A framework to create, evaluate and select synthetic datasets for survival prediction in oncology

Data-driven decision-making in radiation oncology (RO) relies on integrating real-world data effectively. Synthetic data (SD), generated through machine learning, offers a solution by mimicking real-world data without compromising privacy. This paper presents a general framework for generating, eval...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine Vol. 192; no. Pt A; p. 110198
Main Authors: Christoforou, A.T., Spohn, S.K.B., Sprave, T., Fechter, T., Rühle, A., Nicolay, N.H., Popp, I., Grosu, A.L., Peeken, J.C., Thieme, A.H., Stylianopoulos, T., Strouthos, I., Ferentinos, K., Roussakis, Y., Zamboglou, C.
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.06.2025
Subjects:
ISSN:0010-4825, 1879-0534, 1879-0534
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first