Contraction Bidimensionality of Geometric Intersection Graphs
Given a graph G , we define bcg ( G ) as the minimum k for which G can be contracted to the uniformly triangulated grid Γ k . A graph class G has the SQG C property if every graph G ∈ G has treewidth O ( bcg ( G ) c ) for some 1 ≤ c < 2 . The SQG C property is important for algorithm design as it...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 84; číslo 2; s. 510 - 531 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.02.2022
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given a graph
G
, we define
bcg
(
G
)
as the minimum
k
for which
G
can be contracted to the uniformly triangulated grid
Γ
k
. A graph class
G
has the SQG
C
property if every graph
G
∈
G
has treewidth
O
(
bcg
(
G
)
c
)
for some
1
≤
c
<
2
. The SQG
C
property is important for algorithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the framework of bidimensionality theory, related to fast parameterized algorithms, kernelization, and approximation schemes. These results apply to a wide family of problems, namely problems that are
contraction-bidimensional
. Our main combinatorial result reveals a wide family of graph classes that satisfy the SQG
C
property. This family includes, in particular, bounded-degree string graphs. This considerably extends the applicability of bidimensionality theory for contraction bidimensional problems. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-4617 1432-0541 |
| DOI: | 10.1007/s00453-021-00912-w |