Fast algorithms for nonparametric population modeling of large data sets

Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects. In the absence of a reliable mechanistic model, one can resort to the Bayesian nonparametric approach that models the individual curves as G...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 45; číslo 1; s. 173 - 179
Hlavní autoři: Pillonetto, Gianluigi, De Nicolao, Giuseppe, Chierici, Marco, Cobelli, Claudio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 2009
Elsevier
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects. In the absence of a reliable mechanistic model, one can resort to the Bayesian nonparametric approach that models the individual curves as Gaussian processes. This paper develops an efficient computational scheme for estimating the average and individual curves from large data sets collected in standardized experiments, i.e. with a fixed sampling schedule. It is shown that the overall scheme exhibits a “client–server” architecture. The server is in charge of handling and processing the collective data base of past experiments. The clients ask the server for the information needed to reconstruct the individual curve in a single new experiment. This architecture allows the clients to take advantage of the overall data set without violating possible privacy and confidentiality constraints and with negligible computational effort.
AbstractList Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects. In the absence of a reliable mechanistic model, one can resort to the Bayesian nonparametric approach that models the individual curves as Gaussian processes. This paper develops an efficient computational scheme for estimating the average and individual curves from large data sets collected in standardized experiments, i.e. with a fixed sampling schedule. It is shown that the overall scheme exhibits a “client–server” architecture. The server is in charge of handling and processing the collective data base of past experiments. The clients ask the server for the information needed to reconstruct the individual curve in a single new experiment. This architecture allows the clients to take advantage of the overall data set without violating possible privacy and confidentiality constraints and with negligible computational effort.
Author Chierici, Marco
De Nicolao, Giuseppe
Cobelli, Claudio
Pillonetto, Gianluigi
Author_xml – sequence: 1
  givenname: Gianluigi
  surname: Pillonetto
  fullname: Pillonetto, Gianluigi
  email: giapi@dei.unipd.it
  organization: Dipartimento di Ingegneria dell’Informazione, University of Padova, Italy
– sequence: 2
  givenname: Giuseppe
  surname: De Nicolao
  fullname: De Nicolao, Giuseppe
  email: giuseppe.denicolao@unipv.it
  organization: Dipartimento di Informatica e Sistemistica, University of Pavia, Italy
– sequence: 3
  givenname: Marco
  surname: Chierici
  fullname: Chierici, Marco
  email: chierici@fbk.eu
  organization: Predictive Models for Biomedicine and Environment Unit, Fondazione Bruno Kessler, Trento, Italy
– sequence: 4
  givenname: Claudio
  surname: Cobelli
  fullname: Cobelli, Claudio
  email: cobelli@dei.unipd.it
  organization: Dipartimento di Ingegneria dell’Informazione, University of Padova, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21058910$$DView record in Pascal Francis
BookMark eNqNkE1r3DAQhkVIoJuk_0GXHO2OJH9oL4UmNEkhkEt7FrPj0VaLbRlJCfTf1-m2BHJpTsPAvM_LPOfidI4zCyEV1ApU9-lQ41OJE5ZAWGsAW0NXA5gTsVG2N5W2pjsVGwBoKwVb-0Gc53xY10ZZvRH3t5iLxHEfUyg_pyx9THKtWDDhxCUFkktcnsaVH2c5xYHHMO9l9HLEtGc5YEGZueRLceZxzPzx77wQP26_fr-5rx4e777dfHmoyDS2VL7l1uwG0DuN7Q57AkZqeNuS4hZ15xUZ7DVBT8jkvW6MNTvQvVZ9o70yF-LqyF0wE44-4UwhuyWFCdMvpxW0dqtgvft8vKMUc07sHYXy54uSMIxOgXvx5w7u1Z978eegc6u_FWDfAP51vCN6fYzyKuI5cHKZAs_EQ0hMxQ0x_B_yG7G7lNQ
CODEN ATCAA9
CitedBy_id crossref_primary_10_1002_acs_1126
crossref_primary_10_1016_j_cmpb_2012_11_001
crossref_primary_10_1109_TPAMI_2008_297
crossref_primary_10_1002_rnc_1465
crossref_primary_10_1016_j_automatica_2010_11_004
crossref_primary_10_1109_TCSVT_2011_2129430
crossref_primary_10_1016_j_neucom_2015_10_073
crossref_primary_10_1109_TNN_2010_2095882
Cites_doi 10.3109/03602538409015063
10.1109/TBME.2007.902240
10.1016/j.automatica.2006.12.024
10.1023/A:1020206907668
10.1007/BF02353463
10.1152/ajpendo.2001.280.1.E179
10.2337/db05-1692
10.1023/A:1025769431364
10.1109/TMI.2004.824243
10.1023/A:1022920403166
ContentType Journal Article
Copyright 2008 Elsevier Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.automatica.2008.06.003
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2836
EndPage 179
ExternalDocumentID 21058910
10_1016_j_automatica_2008_06_003
S0005109808003713
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c348t-f5e53bd02b2a5ba7c0eac4e95c1e5a26f1c3a72c07caecff24383b02721742f13
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262873500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Mon Jul 21 09:17:00 EDT 2025
Sat Nov 29 01:49:00 EST 2025
Tue Nov 18 22:44:32 EST 2025
Fri Feb 23 02:14:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Glucose metabolism
Bayesian estimation
Nonparametric identification
Gaussian processes
Estimation theory
Bayes estimation
Data analysis
Non parametric estimation
Data processing
Client server architecture
Metabolism
Modeling
Gaussian process
System identification
Fast algorithm
Sampling
Biomedical engineering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-f5e53bd02b2a5ba7c0eac4e95c1e5a26f1c3a72c07caecff24383b02721742f13
PageCount 7
ParticipantIDs pascalfrancis_primary_21058910
crossref_citationtrail_10_1016_j_automatica_2008_06_003
crossref_primary_10_1016_j_automatica_2008_06_003
elsevier_sciencedirect_doi_10_1016_j_automatica_2008_06_003
PublicationCentury 2000
PublicationDate 2009
2009-01-00
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Automatica (Oxford)
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ibragimov, Khasminskii (b12) 1981
Magni, Bellazzi, De Nicolao, Poggesi, Rocchetti (b15) 2002; 29
pp. 53–55
Vicini, Caumo, Cobelli (b22) 1997; 273
Anderson, Moore (b1) 1979
Wahba (b25) 1990
Jacquez (b13) 1985
Rasmussen, Williams (b19) 2006
Bergman, Bowden, Cobelli (b5) 1981
Neve, De Nicolao, Marchesi (b16) 2007; 43
Lunn, Best, Thomas, Wakefield, Spiegelhalter (b14) 2002; 29
Beal, S., & Sheiner, L. (1992).
Sheiner (b20) 1994; 15
Ferrazzi, F., Magni, P., & Bellazzi, R. (2003). Bayesian clustering of gene expression time series. In
Evgeniou, Micchelli, Pontil (b8) 2005; 6
NONMEM Project Group, University of California, San Francisco
Shiryaev (b21) 1996
Park, Verotta, Blaschke, Sheiner (b18) 1997; 25
Basu, Dalla Man, Campioni, Basu, Klee, Jenkins (b2) 2006; 55
Beal, Sheiner (b3) 1982; 8
Davidian, Giltinan (b7) 1995
Fattinger, Verotta (b9) 1995; 23
Gilks, Richardson, Spiegelhalter (b11) 1996
Neve, De Nicolao, Marchesi (b17) 2008; 55
Vicini, Cobelli (b23) 2001; 280
Vicini, Zachwieja, Yarasheski, Bier, Caumo, Cobelli (b24) 1999; 276
Bertoldo, Sparacino, Cobelli (b6) 2004; 23
Vicini (10.1016/j.automatica.2008.06.003_b23) 2001; 280
10.1016/j.automatica.2008.06.003_b10
Ibragimov (10.1016/j.automatica.2008.06.003_b12) 1981
10.1016/j.automatica.2008.06.003_b4
Neve (10.1016/j.automatica.2008.06.003_b16) 2007; 43
Park (10.1016/j.automatica.2008.06.003_b18) 1997; 25
Bertoldo (10.1016/j.automatica.2008.06.003_b6) 2004; 23
Sheiner (10.1016/j.automatica.2008.06.003_b20) 1994; 15
Wahba (10.1016/j.automatica.2008.06.003_b25) 1990
Vicini (10.1016/j.automatica.2008.06.003_b24) 1999; 276
Anderson (10.1016/j.automatica.2008.06.003_b1) 1979
Fattinger (10.1016/j.automatica.2008.06.003_b9) 1995; 23
Gilks (10.1016/j.automatica.2008.06.003_b11) 1996
Basu (10.1016/j.automatica.2008.06.003_b2) 2006; 55
Magni (10.1016/j.automatica.2008.06.003_b15) 2002; 29
Neve (10.1016/j.automatica.2008.06.003_b17) 2008; 55
Davidian (10.1016/j.automatica.2008.06.003_b7) 1995
Jacquez (10.1016/j.automatica.2008.06.003_b13) 1985
Lunn (10.1016/j.automatica.2008.06.003_b14) 2002; 29
Vicini (10.1016/j.automatica.2008.06.003_b22) 1997; 273
Evgeniou (10.1016/j.automatica.2008.06.003_b8) 2005; 6
Rasmussen (10.1016/j.automatica.2008.06.003_b19) 2006
Bergman (10.1016/j.automatica.2008.06.003_b5) 1981
Beal (10.1016/j.automatica.2008.06.003_b3) 1982; 8
Shiryaev (10.1016/j.automatica.2008.06.003_b21) 1996
References_xml – volume: 6
  start-page: 615
  year: 2005
  end-page: 637
  ident: b8
  article-title: Learning multiple tasks with kernel methods
  publication-title: Journal of Machine Learning Research
– year: 1979
  ident: b1
  article-title: Optimal filtering
– volume: 280
  start-page: 179
  year: 2001
  end-page: 186
  ident: b23
  article-title: The iterative two-stage population approach to
  publication-title: American Journal of Physiology Endocrinology and Metabolism
– volume: 273
  start-page: 1024
  year: 1997
  end-page: 1032
  ident: b22
  article-title: The hot IVGTT two-compartment minimal model: Indexes of glucose effectiveness and insulin sensitivity
  publication-title: American Journal of Physiology
– year: 1996
  ident: b11
  article-title: Markov chain Monte Carlo in practice
– year: 1985
  ident: b13
  article-title: Compartmental analysis in biology and medicine
– volume: 25
  start-page: 615
  year: 1997
  end-page: 642
  ident: b18
  article-title: A semiparametric method for describing noisy population pharmacokinetic data
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
– volume: 29
  start-page: 271
  year: 2002
  end-page: 307
  ident: b14
  article-title: Bayesian analysis of population
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– reference: . NONMEM Project Group, University of California, San Francisco
– volume: 276
  start-page: 285
  year: 1999
  end-page: 294
  ident: b24
  article-title: Glucose production during an IVGTT by deconvolution: Validation with the tracer-to-tracee clamp technique
  publication-title: American Journal of Physiology
– volume: 15
  start-page: 153
  year: 1994
  end-page: 171
  ident: b20
  article-title: The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods
  publication-title: Drug Metabolism Reviews
– year: 1981
  ident: b12
  article-title: Statistical estimation: Asymptotic theory
– volume: 23
  start-page: 581
  year: 1995
  end-page: 610
  ident: b9
  article-title: A nonparametric subject-specific population method for deconvolution: I.
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
– reference: (pp. 53–55)
– reference: Beal, S., & Sheiner, L. (1992).
– year: 1996
  ident: b21
  article-title: Probability
– volume: 29
  start-page: 445
  year: 2002
  end-page: 471
  ident: b15
  article-title: Nonparametric
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– reference: Ferrazzi, F., Magni, P., & Bellazzi, R. (2003). Bayesian clustering of gene expression time series. In
– year: 1995
  ident: b7
  article-title: Nonlinear models for repeated measurement data
– year: 1990
  ident: b25
  article-title: Spline models for observational data
– volume: 55
  start-page: 2001
  year: 2006
  end-page: 2014
  ident: b2
  article-title: Effect of age and sex on postprandial glucose metabolism: Difference in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction
  publication-title: Diabetes
– volume: 23
  start-page: 297
  year: 2004
  end-page: 306
  ident: b6
  article-title:
  publication-title: IEEE Transactions on Medical Imaging
– volume: 43
  start-page: 1134
  year: 2007
  end-page: 1144
  ident: b16
  article-title: Nonparametric identification of population models via
  publication-title: Automatica
– year: 2006
  ident: b19
  article-title: Gaussian processes for machine learning
– volume: 55
  start-page: 41
  year: 2008
  end-page: 50
  ident: b17
  article-title: Nonparametric identification of population models: An MCMC approach
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 8
  start-page: 195
  year: 1982
  end-page: 222
  ident: b3
  article-title: Estimating population kinetics
  publication-title: Critical Reviews in Biomedical Engineering
– year: 1981
  ident: b5
  article-title: The minimal model approach to quantification of factors controlling glucose disposal in man
  publication-title: Carbohydrate metabolism
– volume: 15
  start-page: 153
  year: 1994
  ident: 10.1016/j.automatica.2008.06.003_b20
  article-title: The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods
  publication-title: Drug Metabolism Reviews
  doi: 10.3109/03602538409015063
– ident: 10.1016/j.automatica.2008.06.003_b4
– year: 1996
  ident: 10.1016/j.automatica.2008.06.003_b21
– year: 1995
  ident: 10.1016/j.automatica.2008.06.003_b7
– volume: 6
  start-page: 615
  year: 2005
  ident: 10.1016/j.automatica.2008.06.003_b8
  article-title: Learning multiple tasks with kernel methods
  publication-title: Journal of Machine Learning Research
– volume: 8
  start-page: 195
  issue: 3
  year: 1982
  ident: 10.1016/j.automatica.2008.06.003_b3
  article-title: Estimating population kinetics
  publication-title: Critical Reviews in Biomedical Engineering
– volume: 55
  start-page: 41
  year: 2008
  ident: 10.1016/j.automatica.2008.06.003_b17
  article-title: Nonparametric identification of population models: An MCMC approach
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2007.902240
– ident: 10.1016/j.automatica.2008.06.003_b10
– year: 1985
  ident: 10.1016/j.automatica.2008.06.003_b13
– volume: 43
  start-page: 1134
  year: 2007
  ident: 10.1016/j.automatica.2008.06.003_b16
  article-title: Nonparametric identification of population models via Gaussian processes
  publication-title: Automatica
  doi: 10.1016/j.automatica.2006.12.024
– volume: 29
  start-page: 271
  issue: 3
  year: 2002
  ident: 10.1016/j.automatica.2008.06.003_b14
  article-title: Bayesian analysis of population PK/PD models: General concepts and software
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
  doi: 10.1023/A:1020206907668
– year: 1981
  ident: 10.1016/j.automatica.2008.06.003_b12
– year: 1996
  ident: 10.1016/j.automatica.2008.06.003_b11
– volume: 23
  start-page: 581
  year: 1995
  ident: 10.1016/j.automatica.2008.06.003_b9
  article-title: A nonparametric subject-specific population method for deconvolution: I. Description, internal validation, and real data examples
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
  doi: 10.1007/BF02353463
– volume: 280
  start-page: 179
  issue: 1
  year: 2001
  ident: 10.1016/j.automatica.2008.06.003_b23
  article-title: The iterative two-stage population approach to IVGTT minimal modeling: Improved precision with reduced sampling
  publication-title: American Journal of Physiology Endocrinology and Metabolism
  doi: 10.1152/ajpendo.2001.280.1.E179
– year: 1990
  ident: 10.1016/j.automatica.2008.06.003_b25
– volume: 55
  start-page: 2001
  year: 2006
  ident: 10.1016/j.automatica.2008.06.003_b2
  article-title: Effect of age and sex on postprandial glucose metabolism: Difference in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction
  publication-title: Diabetes
  doi: 10.2337/db05-1692
– volume: 273
  start-page: 1024
  year: 1997
  ident: 10.1016/j.automatica.2008.06.003_b22
  article-title: The hot IVGTT two-compartment minimal model: Indexes of glucose effectiveness and insulin sensitivity
  publication-title: American Journal of Physiology
– year: 1981
  ident: 10.1016/j.automatica.2008.06.003_b5
  article-title: The minimal model approach to quantification of factors controlling glucose disposal in man
– volume: 25
  start-page: 615
  year: 1997
  ident: 10.1016/j.automatica.2008.06.003_b18
  article-title: A semiparametric method for describing noisy population pharmacokinetic data
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
  doi: 10.1023/A:1025769431364
– year: 1979
  ident: 10.1016/j.automatica.2008.06.003_b1
– volume: 23
  start-page: 297
  issue: 3
  year: 2004
  ident: 10.1016/j.automatica.2008.06.003_b6
  article-title: “Population” approach improves parameter estimation of kinetic models from dynamic PET data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2004.824243
– year: 2006
  ident: 10.1016/j.automatica.2008.06.003_b19
– volume: 29
  start-page: 445
  issue: 5–6
  year: 2002
  ident: 10.1016/j.automatica.2008.06.003_b15
  article-title: Nonparametric AUC estimation in population studies with incomplete sampling: A Bayesian approach
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
  doi: 10.1023/A:1022920403166
– volume: 276
  start-page: 285
  year: 1999
  ident: 10.1016/j.automatica.2008.06.003_b24
  article-title: Glucose production during an IVGTT by deconvolution: Validation with the tracer-to-tracee clamp technique
  publication-title: American Journal of Physiology
SSID ssj0004182
Score 1.9849063
Snippet Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a population of subjects....
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 173
SubjectTerms Applied sciences
Bayesian estimation
Computer science; control theory; systems
Control theory. Systems
Estimation theory
Exact sciences and technology
Gaussian processes
Glucose metabolism
Nonparametric identification
Title Fast algorithms for nonparametric population modeling of large data sets
URI https://dx.doi.org/10.1016/j.automatica.2008.06.003
Volume 45
WOSCitedRecordID wos000262873500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBUh3cPGGPtk7baih70FD1uOLJs9ldCu20MprIO8BVmWOxcvMU1S8kv2e3uvrywnbIOMsRcTbPx5T6R7paNzGHsvMwuFRlIESRbZYAw5c5Dm0gahyosE9dWVJbMJdXGRTqfZ5WDws1sLc1er-TzdbLLmv4Ya9kGwcensX4TbXxR2wG8IOmwh7LDdK_BneonDuNcLKPu_k9zCCGp81Pj-gfZZZtR40y4ywnHE5xpJ4SOkjI6WlgSevD7terVotV11K0-6IUa8H0O4rHD23q5aS6bRJ0Bcva6uK58kWwKcdofXS9s0HlATdOOuTOVWDpmFP7DASZF2_6TW64IYY36Iom8C_aqZnqJErTCqn5L79AdLDW-q4gBSnWS7ZSahyR0EUjMbkf2J67EjsqP5pTOgcYkbpAK5b-S4szj_FPcdoKclfm0zWngwTKNjhWbIB0JByTVkByefT6df-hW3UUo69O5NHEeMmIO_v9-fEp_HjV7C37EkH5Wt5ObqKXviqhJ-Qmh6xgZ2_pw92tKqfMHOEVe8xxUHDPAdXPEeV7zDFV-UvMUVR1xxxNVL9u3s9GpyHjgbjsDE43QVlNLKOC9CkQstc61MCJ312GbSRFZqkZSRibUSJlRGW1OWAtVv81AorHZFGcWv2BAex75mPBFlLMtxERZCjyXUJqaUUqRJpjOji7w4ZKr7RjPjNOrRKqWedWTEm1n_dZ2FKvIy40MW-TMb0mnZ45yPXRhmLt-kPHIGCNrj7OOdyPnbiqi16gyP_unyb9hDmrjE0b63bLi6Xdt37IG5W1XL22OHx3tWDLkP
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+algorithms+for+nonparametric+population+modeling+of+large+data+sets&rft.jtitle=Automatica+%28Oxford%29&rft.au=Pillonetto%2C+Gianluigi&rft.au=De+Nicolao%2C+Giuseppe&rft.au=Chierici%2C+Marco&rft.au=Cobelli%2C+Claudio&rft.date=2009&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=45&rft.issue=1&rft.spage=173&rft.epage=179&rft_id=info:doi/10.1016%2Fj.automatica.2008.06.003&rft.externalDocID=S0005109808003713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon