RGBT Tracking via Challenge-Based Appearance Disentanglement and Interaction

RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 33; s. 1753 - 1767
Hlavní autori: Liu, Lei, Li, Chenglong, Xiao, Yun, Ruan, Rui, Fan, Minghao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.
AbstractList RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.
RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.
Author Ruan, Rui
Xiao, Yun
Liu, Lei
Fan, Minghao
Li, Chenglong
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0003-2749-5528
  surname: Liu
  fullname: Liu, Lei
  email: liulei970507@163.com
  organization: Information Materials and Intelligent Sensing Laboratory of Anhui Province, the Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, and Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 2
  givenname: Chenglong
  orcidid: 0000-0002-7233-2739
  surname: Li
  fullname: Li, Chenglong
  email: lcl1314@foxmail.com
  organization: Information Materials and Intelligent Sensing Laboratory of Anhui Province and Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, School of Artificial Intelligence, Anhui University, Hefei, China
– sequence: 3
  givenname: Yun
  orcidid: 0000-0002-5285-8565
  surname: Xiao
  fullname: Xiao, Yun
  email: xiaoyun@ahu.edu.cn
  organization: Information Materials and Intelligent Sensing Laboratory of Anhui Province and Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, School of Artificial Intelligence, Anhui University, Hefei, China
– sequence: 4
  givenname: Rui
  orcidid: 0000-0001-6822-9256
  surname: Ruan
  fullname: Ruan, Rui
  email: ruanrui@ahu.edu.cn
  organization: School of Internet, Anhui University, Hefei, China
– sequence: 5
  givenname: Minghao
  surname: Fan
  fullname: Fan, Minghao
  email: mhfansfp@163.com
  organization: Anhui Province Key Laboratory of Electric Fire and Safety Protection, State Grid Anhui Electric Power Research Institute, Hefei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38442061$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9P2zAUgC0EGj-2O4cJReLCJZ0d24l9hA5YpUpDqDtHL_ZzMUudYqeT9t_jqh2aOHDyO3yfbb3vlByGISAh54xOGKP622L2MKloJSacN4xLeUBOmBaspFRUh3mmsikbJvQxOU3pmVImJKs_kWOuhKhozU7I_PH-ZlEsIpjfPiyLPx6K6RP0PYYlljeQ0BbX6zVChGCw-O4ThhHCssdVHgoItpiFEbM--iF8JkcO-oRf9ucZ-XV3u5j-KOc_72fT63lpuFBj6SQw1ymlrcCmFp2zsu4ct04b2mmjkYKRAKzT1KJrbGNRVZ2jnQCspRL8jFzt7l3H4WWDaWxXPhnsewg4bFJbaa4qxaXgGb18hz4Pmxjy7zIlFJUVF3WmLvbUpluhbdfRryD-bf_tKQN0B5g4pBTRvSGMttsUbU7RblO0-xRZqd8pxo-wXdMYwfcfiV93okfE_94Rda5K-Sv-85UU
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TPAMI_2024_3475472
crossref_primary_10_1109_JSEN_2024_3506929
crossref_primary_10_1016_j_neucom_2025_130240
crossref_primary_10_1016_j_optcom_2024_131394
crossref_primary_10_1109_TIP_2025_3562077
crossref_primary_10_1109_JSTARS_2024_3518460
crossref_primary_10_1007_s11760_025_04672_w
crossref_primary_10_1109_TIP_2025_3586467
crossref_primary_10_1109_JSEN_2025_3575188
crossref_primary_10_1109_TIP_2024_3428316
crossref_primary_10_1016_j_knosys_2025_112983
crossref_primary_10_1016_j_patcog_2025_112295
crossref_primary_10_1016_j_eswa_2025_129155
crossref_primary_10_1109_LSP_2025_3569477
crossref_primary_10_1016_j_neucom_2025_130758
crossref_primary_10_1109_TCSVT_2025_3557992
crossref_primary_10_1016_j_inffus_2025_102941
crossref_primary_10_3390_electronics13132517
crossref_primary_10_1038_s41598_025_92957_y
crossref_primary_10_1109_TPAMI_2025_3555485
crossref_primary_10_1016_j_inffus_2024_102842
crossref_primary_10_1109_JSEN_2025_3579339
crossref_primary_10_1016_j_eswa_2025_129381
crossref_primary_10_1109_LSP_2025_3563123
crossref_primary_10_1007_s11760_025_04779_0
crossref_primary_10_1007_s11227_024_06443_9
crossref_primary_10_1016_j_patcog_2025_112162
Cites_doi 10.1007/978-3-030-01246-5_19
10.1007/978-3-030-01237-3_32
10.1109/ICME52920.2022.9860018
10.1609/aaai.v36i3.20187
10.1109/TIP.2021.3060862
10.1007/978-3-319-10602-1_48
10.1109/CVPR52729.2023.01310
10.1109/CVPRW.2019.00252
10.1609/aaai.v32i1.11671
10.1109/CVPR.2017.306
10.1109/CVPR52729.2023.00523
10.5244/C.28.6
10.1109/TIV.2020.2980735
10.1109/TMM.2023.3310295
10.1109/ICCVW.2019.00278
10.1016/j.infrared.2023.104819
10.1109/TIP.2021.3087341
10.1016/j.patcog.2019.106977
10.1109/CVPR52729.2023.00918
10.1109/JSEN.2023.3244834
10.1007/978-3-030-58542-6_14
10.1007/978-3-030-01225-0_6
10.1145/3581783.3612341
10.1109/TIP.2021.3125504
10.1109/ICCV.2015.352
10.1109/CVPR52688.2022.00868
10.1109/CVPR.2009.5206848
10.48550/arXiv.1511.07122
10.1016/j.jvcir.2021.103300
10.1109/TIP.2016.2614135
10.1109/TPAMI.2019.2957464
10.U09/CVPR.2019.00552
10.1109/TNNLS.2022.3157594
10.1109/TMM.2022.3174341
10.48550/ARXIV.1807.06521
10.1109/TIP.2021.3130533
10.1145/3343031.3350928
10.1109/CVPR.2018.00892
10.1109/TIP.2021.3132827
10.1109/TITS.2022.3229830
10.1145/3123266.3123289
10.1109/CVPR42600.2020.00709
10.1145/3503161.3547851
10.1109/ICCV.2017.322
10.1109/CVPR.2018.00070
10.1007/s11263-021-01495-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2024.3371355
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1767
ExternalDocumentID 38442061
10_1109_TIP_2024_3371355
10460420
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62376004; 62076003
  funderid: 10.13039/501100001809
– fundername: Science and Technology Project of State Grid Corporation of China
  grantid: 52120524000A
  funderid: 10.13039/501100010880
– fundername: Natural Science Foundation of Anhui Province
  grantid: 2208085J18
  funderid: 10.13039/501100003995
– fundername: Natural Science Foundation of Anhui Higher Education Institution
  grantid: 2022AH040014
– fundername: Anhui Provincial Colleges Science Foundation for Distinguished Young Scholars
  grantid: 2022AH020093
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181446500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 11:34:49 EDT 2025
Mon Jun 30 08:34:39 EDT 2025
Mon Jul 21 06:05:20 EDT 2025
Tue Nov 18 22:35:35 EST 2025
Sat Nov 29 03:34:43 EST 2025
Wed Aug 27 02:12:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2749-5528
0000-0001-6822-9256
0000-0002-5285-8565
0000-0002-7233-2739
PMID 38442061
PQID 2948052346
PQPubID 85429
PageCount 15
ParticipantIDs pubmed_primary_38442061
ieee_primary_10460420
crossref_citationtrail_10_1109_TIP_2024_3371355
proquest_journals_2948052346
crossref_primary_10_1109_TIP_2024_3371355
proquest_miscellaneous_2938283543
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Zintgraf (ref26)
ref24
ref46
ref23
ref45
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Requeima (ref27) 2019
References_xml – ident: ref48
  doi: 10.1007/978-3-030-01246-5_19
– ident: ref22
  doi: 10.1007/978-3-030-01237-3_32
– ident: ref40
  doi: 10.1109/ICME52920.2022.9860018
– ident: ref3
  doi: 10.1609/aaai.v36i3.20187
– ident: ref34
  doi: 10.1109/TIP.2021.3060862
– ident: ref47
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref13
  doi: 10.1109/CVPR52729.2023.01310
– ident: ref23
  doi: 10.1109/CVPRW.2019.00252
– ident: ref25
  doi: 10.1609/aaai.v32i1.11671
– ident: ref20
  doi: 10.1109/CVPR.2017.306
– ident: ref43
  doi: 10.1109/CVPR52729.2023.00523
– ident: ref15
  doi: 10.5244/C.28.6
– ident: ref32
  doi: 10.1109/TIV.2020.2980735
– ident: ref39
  doi: 10.1109/TMM.2023.3310295
– ident: ref8
  doi: 10.1109/ICCVW.2019.00278
– ident: ref44
  doi: 10.1016/j.infrared.2023.104819
– ident: ref35
  doi: 10.1109/TIP.2021.3087341
– ident: ref7
  doi: 10.1016/j.patcog.2019.106977
– ident: ref12
  doi: 10.1109/CVPR52729.2023.00918
– ident: ref42
  doi: 10.1109/JSEN.2023.3244834
– ident: ref1
  doi: 10.1007/978-3-030-58542-6_14
– ident: ref17
  doi: 10.1007/978-3-030-01225-0_6
– ident: ref11
  doi: 10.1145/3581783.3612341
– ident: ref33
  doi: 10.1109/TIP.2021.3125504
– ident: ref18
  doi: 10.1109/ICCV.2015.352
– ident: ref9
  doi: 10.1109/CVPR52688.2022.00868
– ident: ref30
  doi: 10.1109/CVPR.2009.5206848
– ident: ref16
  doi: 10.48550/arXiv.1511.07122
– ident: ref24
  doi: 10.1016/j.jvcir.2021.103300
– ident: ref5
  doi: 10.1109/TIP.2016.2614135
– ident: ref46
  doi: 10.1109/TPAMI.2019.2957464
– ident: ref45
  doi: 10.U09/CVPR.2019.00552
– ident: ref36
  doi: 10.1109/TNNLS.2022.3157594
– ident: ref37
  doi: 10.1109/TMM.2022.3174341
– ident: ref21
  doi: 10.48550/ARXIV.1807.06521
– ident: ref4
  doi: 10.1109/TIP.2021.3130533
– ident: ref10
  doi: 10.1145/3343031.3350928
– ident: ref28
  doi: 10.1109/CVPR.2018.00892
– ident: ref19
  doi: 10.1109/TIP.2021.3132827
– year: 2019
  ident: ref27
  article-title: Fast and flexible multi-task classification using conditional neural adaptive processes
  publication-title: arXiv:1906.07697
– start-page: 7693
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref26
  article-title: Fast context adaptation via meta-learning
– ident: ref38
  doi: 10.1109/TITS.2022.3229830
– ident: ref6
  doi: 10.1145/3123266.3123289
– ident: ref31
  doi: 10.1109/CVPR42600.2020.00709
– ident: ref41
  doi: 10.1145/3503161.3547851
– ident: ref14
  doi: 10.1109/ICCV.2017.322
– ident: ref29
  doi: 10.1109/CVPR.2018.00070
– ident: ref2
  doi: 10.1007/s11263-021-01495-3
SSID ssj0014516
Score 2.6244714
Snippet RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1753
SubjectTerms Adaptation models
aggregation interaction
challenge-based appearance disentanglement
Data models
Feature extraction
guidance interaction
Lighting
Mathematical models
Modules
Parameters
Representations
RGBT tracking
Target tracking
Tracking
Training
Training data
training data generation
Title RGBT Tracking via Challenge-Based Appearance Disentanglement and Interaction
URI https://ieeexplore.ieee.org/document/10460420
https://www.ncbi.nlm.nih.gov/pubmed/38442061
https://www.proquest.com/docview/2948052346
https://www.proquest.com/docview/2938283543
Volume 33
WOSCitedRecordID wos001181446500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB4a00N7aNIkTd04QYVeclC8a2n1OObZFkIIxS2-LXoWQ1mH2M7vr0a7a9JDCrktrKQVmpmdl2Y-gC-RWyFdiDRpI095VTKqTeRUGWFL7plhuR3Drxt5e6tmM33XFavnWpgQQr58Fk7xMefy_cKtMVQ2xnxkYrLkoW9JKdpirU3KABFnc2qzklQmu7_PSRZ6PP1-lzzBCT9lDBHpEK2GKZ4WEuU_6ijjqzxvamaVc739ws3uwLvOtiRnLTO8h1eh2YXtzs4knRQvd-HtkyaEe3Dz4-v5lCSd5TBqTh7nhlz0CCv0PCk5T9ISSSCQP8jlPFcrNb_ba-fENJ7kqGJbILEPP6-vphffaIexQB3jakVjZcpoldKeBym4jb4SNjIftSusdjoUxlXGlFYXPkTppQ9qYmNhuQlovLAPMGgWTfgIhAsRolaRR8V4Ur3aeOlKlzwSgb8JNoRxf9S16xqQIw7Gnzo7IoWuE51qpFPd0WkIJ5sZ923zjf-M3UcaPBnXHv8QRj056048l_VEc4RyYFwM4fPmdRIszJaYJizWOIYpbEbH08YPWjbYLN5zz6dnPnoIb3BvbahmBIPVwzocwWv3uJovH44T987Ucebev7cy6G0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9NMGnsgY6v0a0bnrQXHkyT2nHsx8HGQOsqNBXEW-TPqdKUItry98_nJBV7YBJPiRTHsXx3uS_f_QA-B25EaX2gURs5youcUaUDp1ILk3PHNEvtGG7G5WQib2_VVVusnmphvPfp8Jk_wduUy3dzu8JQ2RDzkZHJooe-WfB4bcq11kkDxJxNyc2ipGW0_LusZKaG08ur6AuO-AljiEmHeDVM4hQi_0chJYSVp43NpHTOe89c7hvYbq1L8qVhhx144etd6LWWJmnleLELrx-1IdyD8a_vp1MStZbFuDl5mGly1mGs0NOo5hyJU0SRQA4hX2epXqn-3Rw8J7p2JMUVmxKJfbg-_zY9u6AtygK1jMslDYXOg5FSOe5LwU1whTCBuaBsZpRVPtO20Do3KnM-lK50Xo5MyAzXHs0XdgAb9bz2h0C4ED4oGXiQjEflq7QrbW6jTyLwR8H6MOy2urJtC3JEwvhTJVckU1WkU4V0qlo69eF4_cZd037jP2P3kQaPxjXb34dBR86qFdBFNVIcwRwYF334tH4cRQvzJbr28xWOYRLb0fG48LcNG6wn77jn3RMfPYJXF9Of42p8OfnxHrZwnU3gZgAby_uV_wAv7cNytrj_mHj4L3qM6sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RGBT+Tracking+via+Challenge-Based+Appearance+Disentanglement+and+Interaction&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Liu%2C+Lei&rft.au=Li%2C+Chenglong&rft.au=Xiao%2C+Yun&rft.au=Ruan%2C+Rui&rft.date=2024&rft.eissn=1941-0042&rft.volume=33&rft.spage=1753&rft_id=info:doi/10.1109%2FTIP.2024.3371355&rft_id=info%3Apmid%2F38442061&rft.externalDocID=38442061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon