A dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution

Many multi-objective optimization problems in the real world are dynamic, with objectives that conflict and change over time. These problems put higher demands on the algorithm’s convergence performance and the ability to respond to environmental changes. Confronting these two points, this paper pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Swarm and evolutionary computation Ročník 69; s. 100987
Hlavní autoři: Zheng, Jinhua, Zhang, Zeyu, Zou, Juan, Yang, Shengxiang, Ou, Junwei, Hu, Yaru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2022
Témata:
ISSN:2210-6502
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many multi-objective optimization problems in the real world are dynamic, with objectives that conflict and change over time. These problems put higher demands on the algorithm’s convergence performance and the ability to respond to environmental changes. Confronting these two points, this paper proposes a dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution (ADNEPSO). To overcome the instability of the traditional decomposition method for the changing Pareto optimal front (POF) shape, the proposed algorithm utilizes the complementary characteristics in the search area of the adversarial vector, and the two populations are alternately updated and co-evolved by adversarial search directions. Additionally, a novel particle update strategy is proposed to select promising neighborhood information to guide evolution and enhance diversity. To improve the ability to cope with environmental changes, an effective dynamic response mechanism is proposed, including three parts: archive set prediction, exploration of global optimal information, and retention of excellent particles to accelerate convergence to the Pareto optimal set (POS) in the new environment. The proposed algorithm is tested on a series of benchmark problems and compared to several state-of-the-art algorithms. The results show that ADNEPSO performed excellently in both convergence and diversity, and is highly competitive in dealing with dynamic problems.
AbstractList Many multi-objective optimization problems in the real world are dynamic, with objectives that conflict and change over time. These problems put higher demands on the algorithm’s convergence performance and the ability to respond to environmental changes. Confronting these two points, this paper proposes a dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution (ADNEPSO). To overcome the instability of the traditional decomposition method for the changing Pareto optimal front (POF) shape, the proposed algorithm utilizes the complementary characteristics in the search area of the adversarial vector, and the two populations are alternately updated and co-evolved by adversarial search directions. Additionally, a novel particle update strategy is proposed to select promising neighborhood information to guide evolution and enhance diversity. To improve the ability to cope with environmental changes, an effective dynamic response mechanism is proposed, including three parts: archive set prediction, exploration of global optimal information, and retention of excellent particles to accelerate convergence to the Pareto optimal set (POS) in the new environment. The proposed algorithm is tested on a series of benchmark problems and compared to several state-of-the-art algorithms. The results show that ADNEPSO performed excellently in both convergence and diversity, and is highly competitive in dealing with dynamic problems.
ArticleNumber 100987
Author Yang, Shengxiang
Zou, Juan
Zheng, Jinhua
Hu, Yaru
Ou, Junwei
Zhang, Zeyu
Author_xml – sequence: 1
  givenname: Jinhua
  surname: Zheng
  fullname: Zheng, Jinhua
  email: jhzheng@xtu.edu.cn
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China
– sequence: 2
  givenname: Zeyu
  surname: Zhang
  fullname: Zhang, Zeyu
  email: 774807187@qq.com
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China
– sequence: 3
  givenname: Juan
  surname: Zou
  fullname: Zou, Juan
  email: zoujuan@xtu.edu.cn
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China
– sequence: 4
  givenname: Shengxiang
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, U.K
– sequence: 5
  givenname: Junwei
  surname: Ou
  fullname: Ou, Junwei
  email: junweiou@163.com
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China
– sequence: 6
  givenname: Yaru
  surname: Hu
  fullname: Hu, Yaru
  email: huyaru1199@gmail.com
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China
BookMark eNqFkM1OwzAMgHMYEmPsCbjkBTqSpl3bA4dp4k-axAHuUZq4m6e2qZKs05B4d9qNEwfwxZLtz7K_GzJpbQuE3HG24Iwv7_cLf4TeLmIW86HCijybkGkccxYtUxZfk7n3ezbEksVpWkzJ14qaU6sa1LQ51AEjW-5BB-yBdsoF1DVQf1SuobYL2OCnCmhbquqtdRh2DS2VB0PHkunBeeVQ1dSAtk1nPV6GW0NbwO2utG5nraHDhfVhbN2Sq0rVHuY_eUbenx4_1i_R5u35db3aRFokeYggWRZCqQQqkUOc8yQWJaRlkYk0E1WelSzVkImkyoCVPM1YlVWgVWG0VrwSMyIuW7Wz3juoZOewUe4kOZOjNrmXZ21y1CYv2gaq-EVpDOfvg1NY_8M-XFgYnuoRnPQaodVg0A12pbH4J_8NfQCTBA
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102012
crossref_primary_10_4018_IJISSCM_344839
crossref_primary_10_1038_s41598_024_52083_7
crossref_primary_10_1080_23742917_2025_2542995
crossref_primary_10_1007_s11227_025_07095_z
crossref_primary_10_1016_j_ins_2023_03_142
crossref_primary_10_1007_s11227_024_06480_4
crossref_primary_10_1109_ACCESS_2024_3374518
crossref_primary_10_3390_s23083951
crossref_primary_10_1016_j_asoc_2025_113113
crossref_primary_10_1016_j_asoc_2023_110333
crossref_primary_10_1016_j_engappai_2024_109741
crossref_primary_10_1016_j_ins_2024_120125
crossref_primary_10_3390_math10122117
crossref_primary_10_1016_j_ins_2023_119755
crossref_primary_10_1016_j_eswa_2025_127227
crossref_primary_10_1007_s41939_023_00307_0
crossref_primary_10_1016_j_asoc_2024_112071
crossref_primary_10_1016_j_ins_2023_119256
crossref_primary_10_1109_TEVC_2024_3417978
crossref_primary_10_1016_j_ijleo_2022_170419
crossref_primary_10_1016_j_parco_2024_103084
crossref_primary_10_3390_app14114878
crossref_primary_10_1016_j_heliyon_2024_e26665
crossref_primary_10_1016_j_mechmachtheory_2025_106151
crossref_primary_10_1016_j_eswa_2022_118734
crossref_primary_10_1155_2022_7372450
crossref_primary_10_1038_s41598_025_99730_1
crossref_primary_10_3390_electronics11121834
crossref_primary_10_1016_j_asoc_2023_110741
crossref_primary_10_1007_s41965_025_00183_2
crossref_primary_10_1016_j_asoc_2023_110525
crossref_primary_10_1016_j_swevo_2024_101665
crossref_primary_10_1016_j_swevo_2025_101987
crossref_primary_10_1016_j_ins_2022_12_077
crossref_primary_10_32604_cmc_2024_057168
crossref_primary_10_1007_s40747_023_01128_x
crossref_primary_10_1016_j_swevo_2023_101385
crossref_primary_10_1016_j_cie_2025_111514
Cites_doi 10.1016/j.asoc.2017.05.008
10.1016/j.ejor.2017.03.048
10.1007/s12293-009-0026-7
10.1109/TCYB.2013.2245892
10.1109/ACCESS.2017.2694843
10.1016/j.swevo.2020.100786
10.1109/TMAG.2007.916502
10.1109/TEVC.2004.831456
10.1016/j.ins.2020.02.071
10.1007/s11633-007-0243-9
10.1007/s00291-001-0092-9
10.1109/TCYB.2015.2490738
10.1109/TEVC.2008.920671
10.1109/TEVC.2016.2521175
10.1016/j.asoc.2012.06.008
10.1016/j.asoc.2019.105673
10.1109/TCYB.2016.2602561
10.1631/jzus.2004.0378
10.1109/TCBB.2015.2476796
10.1016/j.asoc.2007.07.005
10.1016/j.asoc.2018.12.031
10.1109/TEVC.2016.2519378
10.1109/4235.996017
10.1109/TEVC.2017.2771451
10.1016/j.asoc.2020.106996
10.1016/j.asoc.2017.08.004
10.1109/TEVC.2016.2587749
10.1109/TEVC.2007.892759
10.2307/3001968
10.1109/TEVC.2015.2424251
10.1109/ACCESS.2019.2957637
10.1007/s11721-017-0144-7
10.1109/TEVC.2013.2281535
10.1109/TEVC.2011.2169966
10.1109/TCYB.2018.2849403
10.1109/TCYB.2015.2510698
10.1007/s00500-013-1138-z
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2021.100987
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2021_100987
S2210650221001498
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c348t-e4693aa4ef38e281423be5b973573f87b05ce734f7e0b1570f7feca9dcca1f3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782991200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Wed Nov 05 20:52:58 EST 2025
Tue Nov 18 22:11:47 EST 2025
Fri Feb 23 02:44:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamic multi-objective optimization
Particle swarm optimization
Adversarial decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-e4693aa4ef38e281423be5b973573f87b05ce734f7e0b1570f7feca9dcca1f3
OpenAccessLink https://dora.dmu.ac.uk/bitstreams/6c417fb8-2da6-4b8e-88a1-07c1c84ee0ae/download
ParticipantIDs crossref_primary_10_1016_j_swevo_2021_100987
crossref_citationtrail_10_1016_j_swevo_2021_100987
elsevier_sciencedirect_doi_10_1016_j_swevo_2021_100987
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Tinós (bib0038) 2007; 4
Li, Yang (bib0043) 2012; 16
Vavak, Fogarty, Jukes (bib0036) 1996
Wang, Li (bib0055) 2009
Gee, Tan, Alippi (bib0050) 2017; 47
Hu, Yen (bib0008) 2013; 19
Ruan, Yu, Zheng, Zou, Yang (bib0064) 2017; 58
Cheng, Jin, Olhofer, Sendhoff (bib0027) 2016; 20
Halim, Ismail, Das (bib0063) 2020
Cai, Sun, Zhang, Huang (bib0005) 2018; 49
Altan (bib0003) 2020
Zheng, Zhou, Zou, Yang, Ou, Hu (bib0011) 2020; 60
Deb, Pratap, Agarwal, Meyarivan (bib0034) 2002; 6
Branke (bib0053) 1999; 3
Andres-Toro, Giron-Sierra, Fernandez-Blanco, Lopez-Orozco, Besada-Portas (bib0015) 2004; 5
Deb, Karthik (bib0012) 2007
Chang, Hsu, Lin, Chang, Ho (bib0041) 2017; 5
Altan, Parlak (bib0002) 2020
Yang (bib0040) 2007
Miettinen, Mäkelä (bib0058) 2002; 24
Zhou, Jin, Zhang, Sendhoff, Tsang (bib0065) 2007
Miao, Dunwei, Yong, Yaochu, Witold (bib0030) 2018
Goh, Tan (bib0037) 2009; 13
Altan, Karasu, Zio (bib0001) 2021; 100
Cao, Xu, Goodman, Li (bib0023) 2019; 76
Di Barba (bib0020) 2008; 44
Farina, Deb, Amato (bib0010) 2004; 8
Cai, Xia, Zhang, Mei, Hu, Wang, Hu (bib0004) 2019
Muruganantham, Tan, Vadakkepat (bib0049) 2015; 46
Deb, Jain (bib0068) 2014; 18
Liu, Li, Mu, Jiao (bib0029) 2017; 261
Wang, Zhang, Zhang (bib0057) 2016; 20
Azevedo, Araújo (bib0039) 2011
Tantar, Tantar, Bouvry (bib0031) 2011
Koo, Goh, Tan (bib0056) 2010; 2
Li, Yao (bib0026) 2020; 28
Schott (bib0067) 1995
Díaz-Manríquez, Pulido, Ramírez-Torres (bib0007) 2010
Li, Rui, Tao, Ishibuchi (bib0070) 2018; 6
Zhou, Jin, Zhang (bib0047) 2014; 44
Jiang, Yang (bib0033) 2017; 47
Zhou, Jin, Zhang (bib0032) 2013; 44
Cobb (bib0035) 1990
Hatzakis, Wallace (bib0046) 2006
Zhang, Li (bib0022) 2007; 11
Ou, Zheng, Ruan, Hu, Zou, Li, Yang, Tan (bib0024) 2019; 85
Wu, Li, Kwong, Zhang (bib0028) 2018
Li, Chen, Gong, Lin, Ming (bib0061) 2019; 7
Isaacs, Puttige, Ray, Smith, Anavatti (bib0018) 2008
Hu, Zheng, Zou, Yang, Ou, Wang (bib0054) 2020
Ziztler, Laumanns, Thiele (bib0062) 2002
Helbig, Engelbrecht (bib0045) 2011
Bui, Michalewicz (bib0019) 2010
Jiang, Huang, Qiu, Huang, Yen (bib0051) 2017; 22
Biswas, Das, Kundu, Patra (bib0044) 2014; 18
Zou, Li, Yang, Bai, Zheng (bib0066) 2017; 61
Abello, Bui, Michalewicz (bib0013) 2011
Zhang, Gong, Cheng (bib0009) 2015; 14
Tantar, Tantar, Bouvry (bib0017) 2011
Ishibuchi, Yu, Masuda, Nojima (bib0025) 2017; 21
Rambabu, Vadakkepat, Tan, Jiang (bib0052) 2019
Wilcoxon (bib0069) 1945; 1
Tezuka, Munetomo, Akama (bib0014) 2007
Kim, McKay, Moon (bib0021) 2010
Jiang, Yang (bib0042) 2017; PP
Zhang (bib0016) 2008; 8
Erskine, Joyce, Herrmann (bib0059) 2017; 11
Wang, Xiang, Cai (bib0048) 2012; 12
Zhou, Zhang (bib0060) 2015; 20
Xue, Tang, Xu, Liang, Neri (bib0006) 2021
Miettinen (10.1016/j.swevo.2021.100987_bib0058) 2002; 24
Chang (10.1016/j.swevo.2021.100987_bib0041) 2017; 5
Abello (10.1016/j.swevo.2021.100987_bib0013) 2011
Tantar (10.1016/j.swevo.2021.100987_bib0031) 2011
Li (10.1016/j.swevo.2021.100987_bib0070) 2018; 6
Halim (10.1016/j.swevo.2021.100987_bib0063) 2020
Deb (10.1016/j.swevo.2021.100987_bib0034) 2002; 6
Wang (10.1016/j.swevo.2021.100987_bib0048) 2012; 12
Rambabu (10.1016/j.swevo.2021.100987_bib0052) 2019
Altan (10.1016/j.swevo.2021.100987_bib0001) 2021; 100
Cobb (10.1016/j.swevo.2021.100987_bib0035) 1990
Yang (10.1016/j.swevo.2021.100987_bib0038) 2007; 4
Xue (10.1016/j.swevo.2021.100987_bib0006) 2021
Zhou (10.1016/j.swevo.2021.100987_bib0065) 2007
Deb (10.1016/j.swevo.2021.100987_bib0012) 2007
Isaacs (10.1016/j.swevo.2021.100987_bib0018) 2008
Kim (10.1016/j.swevo.2021.100987_bib0021) 2010
Tantar (10.1016/j.swevo.2021.100987_bib0017) 2011
Wu (10.1016/j.swevo.2021.100987_bib0028) 2018
Deb (10.1016/j.swevo.2021.100987_bib0068) 2014; 18
Jiang (10.1016/j.swevo.2021.100987_bib0033) 2017; 47
Zhou (10.1016/j.swevo.2021.100987_bib0060) 2015; 20
Cheng (10.1016/j.swevo.2021.100987_bib0027) 2016; 20
Zhang (10.1016/j.swevo.2021.100987_bib0016) 2008; 8
Branke (10.1016/j.swevo.2021.100987_bib0053) 1999; 3
Cai (10.1016/j.swevo.2021.100987_bib0005) 2018; 49
Li (10.1016/j.swevo.2021.100987_bib0026) 2020; 28
Goh (10.1016/j.swevo.2021.100987_bib0037) 2009; 13
Díaz-Manríquez (10.1016/j.swevo.2021.100987_bib0007) 2010
Ziztler (10.1016/j.swevo.2021.100987_bib0062) 2002
Di Barba (10.1016/j.swevo.2021.100987_bib0020) 2008; 44
Wilcoxon (10.1016/j.swevo.2021.100987_bib0069) 1945; 1
Jiang (10.1016/j.swevo.2021.100987_bib0051) 2017; 22
Liu (10.1016/j.swevo.2021.100987_bib0029) 2017; 261
Azevedo (10.1016/j.swevo.2021.100987_bib0039) 2011
Altan (10.1016/j.swevo.2021.100987_bib0003) 2020
Zheng (10.1016/j.swevo.2021.100987_bib0011) 2020; 60
Andres-Toro (10.1016/j.swevo.2021.100987_bib0015) 2004; 5
Li (10.1016/j.swevo.2021.100987_bib0061) 2019; 7
Schott (10.1016/j.swevo.2021.100987_bib0067) 1995
Bui (10.1016/j.swevo.2021.100987_bib0019) 2010
Jiang (10.1016/j.swevo.2021.100987_sbref0042) 2017; PP
Farina (10.1016/j.swevo.2021.100987_bib0010) 2004; 8
Koo (10.1016/j.swevo.2021.100987_bib0056) 2010; 2
Zhang (10.1016/j.swevo.2021.100987_bib0022) 2007; 11
Vavak (10.1016/j.swevo.2021.100987_bib0036) 1996
Erskine (10.1016/j.swevo.2021.100987_bib0059) 2017; 11
Cai (10.1016/j.swevo.2021.100987_bib0004) 2019
Li (10.1016/j.swevo.2021.100987_bib0043) 2012; 16
Wang (10.1016/j.swevo.2021.100987_bib0057) 2016; 20
Hatzakis (10.1016/j.swevo.2021.100987_bib0046) 2006
Muruganantham (10.1016/j.swevo.2021.100987_bib0049) 2015; 46
Zhang (10.1016/j.swevo.2021.100987_bib0009) 2015; 14
Gee (10.1016/j.swevo.2021.100987_bib0050) 2017; 47
Hu (10.1016/j.swevo.2021.100987_bib0054) 2020
Zhou (10.1016/j.swevo.2021.100987_bib0047) 2014; 44
Helbig (10.1016/j.swevo.2021.100987_bib0045) 2011
Biswas (10.1016/j.swevo.2021.100987_bib0044) 2014; 18
Zou (10.1016/j.swevo.2021.100987_bib0066) 2017; 61
Miao (10.1016/j.swevo.2021.100987_bib0030) 2018
Wang (10.1016/j.swevo.2021.100987_bib0055) 2009
Hu (10.1016/j.swevo.2021.100987_bib0008) 2013; 19
Ishibuchi (10.1016/j.swevo.2021.100987_bib0025) 2017; 21
Zhou (10.1016/j.swevo.2021.100987_bib0032) 2013; 44
Cao (10.1016/j.swevo.2021.100987_bib0023) 2019; 76
Tezuka (10.1016/j.swevo.2021.100987_bib0014) 2007
Ou (10.1016/j.swevo.2021.100987_bib0024) 2019; 85
Altan (10.1016/j.swevo.2021.100987_bib0002) 2020
Yang (10.1016/j.swevo.2021.100987_bib0040) 2007
Ruan (10.1016/j.swevo.2021.100987_bib0064) 2017; 58
References_xml – volume: 44
  start-page: 40
  year: 2014
  end-page: 53
  ident: bib0047
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans Cybern
– year: 2021
  ident: bib0006
  article-title: Multi-objective feature selection with missing data in classification
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– start-page: 627
  year: 2007
  end-page: 636
  ident: bib0040
  article-title: Genetic algorithms with elitism-based immigrants for changing optimization problems
  publication-title: Workshops on Applications of Evolutionary Computation
– volume: 14
  start-page: 64
  year: 2015
  end-page: 75
  ident: bib0009
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 85
  start-page: 105673
  year: 2019
  ident: bib0024
  article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization
  publication-title: Appl Soft Comput
– volume: 47
  start-page: 4223
  year: 2017
  end-page: 4234
  ident: bib0050
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach
  publication-title: IEEE Trans Cybern
– year: 2018
  ident: bib0028
  article-title: Evolutionary many-objective optimization based on adversarial decomposition
  publication-title: IEEE Trans Cybern
– start-page: 548
  year: 2008
  end-page: 554
  ident: bib0018
  article-title: Development of a memetic algorithm for dynamic multi-objective optimization and its applications for online neural network modeling of uavs
  publication-title: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on
– volume: 16
  start-page: 556
  year: 2012
  end-page: 577
  ident: bib0043
  article-title: A general framework of multipopulation methods with clustering in undetectable dynamic environments
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib0002
  article-title: Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs
  publication-title: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU)
– volume: 49
  start-page: 3586
  year: 2018
  end-page: 3598
  ident: bib0005
  article-title: A grid weighted sum pareto local search for combinatorial multi and many-objective optimization
  publication-title: IEEE Trans Cybern
– volume: 22
  start-page: 501
  year: 2017
  end-page: 514
  ident: bib0051
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 7
  start-page: 177082
  year: 2019
  end-page: 177100
  ident: bib0061
  article-title: A novel hybrid multi-objective particle swarm optimization algorithm with an adaptive resource allocation strategy
  publication-title: IEEE Access
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0034
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
– volume: 28
  start-page: 227
  year: 2020
  end-page: 253
  ident: bib0026
  article-title: What weights work for you? adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 295
  year: 2017
  end-page: 315
  ident: bib0059
  article-title: Stochastic stability of particle swarm optimisation
  publication-title: Swarm Intell.
– volume: 8
  start-page: 959
  year: 2008
  end-page: 971
  ident: bib0016
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Appl Soft Comput
– volume: 24
  start-page: 193
  year: 2002
  end-page: 213
  ident: bib0058
  article-title: On scalarizing functions in multiobjective optimization
  publication-title: OR spectrum
– start-page: 803
  year: 2007
  end-page: 817
  ident: bib0012
  article-title: Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 20
  start-page: 821
  year: 2016
  end-page: 837
  ident: bib0057
  article-title: Decomposition-based algorithms using pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2047
  year: 2011
  end-page: 2054
  ident: bib0045
  article-title: Archive management for dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation
  publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC)
– volume: 8
  start-page: 425
  year: 2004
  end-page: 442
  ident: bib0010
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  year: 2016
  ident: bib0027
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 103
  year: 2009
  end-page: 127
  ident: bib0037
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib0019
  article-title: An evolutionary multi-objective approach for dynamic mission planning
  publication-title: 2010 IEEE Congress of Evolutionary Computation (CEC)
– start-page: 2033
  year: 2011
  end-page: 2040
  ident: bib0039
  article-title: Generalized immigration schemes for dynamic evolutionary multiobjective optimization
  publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC)
– start-page: 1
  year: 2020
  end-page: 87
  ident: bib0063
  article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review
  publication-title: Artif Intell Rev
– year: 2007
  ident: bib0014
  article-title: Genetic Algorithm to Optimize Fitness Function with Sampling Error and its Application to Financial Optimization Problem
– volume: 12
  start-page: 3526
  year: 2012
  end-page: 3538
  ident: bib0048
  article-title: A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator
  publication-title: Appl Soft Comput
– volume: 5
  start-page: 378
  year: 2004
  end-page: 389
  ident: bib0015
  article-title: Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms
  publication-title: Journal of Zhejiang University SCIENCE
– start-page: 1179
  year: 2010
  end-page: 1186
  ident: bib0021
  article-title: Multiobjective evolutionary algorithms for dynamic social network clustering
  publication-title: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation
– volume: 261
  start-page: 1028
  year: 2017
  end-page: 1051
  ident: bib0029
  article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
  publication-title: Eur J Oper Res
– volume: 47
  start-page: 198
  year: 2017
  end-page: 211
  ident: bib0033
  article-title: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons
  publication-title: IEEE Trans Cybern
– start-page: 1201
  year: 2006
  end-page: 1208
  ident: bib0046
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach
  publication-title: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0022
  article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 832
  year: 2007
  end-page: 846
  ident: bib0065
  article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 19
  start-page: 1
  year: 2013
  end-page: 18
  ident: bib0008
  article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 376
  year: 1996
  end-page: 385
  ident: bib0036
  article-title: A genetic algorithm with variable range of local search for tracking changing environments
  publication-title: International Conference on Parallel Problem Solving from Nature
– start-page: 2759
  year: 2011
  end-page: 2766
  ident: bib0017
  article-title: On dynamic multi-objective optimization, classification and performance measures
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2020
  ident: bib0054
  article-title: A dynamic multi-objective evolutionary algorithm based on intensity of environmental change
  publication-title: Inf Sci (Ny)
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0068
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– year: 2019
  ident: bib0052
  article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans Cybern
– volume: 3
  start-page: 1875
  year: 1999
  end-page: 1882
  ident: bib0053
  article-title: Memory enhanced evolutionary algorithms for changing optimization problems
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)
– volume: 2
  start-page: 87
  year: 2010
  end-page: 110
  ident: bib0056
  article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment
  publication-title: Memetic Computing
– volume: 76
  start-page: 473
  year: 2019
  end-page: 490
  ident: bib0023
  article-title: Decomposition-based evolutionary dynamic multiobjective optimization using a difference model
  publication-title: Appl Soft Comput
– volume: 18
  start-page: 1199
  year: 2014
  end-page: 1212
  ident: bib0044
  article-title: Utilizing time-linkage property in dops: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments
  publication-title: Soft comput
– volume: 60
  start-page: 100786
  year: 2020
  ident: bib0011
  article-title: A prediction strategy based on decision variable analysis for dynamic multi-objective optimization
  publication-title: Swarm Evol Comput
– year: 1990
  ident: bib0035
  article-title: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments
  publication-title: Nrl Memorandum Report
– year: 2019
  ident: bib0004
  article-title: The collaborative local search based on dynamic-constrained decomposition with grids for combinatorial multiobjective optimization
  publication-title: IEEE Trans Cybern
– volume: 5
  start-page: 7648
  year: 2017
  end-page: 7658
  ident: bib0041
  article-title: Query-based learning for dynamic particle swarm optimization
  publication-title: IEEE Access
– volume: PP
  year: 2017
  ident: bib0042
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 58
  start-page: 631
  year: 2017
  end-page: 647
  ident: bib0064
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl Soft Comput
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib0003
  article-title: Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following
  publication-title: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)
– volume: 44
  start-page: 962
  year: 2008
  end-page: 965
  ident: bib0020
  article-title: Dynamic multiobjective optimization: a way to the shape design with transient magnetic fields
  publication-title: IEEE Trans Magn
– start-page: 337
  year: 2010
  end-page: 342
  ident: bib0007
  article-title: Handling dynamic multiobjective problems with particle swarm optimization
  publication-title: ICAART (1)
– start-page: 1
  year: 2018
  end-page: 13
  ident: bib0030
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans Cybern
– volume: 4
  start-page: 243
  year: 2007
  end-page: 254
  ident: bib0038
  article-title: A hybrid immigrants scheme for genetic algorithms in dynamic environments
  publication-title: Int. J. Autom. Comput.
– volume: 61
  start-page: 806
  year: 2017
  end-page: 818
  ident: bib0066
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl Soft Comput
– volume: 20
  start-page: 52
  year: 2015
  end-page: 64
  ident: bib0060
  article-title: Are all the subproblems equally important? resource allocation in decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib0069
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics bulletin
– volume: 21
  start-page: 169
  year: 2017
  end-page: 190
  ident: bib0025
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 1
  year: 2018
  ident: bib0070
  article-title: Evolutionary many-objective optimization: acomparative study of the state-of-the-art
  publication-title: IEEE Access
– start-page: 630
  year: 2009
  end-page: 637
  ident: bib0055
  article-title: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment
  publication-title: 2009 IEEE Congress on Evolutionary Computation
– start-page: 95
  year: 2002
  end-page: 100
  ident: bib0062
  article-title: Spea2: improving the strength pareto evolutionary algorithm for multiobjective optimization
  publication-title: Evolutionary Methods for Design, Optimization, and Control
– start-page: 1711
  year: 2011
  end-page: 1718
  ident: bib0013
  article-title: An adaptive approach for solving dynamic scheduling with time-varying number of tasks part ii
  publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC)
– volume: 100
  start-page: 106996
  year: 2021
  ident: bib0001
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl Soft Comput
– volume: 44
  start-page: 40
  year: 2013
  end-page: 53
  ident: bib0032
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans Cybern
– year: 1995
  ident: bib0067
  article-title: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization
  publication-title: Technical Report
– start-page: 2759
  year: 2011
  end-page: 2766
  ident: bib0031
  article-title: On dynamic multi-objective optimization, classification and performance measures
  publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC)
– volume: 46
  start-page: 2862
  year: 2015
  ident: bib0049
  article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction
  publication-title: IEEE Trans Cybern
– start-page: 1201
  year: 2006
  ident: 10.1016/j.swevo.2021.100987_bib0046
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach
– volume: 58
  start-page: 631
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_bib0064
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.05.008
– volume: 261
  start-page: 1028
  issue: 3
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_bib0029
  article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.03.048
– start-page: 95
  year: 2002
  ident: 10.1016/j.swevo.2021.100987_bib0062
  article-title: Spea2: improving the strength pareto evolutionary algorithm for multiobjective optimization
  publication-title: Evolutionary Methods for Design, Optimization, and Control
– volume: 2
  start-page: 87
  issue: 2
  year: 2010
  ident: 10.1016/j.swevo.2021.100987_bib0056
  article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment
  publication-title: Memetic Computing
  doi: 10.1007/s12293-009-0026-7
– start-page: 2033
  year: 2011
  ident: 10.1016/j.swevo.2021.100987_bib0039
  article-title: Generalized immigration schemes for dynamic evolutionary multiobjective optimization
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.swevo.2021.100987_bib0070
  article-title: Evolutionary many-objective optimization: acomparative study of the state-of-the-art
  publication-title: IEEE Access
– start-page: 337
  year: 2010
  ident: 10.1016/j.swevo.2021.100987_bib0007
  article-title: Handling dynamic multiobjective problems with particle swarm optimization
– volume: 44
  start-page: 40
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2021.100987_bib0032
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2245892
– start-page: 1
  year: 2020
  ident: 10.1016/j.swevo.2021.100987_bib0003
  article-title: Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following
– volume: 5
  start-page: 7648
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_bib0041
  article-title: Query-based learning for dynamic particle swarm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2694843
– year: 2019
  ident: 10.1016/j.swevo.2021.100987_bib0052
  article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans Cybern
– volume: 60
  start-page: 100786
  year: 2020
  ident: 10.1016/j.swevo.2021.100987_bib0011
  article-title: A prediction strategy based on decision variable analysis for dynamic multi-objective optimization
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100786
– year: 2019
  ident: 10.1016/j.swevo.2021.100987_bib0004
  article-title: The collaborative local search based on dynamic-constrained decomposition with grids for combinatorial multiobjective optimization
  publication-title: IEEE Trans Cybern
– volume: 44
  start-page: 962
  issue: 6
  year: 2008
  ident: 10.1016/j.swevo.2021.100987_bib0020
  article-title: Dynamic multiobjective optimization: a way to the shape design with transient magnetic fields
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2007.916502
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 10.1016/j.swevo.2021.100987_bib0010
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– volume: 28
  start-page: 227
  issue: 2
  year: 2020
  ident: 10.1016/j.swevo.2021.100987_bib0026
  article-title: What weights work for you? adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: IEEE Trans. Evol. Comput.
– year: 2020
  ident: 10.1016/j.swevo.2021.100987_bib0054
  article-title: A dynamic multi-objective evolutionary algorithm based on intensity of environmental change
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2020.02.071
– volume: 4
  start-page: 243
  issue: 3
  year: 2007
  ident: 10.1016/j.swevo.2021.100987_bib0038
  article-title: A hybrid immigrants scheme for genetic algorithms in dynamic environments
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-007-0243-9
– start-page: 803
  year: 2007
  ident: 10.1016/j.swevo.2021.100987_bib0012
  article-title: Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling
– year: 2018
  ident: 10.1016/j.swevo.2021.100987_bib0028
  article-title: Evolutionary many-objective optimization based on adversarial decomposition
  publication-title: IEEE Trans Cybern
– volume: 24
  start-page: 193
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2021.100987_bib0058
  article-title: On scalarizing functions in multiobjective optimization
  publication-title: OR spectrum
  doi: 10.1007/s00291-001-0092-9
– start-page: 1179
  year: 2010
  ident: 10.1016/j.swevo.2021.100987_bib0021
  article-title: Multiobjective evolutionary algorithms for dynamic social network clustering
– volume: 46
  start-page: 2862
  issue: 12
  year: 2015
  ident: 10.1016/j.swevo.2021.100987_bib0049
  article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2490738
– start-page: 2759
  year: 2011
  ident: 10.1016/j.swevo.2021.100987_bib0017
  article-title: On dynamic multi-objective optimization, classification and performance measures
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.swevo.2021.100987_bib0037
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920671
– year: 1995
  ident: 10.1016/j.swevo.2021.100987_bib0067
  article-title: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization
– volume: 20
  start-page: 821
  issue: 6
  year: 2016
  ident: 10.1016/j.swevo.2021.100987_bib0057
  article-title: Decomposition-based algorithms using pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2521175
– year: 2007
  ident: 10.1016/j.swevo.2021.100987_bib0014
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2021.100987_bib0047
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2245892
– volume: 12
  start-page: 3526
  issue: 11
  year: 2012
  ident: 10.1016/j.swevo.2021.100987_bib0048
  article-title: A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.06.008
– start-page: 1
  year: 2020
  ident: 10.1016/j.swevo.2021.100987_bib0063
  article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review
  publication-title: Artif Intell Rev
– start-page: 1711
  year: 2011
  ident: 10.1016/j.swevo.2021.100987_bib0013
  article-title: An adaptive approach for solving dynamic scheduling with time-varying number of tasks part ii
– volume: 85
  start-page: 105673
  year: 2019
  ident: 10.1016/j.swevo.2021.100987_bib0024
  article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105673
– start-page: 376
  year: 1996
  ident: 10.1016/j.swevo.2021.100987_bib0036
  article-title: A genetic algorithm with variable range of local search for tracking changing environments
– year: 2021
  ident: 10.1016/j.swevo.2021.100987_bib0006
  article-title: Multi-objective feature selection with missing data in classification
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– year: 1990
  ident: 10.1016/j.swevo.2021.100987_bib0035
  article-title: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments
  publication-title: Nrl Memorandum Report
– start-page: 627
  year: 2007
  ident: 10.1016/j.swevo.2021.100987_bib0040
  article-title: Genetic algorithms with elitism-based immigrants for changing optimization problems
– volume: 47
  start-page: 4223
  issue: 12
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_bib0050
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2602561
– volume: PP
  issue: 99
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_sbref0042
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 5
  start-page: 378
  issue: 4
  year: 2004
  ident: 10.1016/j.swevo.2021.100987_bib0015
  article-title: Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms
  publication-title: Journal of Zhejiang University SCIENCE
  doi: 10.1631/jzus.2004.0378
– volume: 14
  start-page: 64
  issue: 1
  year: 2015
  ident: 10.1016/j.swevo.2021.100987_bib0009
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2015.2476796
– volume: 8
  start-page: 959
  issue: 2
  year: 2008
  ident: 10.1016/j.swevo.2021.100987_bib0016
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.07.005
– volume: 76
  start-page: 473
  year: 2019
  ident: 10.1016/j.swevo.2021.100987_bib0023
  article-title: Decomposition-based evolutionary dynamic multiobjective optimization using a difference model
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.12.031
– volume: 20
  issue: 5
  year: 2016
  ident: 10.1016/j.swevo.2021.100987_bib0027
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 19
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2021.100987_bib0008
  article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2021.100987_bib0034
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 22
  start-page: 501
  issue: 4
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_bib0051
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2771451
– start-page: 2047
  year: 2011
  ident: 10.1016/j.swevo.2021.100987_bib0045
  article-title: Archive management for dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation
– start-page: 832
  year: 2007
  ident: 10.1016/j.swevo.2021.100987_bib0065
  article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization
– volume: 100
  start-page: 106996
  year: 2021
  ident: 10.1016/j.swevo.2021.100987_bib0001
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106996
– start-page: 548
  year: 2008
  ident: 10.1016/j.swevo.2021.100987_bib0018
  article-title: Development of a memetic algorithm for dynamic multi-objective optimization and its applications for online neural network modeling of uavs
– start-page: 630
  year: 2009
  ident: 10.1016/j.swevo.2021.100987_bib0055
  article-title: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment
– volume: 61
  start-page: 806
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_bib0066
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.08.004
– volume: 21
  start-page: 169
  issue: 2
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_bib0025
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587749
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2021.100987_bib0022
  article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.swevo.2021.100987_bib0069
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics bulletin
  doi: 10.2307/3001968
– volume: 20
  start-page: 52
  issue: 1
  year: 2015
  ident: 10.1016/j.swevo.2021.100987_bib0060
  article-title: Are all the subproblems equally important? resource allocation in decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2424251
– volume: 7
  start-page: 177082
  year: 2019
  ident: 10.1016/j.swevo.2021.100987_bib0061
  article-title: A novel hybrid multi-objective particle swarm optimization algorithm with an adaptive resource allocation strategy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957637
– start-page: 2759
  year: 2011
  ident: 10.1016/j.swevo.2021.100987_bib0031
  article-title: On dynamic multi-objective optimization, classification and performance measures
– volume: 11
  start-page: 295
  issue: 3–4
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_bib0059
  article-title: Stochastic stability of particle swarm optimisation
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-017-0144-7
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.swevo.2021.100987_bib0068
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– start-page: 1
  year: 2010
  ident: 10.1016/j.swevo.2021.100987_bib0019
  article-title: An evolutionary multi-objective approach for dynamic mission planning
– volume: 16
  start-page: 556
  issue: 4
  year: 2012
  ident: 10.1016/j.swevo.2021.100987_bib0043
  article-title: A general framework of multipopulation methods with clustering in undetectable dynamic environments
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2169966
– start-page: 1
  year: 2020
  ident: 10.1016/j.swevo.2021.100987_bib0002
  article-title: Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs
– volume: 49
  start-page: 3586
  issue: 9
  year: 2018
  ident: 10.1016/j.swevo.2021.100987_bib0005
  article-title: A grid weighted sum pareto local search for combinatorial multi and many-objective optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2849403
– start-page: 1
  year: 2018
  ident: 10.1016/j.swevo.2021.100987_bib0030
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans Cybern
– volume: 47
  start-page: 198
  issue: 1
  year: 2017
  ident: 10.1016/j.swevo.2021.100987_bib0033
  article-title: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2510698
– volume: 18
  start-page: 1199
  issue: 6
  year: 2014
  ident: 10.1016/j.swevo.2021.100987_bib0044
  article-title: Utilizing time-linkage property in dops: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments
  publication-title: Soft comput
  doi: 10.1007/s00500-013-1138-z
– volume: 3
  start-page: 1875
  year: 1999
  ident: 10.1016/j.swevo.2021.100987_bib0053
  article-title: Memory enhanced evolutionary algorithms for changing optimization problems
SSID ssj0000602559
Score 2.4777951
Snippet Many multi-objective optimization problems in the real world are dynamic, with objectives that conflict and change over time. These problems put higher demands...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100987
SubjectTerms Adversarial decomposition
Dynamic multi-objective optimization
Particle swarm optimization
Title A dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution
URI https://dx.doi.org/10.1016/j.swevo.2021.100987
Volume 69
WOSCitedRecordID wos000782991200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4deuhdJN_DQm6pAKykdjSJFWxRBgQSFm4tAUWRsw5YMb3EO-Zj-aYeLFqeB0Rx6EQyaGkme5-HMaDgPoQ8UVn2_YBCphgV3o4IzlxVx4QoeU4_FBeGaG_Dnd3p6mgyH6Y9e73e9F2YzpWWZbLfp_L-qGsZA2Wrr7D3U3QiFAfgMSocjqB2O_6T4gVMYlnlTLOhW-cQYNWduZzvLK7aYORVYi5ndhumw6WW1GK9GM0eta4V6h8AUV_OSaVqPQqjac1vgpV84lCqnCgDSbZHFxj5S19c901dRc5uvVYke1zwSOwUAFyNhC4PH5WjN2mGbzL4Q1-tmsFqb3SQtrH_VOW8lZgt4v-zmMiAMboq5jMkLIAB1AT079tlQuVgD66sGqPRO22_SEJPj5RU8FUT-gX_czt7ttH1rBWzqEuuSt0mmhWRKSGaEPEAHAY3TpI8OBl9Pht-aRJ5HdFimSAzru6-7W-k6wr9u524PqOPVnD9Fj204ggcGGM9QT5TP0ZOa6gNby_8C3QywRRW-hSpcowprVOEuqnCDKqxRhdVQiyq8gyoMSMFdVOEGNi_R2eeT809fXMvc4fIwSlauiEgaMhYJGSYiSHzw2XMR5ykNYxrKhOZezAUNI0mFl_tgFSSVgrO0AHviy_AV6pdVKQ4RzkPCSSQlIUEeEZmnJAgk9yQXkWqNKY5QUP-WGbdN7RW3yjTbo8oj9LE5aW56uuyfTmolZdYtNe5mBsjbd-Lr-13nDXrU_ifeov5qsRbv0EO-WY2Xi_cWdn8A1x65yg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+multi-objective+particle+swarm+optimization+algorithm+based+on+adversarial+decomposition+and+neighborhood+evolution&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Zheng%2C+Jinhua&rft.au=Zhang%2C+Zeyu&rft.au=Zou%2C+Juan&rft.au=Yang%2C+Shengxiang&rft.date=2022-03-01&rft.issn=2210-6502&rft.volume=69&rft.spage=100987&rft_id=info:doi/10.1016%2Fj.swevo.2021.100987&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2021_100987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon