzx77wQP26_fr-5rx4e777dfHmoyDS2VL7l1uwG0DuN7Q57AkZqeNuS4hZ15xUZ7DVBT8jkvW6MNTvQvVZ9o70yF-LqyF0wE44-4UwhuyWFCdMvpxW0dqtgvft8vKMUc07sHYXy54uSMIxOgXvx5w7u1Z978eegc6u_FWDfAP51vCN6fYzyKuI5cHKZAs_EQ0hMxQ0x_B_yG7G7lNQ |
| CODEN | ATCAA9 |
| CitedBy_id | crossref_primary_10_1002_acs_1126 crossref_primary_10_1016_j_cmpb_2012_11_001 crossref_primary_10_1109_TPAMI_2008_297 crossref_primary_10_1002_rnc_1465 crossref_primary_10_1016_j_automatica_2010_11_004 crossref_primary_10_1109_TCSVT_2011_2129430 crossref_primary_10_1016_j_neucom_2015_10_073 crossref_primary_10_1109_TNN_2010_2095882 |
| Cites_doi | 10.3109/03602538409015063 10.1109/TBME.2007.902240 10.1016/j.automatica.2006.12.024 10.1023/A:1020206907668 10.1007/BF02353463 10.1152/ajpendo.2001.280.1.E179 10.2337/db05-1692 10.1023/A:1025769431364 10.1109/TMI.2004.824243 10.1023/A:1022920403166 |
| ContentType | Journal Article |
| Copyright | 2008 Elsevier Ltd 2009 INIST-CNRS |
| Copyright_xml | – notice: 2008 Elsevier Ltd – notice: 2009 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.automatica.2008.06.003 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1873-2836 |
| EndPage | 179 |
| ExternalDocumentID | 21058910 10_1016_j_automatica_2008_06_003 S0005109808003713 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c348t-f5e53bd02b2a5ba7c0eac4e95c1e5a26f1c3a72c07caecff24383b02721742f13 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262873500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0005-1098 |
| IngestDate | Mon Jul 21 09:17:00 EDT 2025 Sat Nov 29 01:49:00 EST 2025 Tue Nov 18 22:44:32 EST 2025 Fri Feb 23 02:14:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Glucose metabolism Bayesian estimation Nonparametric identification Gaussian processes Estimation theory Bayes estimation Data analysis Non parametric estimation Data processing Client server architecture Metabolism Modeling Gaussian process System identification Fast algorithm Sampling Biomedical engineering |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-f5e53bd02b2a5ba7c0eac4e95c1e5a26f1c3a72c07caecff24383b02721742f13 |
| PageCount | 7 |
| ParticipantIDs | pascalfrancis_primary_21058910 crossref_citationtrail_10_1016_j_automatica_2008_06_003 crossref_primary_10_1016_j_automatica_2008_06_003 elsevier_sciencedirect_doi_10_1016_j_automatica_2008_06_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2009 2009-01-00 |
| PublicationDateYYYYMMDD | 2009-01-01 |
| PublicationDate_xml | – year: 2009 text: 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Automatica (Oxford) |
| PublicationYear | 2009 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Ibragimov, Khasminskii (b12) 1981 Magni, Bellazzi, De Nicolao, Poggesi, Rocchetti (b15) 2002; 29 pp. 53–55 Vicini, Caumo, Cobelli (b22) 1997; 273 Anderson, Moore (b1) 1979 Wahba (b25) 1990 Jacquez (b13) 1985 Rasmussen, Williams (b19) 2006 Bergman, Bowden, Cobelli (b5) 1981 Neve, De Nicolao, Marchesi (b16) 2007; 43 Lunn, Best, Thomas, Wakefield, Spiegelhalter (b14) 2002; 29 Beal, S., & Sheiner, L. (1992). Sheiner (b20) 1994; 15 Ferrazzi, F., Magni, P., & Bellazzi, R. (2003). Bayesian clustering of gene expression time series. In Evgeniou, Micchelli, Pontil (b8) 2005; 6 NONMEM Project Group, University of California, San Francisco Shiryaev (b21) 1996 Park, Verotta, Blaschke, Sheiner (b18) 1997; 25 Basu, Dalla Man, Campioni, Basu, Klee, Jenkins (b2) 2006; 55 Beal, Sheiner (b3) 1982; 8 Davidian, Giltinan (b7) 1995 Fattinger, Verotta (b9) 1995; 23 Gilks, Richardson, Spiegelhalter (b11) 1996 Neve, De Nicolao, Marchesi (b17) 2008; 55 Vicini, Cobelli (b23) 2001; 280 Vicini, Zachwieja, Yarasheski, Bier, Caumo, Cobelli (b24) 1999; 276 Bertoldo, Sparacino, Cobelli (b6) 2004; 23 Vicini (10.1016/j.automatica.2008.06.003_b23) 2001; 280 10.1016/j.automatica.2008.06.003_b10 Ibragimov (10.1016/j.automatica.2008.06.003_b12) 1981 10.1016/j.automatica.2008.06.003_b4 Neve (10.1016/j.automatica.2008.06.003_b16) 2007; 43 Park (10.1016/j.automatica.2008.06.003_b18) 1997; 25 Bertoldo (10.1016/j.automatica.2008.06.003_b6) 2004; 23 Sheiner (10.1016/j.automatica.2008.06.003_b20) 1994; 15 Wahba (10.1016/j.automatica.2008.06.003_b25) 1990 Vicini (10.1016/j.automatica.2008.06.003_b24) 1999; 276 Anderson (10.1016/j.automatica.2008.06.003_b1) 1979 Fattinger (10.1016/j.automatica.2008.06.003_b9) 1995; 23 Gilks (10.1016/j.automatica.2008.06.003_b11) 1996 Basu (10.1016/j.automatica.2008.06.003_b2) 2006; 55 Magni (10.1016/j.automatica.2008.06.003_b15) 2002; 29 Neve (10.1016/j.automatica.2008.06.003_b17) 2008; 55 Davidian (10.1016/j.automatica.2008.06.003_b7) 1995 Jacquez (10.1016/j.automatica.2008.06.003_b13) 1985 Lunn (10.1016/j.automatica.2008.06.003_b14) 2002; 29 Vicini (10.1016/j.automatica.2008.06.003_b22) 1997; 273 Evgeniou (10.1016/j.automatica.2008.06.003_b8) 2005; 6 Rasmussen (10.1016/j.automatica.2008.06.003_b19) 2006 Bergman (10.1016/j.automatica.2008.06.003_b5) 1981 Beal (10.1016/j.automatica.2008.06.003_b3) 1982; 8 Shiryaev (10.1016/j.automatica.2008.06.003_b21) 1996 |
| References_xml | – volume: 6 start-page: 615 year: 2005 end-page: 637 ident: b8 article-title: Learning multiple tasks with kernel methods publication-title: Journal of Machine Learning Research – year: 1979 ident: b1 article-title: Optimal filtering – volume: 280 start-page: 179 year: 2001 end-page: 186 ident: b23 article-title: The iterative two-stage population approach to publication-title: American Journal of Physiology Endocrinology and Metabolism – volume: 273 start-page: 1024 year: 1997 end-page: 1032 ident: b22 article-title: The hot IVGTT two-compartment minimal model: Indexes of glucose effectiveness and insulin sensitivity publication-title: American Journal of Physiology – year: 1996 ident: b11 article-title: Markov chain Monte Carlo in practice – year: 1985 ident: b13 article-title: Compartmental analysis in biology and medicine – volume: 25 start-page: 615 year: 1997 end-page: 642 ident: b18 article-title: A semiparametric method for describing noisy population pharmacokinetic data publication-title: Journal of Pharmacokinetics and Biopharmaceutics – volume: 29 start-page: 271 year: 2002 end-page: 307 ident: b14 article-title: Bayesian analysis of population publication-title: Journal of Pharmacokinetics and Pharmacodynamics – reference: . NONMEM Project Group, University of California, San Francisco – volume: 276 start-page: 285 year: 1999 end-page: 294 ident: b24 article-title: Glucose production during an IVGTT by deconvolution: Validation with the tracer-to-tracee clamp technique publication-title: American Journal of Physiology – volume: 15 start-page: 153 year: 1994 end-page: 171 ident: b20 article-title: The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods publication-title: Drug Metabolism Reviews – year: 1981 ident: b12 article-title: Statistical estimation: Asymptotic theory – volume: 23 start-page: 581 year: 1995 end-page: 610 ident: b9 article-title: A nonparametric subject-specific population method for deconvolution: I. publication-title: Journal of Pharmacokinetics and Biopharmaceutics – reference: (pp. 53–55) – reference: Beal, S., & Sheiner, L. (1992). – year: 1996 ident: b21 article-title: Probability – volume: 29 start-page: 445 year: 2002 end-page: 471 ident: b15 article-title: Nonparametric publication-title: Journal of Pharmacokinetics and Pharmacodynamics – reference: Ferrazzi, F., Magni, P., & Bellazzi, R. (2003). Bayesian clustering of gene expression time series. In – year: 1995 ident: b7 article-title: Nonlinear models for repeated measurement data – year: 1990 ident: b25 article-title: Spline models for observational data – volume: 55 start-page: 2001 year: 2006 end-page: 2014 ident: b2 article-title: Effect of age and sex on postprandial glucose metabolism: Difference in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction publication-title: Diabetes – volume: 23 start-page: 297 year: 2004 end-page: 306 ident: b6 article-title: “ publication-title: IEEE Transactions on Medical Imaging – volume: 43 start-page: 1134 year: 2007 end-page: 1144 ident: b16 article-title: Nonparametric identification of population models via publication-title: Automatica – year: 2006 ident: b19 article-title: Gaussian processes for machine learning – volume: 55 start-page: 41 year: 2008 end-page: 50 ident: b17 article-title: Nonparametric identification of population models: An MCMC approach publication-title: IEEE Transactions on Biomedical Engineering – volume: 8 start-page: 195 year: 1982 end-page: 222 ident: b3 article-title: Estimating population kinetics publication-title: Critical Reviews in Biomedical Engineering – year: 1981 ident: b5 article-title: The minimal model approach to quantification of factors controlling glucose disposal in man publication-title: Carbohydrate metabolism – volume: 15 start-page: 153 year: 1994 ident: 10.1016/j.automatica.2008.06.003_b20 article-title: The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods publication-title: Drug Metabolism Reviews doi: 10.3109/03602538409015063 – ident: 10.1016/j.automatica.2008.06.003_b4 – year: 1996 ident: 10.1016/j.automatica.2008.06.003_b21 – year: 1995 ident: 10.1016/j.automatica.2008.06.003_b7 – volume: 6 start-page: 615 year: 2005 ident: 10.1016/j.automatica.2008.06.003_b8 article-title: Learning multiple tasks with kernel methods publication-title: Journal of Machine Learning Research – volume: 8 start-page: 195 issue: 3 year: 1982 ident: 10.1016/j.automatica.2008.06.003_b3 article-title: Estimating population kinetics publication-title: Critical Reviews in Biomedical Engineering – volume: 55 start-page: 41 year: 2008 ident: 10.1016/j.automatica.2008.06.003_b17 article-title: Nonparametric identification of population models: An MCMC approach publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2007.902240 – ident: 10.1016/j.automatica.2008.06.003_b10 – year: 1985 ident: 10.1016/j.automatica.2008.06.003_b13 – volume: 43 start-page: 1134 year: 2007 ident: 10.1016/j.automatica.2008.06.003_b16 article-title: Nonparametric identification of population models via Gaussian processes publication-title: Automatica doi: 10.1016/j.automatica.2006.12.024 – volume: 29 start-page: 271 issue: 3 year: 2002 ident: 10.1016/j.automatica.2008.06.003_b14 article-title: Bayesian analysis of population PK/PD models: General concepts and software publication-title: Journal of Pharmacokinetics and Pharmacodynamics doi: 10.1023/A:1020206907668 – year: 1981 ident: 10.1016/j.automatica.2008.06.003_b12 – year: 1996 ident: 10.1016/j.automatica.2008.06.003_b11 – volume: 23 start-page: 581 year: 1995 ident: 10.1016/j.automatica.2008.06.003_b9 article-title: A nonparametric subject-specific population method for deconvolution: I. Description, internal validation, and real data examples publication-title: Journal of Pharmacokinetics and Biopharmaceutics doi: 10.1007/BF02353463 – volume: 280 start-page: 179 issue: 1 year: 2001 ident: 10.1016/j.automatica.2008.06.003_b23 article-title: The iterative two-stage population approach to IVGTT minimal modeling: Improved precision with reduced sampling publication-title: American Journal of Physiology Endocrinology and Metabolism doi: 10.1152/ajpendo.2001.280.1.E179 – year: 1990 ident: 10.1016/j.automatica.2008.06.003_b25 – volume: 55 start-page: 2001 year: 2006 ident: 10.1016/j.automatica.2008.06.003_b2 article-title: Effect of age and sex on postprandial glucose metabolism: Difference in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction publication-title: Diabetes doi: 10.2337/db05-1692 – volume: 273 start-page: 1024 year: 1997 ident: 10.1016/j.automatica.2008.06.003_b22 article-title: The hot IVGTT two-compartment minimal model: Indexes of glucose effectiveness and insulin sensitivity publication-title: American Journal of Physiology – year: 1981 ident: 10.1016/j.automatica.2008.06.003_b5 article-title: The minimal model approach to quantification of factors controlling glucose disposal in man – volume: 25 start-page: 615 year: 1997 ident: 10.1016/j.automatica.2008.06.003_b18 article-title: A semiparametric method for describing noisy population pharmacokinetic data publication-title: Journal of Pharmacokinetics and Biopharmaceutics doi: 10.1023/A:1025769431364 – year: 1979 ident: 10.1016/j.automatica.2008.06.003_b1 – volume: 23 start-page: 297 issue: 3 year: 2004 ident: 10.1016/j.automatica.2008.06.003_b6 article-title: “Population” approach improves parameter estimation of kinetic models from dynamic PET data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2004.824243 – year: 2006 ident: 10.1016/j.automatica.2008.06.003_b19 – volume: 29 start-page: 445 issue: 5–6 year: 2002 ident: 10.1016/j.automatica.2008.06.003_b15 article-title: Nonparametric AUC estimation in population studies with incomplete sampling: A Bayesian approach publication-title: Journal of Pharmacokinetics and Pharmacodynamics doi: 10.1023/A:1022920403166 – volume: 276 start-page: 285 year: 1999 ident: 10.1016/j.automatica.2008.06.003_b24 article-title: Glucose production during an IVGTT by deconvolution: Validation with the tracer-to-tracee clamp technique publication-title: American Journal of Physiology |
| SSID | ssj0004182 |
| Score | 1.9849063 |
| Snippet | Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects.... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 173 |
| SubjectTerms | Applied sciences Bayesian estimation Computer science; control theory; systems Control theory. Systems Estimation theory Exact sciences and technology Gaussian processes Glucose metabolism Nonparametric identification |
| Title | Fast algorithms for nonparametric population modeling of large data sets |
| URI | https://dx.doi.org/10.1016/j.automatica.2008.06.003 |
| Volume | 45 |
| WOSCitedRecordID | wos000262873500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBUh3cPGGPtk7baih70FD1uOLJs9ldCu20MprIO8BVmWOxcvMU1S8kv2e3uvrywnbIOMsRcTbPx5T6R7paNzGHsvMwuFRlIESRbZYAw5c5Dm0gahyosE9dWVJbMJdXGRTqfZ5WDws1sLc1er-TzdbLLmv4Ya9kGwcensX4TbXxR2wG8IOmwh7LDdK_BneonDuNcLKPu_k9zCCGp81Pj-gfZZZtR40y4ywnHE5xpJ4SOkjI6WlgSevD7terVotV11K0-6IUa8H0O4rHD23q5aS6bRJ0Bcva6uK58kWwKcdofXS9s0HlATdOOuTOVWDpmFP7DASZF2_6TW64IYY36Iom8C_aqZnqJErTCqn5L79AdLDW-q4gBSnWS7ZSahyR0EUjMbkf2J67EjsqP5pTOgcYkbpAK5b-S4szj_FPcdoKclfm0zWngwTKNjhWbIB0JByTVkByefT6df-hW3UUo69O5NHEeMmIO_v9-fEp_HjV7C37EkH5Wt5ObqKXviqhJ-Qmh6xgZ2_pw92tKqfMHOEVe8xxUHDPAdXPEeV7zDFV-UvMUVR1xxxNVL9u3s9GpyHjgbjsDE43QVlNLKOC9CkQstc61MCJ312GbSRFZqkZSRibUSJlRGW1OWAtVv81AorHZFGcWv2BAex75mPBFlLMtxERZCjyXUJqaUUqRJpjOji7w4ZKr7RjPjNOrRKqWedWTEm1n_dZ2FKvIy40MW-TMb0mnZ45yPXRhmLt-kPHIGCNrj7OOdyPnbiqi16gyP_unyb9hDmrjE0b63bLi6Xdt37IG5W1XL22OHx3tWDLkP |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+algorithms+for+nonparametric+population+modeling+of+large+data+sets&rft.jtitle=Automatica+%28Oxford%29&rft.au=Pillonetto%2C+Gianluigi&rft.au=De+Nicolao%2C+Giuseppe&rft.au=Chierici%2C+Marco&rft.au=Cobelli%2C+Claudio&rft.date=2009&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=45&rft.issue=1&rft.spage=173&rft.epage=179&rft_id=info:doi/10.1016%2Fj.automatica.2008.06.003&rft.externalDocID=S0005109808003713 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |