A framework to create, evaluate and select synthetic datasets for survival prediction in oncology
Data-driven decision-making in radiation oncology (RO) relies on integrating real-world data effectively. Synthetic data (SD), generated through machine learning, offers a solution by mimicking real-world data without compromising privacy. This paper presents a general framework for generating, eval...
Uloženo v:
| Vydáno v: | Computers in biology and medicine Ročník 192; číslo Pt A; s. 110198 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.06.2025
|
| Témata: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!