Contraction Bidimensionality of Geometric Intersection Graphs

Given a graph G , we define bcg ( G ) as the minimum k for which G can be contracted to the uniformly triangulated grid Γ k . A graph class G has the SQG C property if every graph G ∈ G has treewidth O ( bcg ( G ) c ) for some 1 ≤ c < 2 . The SQG C property is important for algorithm design as it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 84; H. 2; S. 510 - 531
Hauptverfasser: Baste, Julien, Thilikos, Dimitrios M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2022
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a graph G , we define bcg ( G ) as the minimum k for which G can be contracted to the uniformly triangulated grid Γ k . A graph class G has the SQG C property if every graph G ∈ G has treewidth O ( bcg ( G ) c ) for some 1 ≤ c < 2 . The SQG C property is important for algorithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the framework of bidimensionality theory, related to fast parameterized algorithms, kernelization, and approximation schemes. These results apply to a wide family of problems, namely problems that are contraction-bidimensional . Our main combinatorial result reveals a wide family of graph classes that satisfy the SQG C property. This family includes, in particular, bounded-degree string graphs. This considerably extends the applicability of bidimensionality theory for contraction bidimensional problems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-021-00912-w