Contraction Bidimensionality of Geometric Intersection Graphs

Given a graph G , we define bcg ( G ) as the minimum k for which G can be contracted to the uniformly triangulated grid Γ k . A graph class G has the SQG C property if every graph G ∈ G has treewidth O ( bcg ( G ) c ) for some 1 ≤ c < 2 . The SQG C property is important for algorithm design as it...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 84; číslo 2; s. 510 - 531
Hlavní autoři: Baste, Julien, Thilikos, Dimitrios M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2022
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given a graph G , we define bcg ( G ) as the minimum k for which G can be contracted to the uniformly triangulated grid Γ k . A graph class G has the SQG C property if every graph G ∈ G has treewidth O ( bcg ( G ) c ) for some 1 ≤ c < 2 . The SQG C property is important for algorithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the framework of bidimensionality theory, related to fast parameterized algorithms, kernelization, and approximation schemes. These results apply to a wide family of problems, namely problems that are contraction-bidimensional . Our main combinatorial result reveals a wide family of graph classes that satisfy the SQG C property. This family includes, in particular, bounded-degree string graphs. This considerably extends the applicability of bidimensionality theory for contraction bidimensional problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-021-00912-w