A dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution
Many multi-objective optimization problems in the real world are dynamic, with objectives that conflict and change over time. These problems put higher demands on the algorithm’s convergence performance and the ability to respond to environmental changes. Confronting these two points, this paper pro...
Uložené v:
| Vydané v: | Swarm and evolutionary computation Ročník 69; s. 100987 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.03.2022
|
| Predmet: | |
| ISSN: | 2210-6502 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many multi-objective optimization problems in the real world are dynamic, with objectives that conflict and change over time. These problems put higher demands on the algorithm’s convergence performance and the ability to respond to environmental changes. Confronting these two points, this paper proposes a dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution (ADNEPSO). To overcome the instability of the traditional decomposition method for the changing Pareto optimal front (POF) shape, the proposed algorithm utilizes the complementary characteristics in the search area of the adversarial vector, and the two populations are alternately updated and co-evolved by adversarial search directions. Additionally, a novel particle update strategy is proposed to select promising neighborhood information to guide evolution and enhance diversity. To improve the ability to cope with environmental changes, an effective dynamic response mechanism is proposed, including three parts: archive set prediction, exploration of global optimal information, and retention of excellent particles to accelerate convergence to the Pareto optimal set (POS) in the new environment. The proposed algorithm is tested on a series of benchmark problems and compared to several state-of-the-art algorithms. The results show that ADNEPSO performed excellently in both convergence and diversity, and is highly competitive in dealing with dynamic problems. |
|---|---|
| AbstractList | Many multi-objective optimization problems in the real world are dynamic, with objectives that conflict and change over time. These problems put higher demands on the algorithm’s convergence performance and the ability to respond to environmental changes. Confronting these two points, this paper proposes a dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution (ADNEPSO). To overcome the instability of the traditional decomposition method for the changing Pareto optimal front (POF) shape, the proposed algorithm utilizes the complementary characteristics in the search area of the adversarial vector, and the two populations are alternately updated and co-evolved by adversarial search directions. Additionally, a novel particle update strategy is proposed to select promising neighborhood information to guide evolution and enhance diversity. To improve the ability to cope with environmental changes, an effective dynamic response mechanism is proposed, including three parts: archive set prediction, exploration of global optimal information, and retention of excellent particles to accelerate convergence to the Pareto optimal set (POS) in the new environment. The proposed algorithm is tested on a series of benchmark problems and compared to several state-of-the-art algorithms. The results show that ADNEPSO performed excellently in both convergence and diversity, and is highly competitive in dealing with dynamic problems. |
| ArticleNumber | 100987 |
| Author | Yang, Shengxiang Zou, Juan Zheng, Jinhua Hu, Yaru Ou, Junwei Zhang, Zeyu |
| Author_xml | – sequence: 1 givenname: Jinhua surname: Zheng fullname: Zheng, Jinhua email: jhzheng@xtu.edu.cn organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China – sequence: 2 givenname: Zeyu surname: Zhang fullname: Zhang, Zeyu email: 774807187@qq.com organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China – sequence: 3 givenname: Juan surname: Zou fullname: Zou, Juan email: zoujuan@xtu.edu.cn organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China – sequence: 4 givenname: Shengxiang surname: Yang fullname: Yang, Shengxiang email: syang@dmu.ac.uk organization: School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, U.K – sequence: 5 givenname: Junwei surname: Ou fullname: Ou, Junwei email: junweiou@163.com organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China – sequence: 6 givenname: Yaru surname: Hu fullname: Hu, Yaru email: huyaru1199@gmail.com organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China |
| BookMark | eNqFkM1OwzAMgHMYEmPsCbjkBTqSpl3bA4dp4k-axAHuUZq4m6e2qZKs05B4d9qNEwfwxZLtz7K_GzJpbQuE3HG24Iwv7_cLf4TeLmIW86HCijybkGkccxYtUxZfk7n3ezbEksVpWkzJ14qaU6sa1LQ51AEjW-5BB-yBdsoF1DVQf1SuobYL2OCnCmhbquqtdRh2DS2VB0PHkunBeeVQ1dSAtk1nPV6GW0NbwO2utG5nraHDhfVhbN2Sq0rVHuY_eUbenx4_1i_R5u35db3aRFokeYggWRZCqQQqkUOc8yQWJaRlkYk0E1WelSzVkImkyoCVPM1YlVWgVWG0VrwSMyIuW7Wz3juoZOewUe4kOZOjNrmXZ21y1CYv2gaq-EVpDOfvg1NY_8M-XFgYnuoRnPQaodVg0A12pbH4J_8NfQCTBA |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102012 crossref_primary_10_4018_IJISSCM_344839 crossref_primary_10_1038_s41598_024_52083_7 crossref_primary_10_1080_23742917_2025_2542995 crossref_primary_10_1007_s11227_025_07095_z crossref_primary_10_1016_j_ins_2023_03_142 crossref_primary_10_1007_s11227_024_06480_4 crossref_primary_10_1109_ACCESS_2024_3374518 crossref_primary_10_3390_s23083951 crossref_primary_10_1016_j_asoc_2025_113113 crossref_primary_10_1016_j_asoc_2023_110333 crossref_primary_10_1016_j_engappai_2024_109741 crossref_primary_10_1016_j_ins_2024_120125 crossref_primary_10_3390_math10122117 crossref_primary_10_1016_j_ins_2023_119755 crossref_primary_10_1016_j_eswa_2025_127227 crossref_primary_10_1007_s41939_023_00307_0 crossref_primary_10_1016_j_asoc_2024_112071 crossref_primary_10_1016_j_ins_2023_119256 crossref_primary_10_1109_TEVC_2024_3417978 crossref_primary_10_1016_j_ijleo_2022_170419 crossref_primary_10_1016_j_parco_2024_103084 crossref_primary_10_3390_app14114878 crossref_primary_10_1016_j_heliyon_2024_e26665 crossref_primary_10_1016_j_mechmachtheory_2025_106151 crossref_primary_10_1016_j_eswa_2022_118734 crossref_primary_10_1155_2022_7372450 crossref_primary_10_1038_s41598_025_99730_1 crossref_primary_10_3390_electronics11121834 crossref_primary_10_1016_j_asoc_2023_110741 crossref_primary_10_1007_s41965_025_00183_2 crossref_primary_10_1016_j_asoc_2023_110525 crossref_primary_10_1016_j_swevo_2024_101665 crossref_primary_10_1016_j_swevo_2025_101987 crossref_primary_10_1016_j_ins_2022_12_077 crossref_primary_10_32604_cmc_2024_057168 crossref_primary_10_1007_s40747_023_01128_x crossref_primary_10_1016_j_swevo_2023_101385 crossref_primary_10_1016_j_cie_2025_111514 |
| Cites_doi | 10.1016/j.asoc.2017.05.008 10.1016/j.ejor.2017.03.048 10.1007/s12293-009-0026-7 10.1109/TCYB.2013.2245892 10.1109/ACCESS.2017.2694843 10.1016/j.swevo.2020.100786 10.1109/TMAG.2007.916502 10.1109/TEVC.2004.831456 10.1016/j.ins.2020.02.071 10.1007/s11633-007-0243-9 10.1007/s00291-001-0092-9 10.1109/TCYB.2015.2490738 10.1109/TEVC.2008.920671 10.1109/TEVC.2016.2521175 10.1016/j.asoc.2012.06.008 10.1016/j.asoc.2019.105673 10.1109/TCYB.2016.2602561 10.1631/jzus.2004.0378 10.1109/TCBB.2015.2476796 10.1016/j.asoc.2007.07.005 10.1016/j.asoc.2018.12.031 10.1109/TEVC.2016.2519378 10.1109/4235.996017 10.1109/TEVC.2017.2771451 10.1016/j.asoc.2020.106996 10.1016/j.asoc.2017.08.004 10.1109/TEVC.2016.2587749 10.1109/TEVC.2007.892759 10.2307/3001968 10.1109/TEVC.2015.2424251 10.1109/ACCESS.2019.2957637 10.1007/s11721-017-0144-7 10.1109/TEVC.2013.2281535 10.1109/TEVC.2011.2169966 10.1109/TCYB.2018.2849403 10.1109/TCYB.2015.2510698 10.1007/s00500-013-1138-z |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2021.100987 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2021_100987 S2210650221001498 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c348t-e4693aa4ef38e281423be5b973573f87b05ce734f7e0b1570f7feca9dcca1f3 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782991200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Wed Nov 05 20:52:58 EST 2025 Tue Nov 18 22:11:47 EST 2025 Fri Feb 23 02:44:09 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic multi-objective optimization Particle swarm optimization Adversarial decomposition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-e4693aa4ef38e281423be5b973573f87b05ce734f7e0b1570f7feca9dcca1f3 |
| OpenAccessLink | https://dora.dmu.ac.uk/bitstreams/6c417fb8-2da6-4b8e-88a1-07c1c84ee0ae/download |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2021_100987 crossref_citationtrail_10_1016_j_swevo_2021_100987 elsevier_sciencedirect_doi_10_1016_j_swevo_2021_100987 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yang, Tinós (bib0038) 2007; 4 Li, Yang (bib0043) 2012; 16 Vavak, Fogarty, Jukes (bib0036) 1996 Wang, Li (bib0055) 2009 Gee, Tan, Alippi (bib0050) 2017; 47 Hu, Yen (bib0008) 2013; 19 Ruan, Yu, Zheng, Zou, Yang (bib0064) 2017; 58 Cheng, Jin, Olhofer, Sendhoff (bib0027) 2016; 20 Halim, Ismail, Das (bib0063) 2020 Cai, Sun, Zhang, Huang (bib0005) 2018; 49 Altan (bib0003) 2020 Zheng, Zhou, Zou, Yang, Ou, Hu (bib0011) 2020; 60 Deb, Pratap, Agarwal, Meyarivan (bib0034) 2002; 6 Branke (bib0053) 1999; 3 Andres-Toro, Giron-Sierra, Fernandez-Blanco, Lopez-Orozco, Besada-Portas (bib0015) 2004; 5 Deb, Karthik (bib0012) 2007 Chang, Hsu, Lin, Chang, Ho (bib0041) 2017; 5 Altan, Parlak (bib0002) 2020 Yang (bib0040) 2007 Miettinen, Mäkelä (bib0058) 2002; 24 Zhou, Jin, Zhang, Sendhoff, Tsang (bib0065) 2007 Miao, Dunwei, Yong, Yaochu, Witold (bib0030) 2018 Goh, Tan (bib0037) 2009; 13 Altan, Karasu, Zio (bib0001) 2021; 100 Cao, Xu, Goodman, Li (bib0023) 2019; 76 Di Barba (bib0020) 2008; 44 Farina, Deb, Amato (bib0010) 2004; 8 Cai, Xia, Zhang, Mei, Hu, Wang, Hu (bib0004) 2019 Muruganantham, Tan, Vadakkepat (bib0049) 2015; 46 Deb, Jain (bib0068) 2014; 18 Liu, Li, Mu, Jiao (bib0029) 2017; 261 Wang, Zhang, Zhang (bib0057) 2016; 20 Azevedo, Araújo (bib0039) 2011 Tantar, Tantar, Bouvry (bib0031) 2011 Koo, Goh, Tan (bib0056) 2010; 2 Li, Yao (bib0026) 2020; 28 Schott (bib0067) 1995 Díaz-Manríquez, Pulido, Ramírez-Torres (bib0007) 2010 Li, Rui, Tao, Ishibuchi (bib0070) 2018; 6 Zhou, Jin, Zhang (bib0047) 2014; 44 Jiang, Yang (bib0033) 2017; 47 Zhou, Jin, Zhang (bib0032) 2013; 44 Cobb (bib0035) 1990 Hatzakis, Wallace (bib0046) 2006 Zhang, Li (bib0022) 2007; 11 Ou, Zheng, Ruan, Hu, Zou, Li, Yang, Tan (bib0024) 2019; 85 Wu, Li, Kwong, Zhang (bib0028) 2018 Li, Chen, Gong, Lin, Ming (bib0061) 2019; 7 Isaacs, Puttige, Ray, Smith, Anavatti (bib0018) 2008 Hu, Zheng, Zou, Yang, Ou, Wang (bib0054) 2020 Ziztler, Laumanns, Thiele (bib0062) 2002 Helbig, Engelbrecht (bib0045) 2011 Bui, Michalewicz (bib0019) 2010 Jiang, Huang, Qiu, Huang, Yen (bib0051) 2017; 22 Biswas, Das, Kundu, Patra (bib0044) 2014; 18 Zou, Li, Yang, Bai, Zheng (bib0066) 2017; 61 Abello, Bui, Michalewicz (bib0013) 2011 Zhang, Gong, Cheng (bib0009) 2015; 14 Tantar, Tantar, Bouvry (bib0017) 2011 Ishibuchi, Yu, Masuda, Nojima (bib0025) 2017; 21 Rambabu, Vadakkepat, Tan, Jiang (bib0052) 2019 Wilcoxon (bib0069) 1945; 1 Tezuka, Munetomo, Akama (bib0014) 2007 Kim, McKay, Moon (bib0021) 2010 Jiang, Yang (bib0042) 2017; PP Zhang (bib0016) 2008; 8 Erskine, Joyce, Herrmann (bib0059) 2017; 11 Wang, Xiang, Cai (bib0048) 2012; 12 Zhou, Zhang (bib0060) 2015; 20 Xue, Tang, Xu, Liang, Neri (bib0006) 2021 Miettinen (10.1016/j.swevo.2021.100987_bib0058) 2002; 24 Chang (10.1016/j.swevo.2021.100987_bib0041) 2017; 5 Abello (10.1016/j.swevo.2021.100987_bib0013) 2011 Tantar (10.1016/j.swevo.2021.100987_bib0031) 2011 Li (10.1016/j.swevo.2021.100987_bib0070) 2018; 6 Halim (10.1016/j.swevo.2021.100987_bib0063) 2020 Deb (10.1016/j.swevo.2021.100987_bib0034) 2002; 6 Wang (10.1016/j.swevo.2021.100987_bib0048) 2012; 12 Rambabu (10.1016/j.swevo.2021.100987_bib0052) 2019 Altan (10.1016/j.swevo.2021.100987_bib0001) 2021; 100 Cobb (10.1016/j.swevo.2021.100987_bib0035) 1990 Yang (10.1016/j.swevo.2021.100987_bib0038) 2007; 4 Xue (10.1016/j.swevo.2021.100987_bib0006) 2021 Zhou (10.1016/j.swevo.2021.100987_bib0065) 2007 Deb (10.1016/j.swevo.2021.100987_bib0012) 2007 Isaacs (10.1016/j.swevo.2021.100987_bib0018) 2008 Kim (10.1016/j.swevo.2021.100987_bib0021) 2010 Tantar (10.1016/j.swevo.2021.100987_bib0017) 2011 Wu (10.1016/j.swevo.2021.100987_bib0028) 2018 Deb (10.1016/j.swevo.2021.100987_bib0068) 2014; 18 Jiang (10.1016/j.swevo.2021.100987_bib0033) 2017; 47 Zhou (10.1016/j.swevo.2021.100987_bib0060) 2015; 20 Cheng (10.1016/j.swevo.2021.100987_bib0027) 2016; 20 Zhang (10.1016/j.swevo.2021.100987_bib0016) 2008; 8 Branke (10.1016/j.swevo.2021.100987_bib0053) 1999; 3 Cai (10.1016/j.swevo.2021.100987_bib0005) 2018; 49 Li (10.1016/j.swevo.2021.100987_bib0026) 2020; 28 Goh (10.1016/j.swevo.2021.100987_bib0037) 2009; 13 Díaz-Manríquez (10.1016/j.swevo.2021.100987_bib0007) 2010 Ziztler (10.1016/j.swevo.2021.100987_bib0062) 2002 Di Barba (10.1016/j.swevo.2021.100987_bib0020) 2008; 44 Wilcoxon (10.1016/j.swevo.2021.100987_bib0069) 1945; 1 Jiang (10.1016/j.swevo.2021.100987_bib0051) 2017; 22 Liu (10.1016/j.swevo.2021.100987_bib0029) 2017; 261 Azevedo (10.1016/j.swevo.2021.100987_bib0039) 2011 Altan (10.1016/j.swevo.2021.100987_bib0003) 2020 Zheng (10.1016/j.swevo.2021.100987_bib0011) 2020; 60 Andres-Toro (10.1016/j.swevo.2021.100987_bib0015) 2004; 5 Li (10.1016/j.swevo.2021.100987_bib0061) 2019; 7 Schott (10.1016/j.swevo.2021.100987_bib0067) 1995 Bui (10.1016/j.swevo.2021.100987_bib0019) 2010 Jiang (10.1016/j.swevo.2021.100987_sbref0042) 2017; PP Farina (10.1016/j.swevo.2021.100987_bib0010) 2004; 8 Koo (10.1016/j.swevo.2021.100987_bib0056) 2010; 2 Zhang (10.1016/j.swevo.2021.100987_bib0022) 2007; 11 Vavak (10.1016/j.swevo.2021.100987_bib0036) 1996 Erskine (10.1016/j.swevo.2021.100987_bib0059) 2017; 11 Cai (10.1016/j.swevo.2021.100987_bib0004) 2019 Li (10.1016/j.swevo.2021.100987_bib0043) 2012; 16 Wang (10.1016/j.swevo.2021.100987_bib0057) 2016; 20 Hatzakis (10.1016/j.swevo.2021.100987_bib0046) 2006 Muruganantham (10.1016/j.swevo.2021.100987_bib0049) 2015; 46 Zhang (10.1016/j.swevo.2021.100987_bib0009) 2015; 14 Gee (10.1016/j.swevo.2021.100987_bib0050) 2017; 47 Hu (10.1016/j.swevo.2021.100987_bib0054) 2020 Zhou (10.1016/j.swevo.2021.100987_bib0047) 2014; 44 Helbig (10.1016/j.swevo.2021.100987_bib0045) 2011 Biswas (10.1016/j.swevo.2021.100987_bib0044) 2014; 18 Zou (10.1016/j.swevo.2021.100987_bib0066) 2017; 61 Miao (10.1016/j.swevo.2021.100987_bib0030) 2018 Wang (10.1016/j.swevo.2021.100987_bib0055) 2009 Hu (10.1016/j.swevo.2021.100987_bib0008) 2013; 19 Ishibuchi (10.1016/j.swevo.2021.100987_bib0025) 2017; 21 Zhou (10.1016/j.swevo.2021.100987_bib0032) 2013; 44 Cao (10.1016/j.swevo.2021.100987_bib0023) 2019; 76 Tezuka (10.1016/j.swevo.2021.100987_bib0014) 2007 Ou (10.1016/j.swevo.2021.100987_bib0024) 2019; 85 Altan (10.1016/j.swevo.2021.100987_bib0002) 2020 Yang (10.1016/j.swevo.2021.100987_bib0040) 2007 Ruan (10.1016/j.swevo.2021.100987_bib0064) 2017; 58 |
| References_xml | – volume: 44 start-page: 40 year: 2014 end-page: 53 ident: bib0047 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans Cybern – year: 2021 ident: bib0006 article-title: Multi-objective feature selection with missing data in classification publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – start-page: 627 year: 2007 end-page: 636 ident: bib0040 article-title: Genetic algorithms with elitism-based immigrants for changing optimization problems publication-title: Workshops on Applications of Evolutionary Computation – volume: 14 start-page: 64 year: 2015 end-page: 75 ident: bib0009 article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 85 start-page: 105673 year: 2019 ident: bib0024 article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization publication-title: Appl Soft Comput – volume: 47 start-page: 4223 year: 2017 end-page: 4234 ident: bib0050 article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach publication-title: IEEE Trans Cybern – year: 2018 ident: bib0028 article-title: Evolutionary many-objective optimization based on adversarial decomposition publication-title: IEEE Trans Cybern – start-page: 548 year: 2008 end-page: 554 ident: bib0018 article-title: Development of a memetic algorithm for dynamic multi-objective optimization and its applications for online neural network modeling of uavs publication-title: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on – volume: 16 start-page: 556 year: 2012 end-page: 577 ident: bib0043 article-title: A general framework of multipopulation methods with clustering in undetectable dynamic environments publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2020 end-page: 5 ident: bib0002 article-title: Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs publication-title: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU) – volume: 49 start-page: 3586 year: 2018 end-page: 3598 ident: bib0005 article-title: A grid weighted sum pareto local search for combinatorial multi and many-objective optimization publication-title: IEEE Trans Cybern – volume: 22 start-page: 501 year: 2017 end-page: 514 ident: bib0051 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 7 start-page: 177082 year: 2019 end-page: 177100 ident: bib0061 article-title: A novel hybrid multi-objective particle swarm optimization algorithm with an adaptive resource allocation strategy publication-title: IEEE Access – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0034 article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii publication-title: IEEE Trans. Evol. Comput. – volume: 28 start-page: 227 year: 2020 end-page: 253 ident: bib0026 article-title: What weights work for you? adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 295 year: 2017 end-page: 315 ident: bib0059 article-title: Stochastic stability of particle swarm optimisation publication-title: Swarm Intell. – volume: 8 start-page: 959 year: 2008 end-page: 971 ident: bib0016 article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control publication-title: Appl Soft Comput – volume: 24 start-page: 193 year: 2002 end-page: 213 ident: bib0058 article-title: On scalarizing functions in multiobjective optimization publication-title: OR spectrum – start-page: 803 year: 2007 end-page: 817 ident: bib0012 article-title: Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling publication-title: Evolutionary Multi-Criterion Optimization – volume: 20 start-page: 821 year: 2016 end-page: 837 ident: bib0057 article-title: Decomposition-based algorithms using pareto adaptive scalarizing methods publication-title: IEEE Trans. Evol. Comput. – start-page: 2047 year: 2011 end-page: 2054 ident: bib0045 article-title: Archive management for dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC) – volume: 8 start-page: 425 year: 2004 end-page: 442 ident: bib0010 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. – volume: 20 year: 2016 ident: bib0027 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 103 year: 2009 end-page: 127 ident: bib0037 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2010 end-page: 8 ident: bib0019 article-title: An evolutionary multi-objective approach for dynamic mission planning publication-title: 2010 IEEE Congress of Evolutionary Computation (CEC) – start-page: 2033 year: 2011 end-page: 2040 ident: bib0039 article-title: Generalized immigration schemes for dynamic evolutionary multiobjective optimization publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC) – start-page: 1 year: 2020 end-page: 87 ident: bib0063 article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review publication-title: Artif Intell Rev – year: 2007 ident: bib0014 article-title: Genetic Algorithm to Optimize Fitness Function with Sampling Error and its Application to Financial Optimization Problem – volume: 12 start-page: 3526 year: 2012 end-page: 3538 ident: bib0048 article-title: A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator publication-title: Appl Soft Comput – volume: 5 start-page: 378 year: 2004 end-page: 389 ident: bib0015 article-title: Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms publication-title: Journal of Zhejiang University SCIENCE – start-page: 1179 year: 2010 end-page: 1186 ident: bib0021 article-title: Multiobjective evolutionary algorithms for dynamic social network clustering publication-title: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation – volume: 261 start-page: 1028 year: 2017 end-page: 1051 ident: bib0029 article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization publication-title: Eur J Oper Res – volume: 47 start-page: 198 year: 2017 end-page: 211 ident: bib0033 article-title: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons publication-title: IEEE Trans Cybern – start-page: 1201 year: 2006 end-page: 1208 ident: bib0046 article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach publication-title: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib0022 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – start-page: 832 year: 2007 end-page: 846 ident: bib0065 article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization publication-title: Evolutionary Multi-Criterion Optimization – volume: 19 start-page: 1 year: 2013 end-page: 18 ident: bib0008 article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system publication-title: IEEE Trans. Evol. Comput. – start-page: 376 year: 1996 end-page: 385 ident: bib0036 article-title: A genetic algorithm with variable range of local search for tracking changing environments publication-title: International Conference on Parallel Problem Solving from Nature – start-page: 2759 year: 2011 end-page: 2766 ident: bib0017 article-title: On dynamic multi-objective optimization, classification and performance measures publication-title: IEEE Transactions on Evolutionary Computation – year: 2020 ident: bib0054 article-title: A dynamic multi-objective evolutionary algorithm based on intensity of environmental change publication-title: Inf Sci (Ny) – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib0068 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – year: 2019 ident: bib0052 article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans Cybern – volume: 3 start-page: 1875 year: 1999 end-page: 1882 ident: bib0053 article-title: Memory enhanced evolutionary algorithms for changing optimization problems publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) – volume: 2 start-page: 87 year: 2010 end-page: 110 ident: bib0056 article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment publication-title: Memetic Computing – volume: 76 start-page: 473 year: 2019 end-page: 490 ident: bib0023 article-title: Decomposition-based evolutionary dynamic multiobjective optimization using a difference model publication-title: Appl Soft Comput – volume: 18 start-page: 1199 year: 2014 end-page: 1212 ident: bib0044 article-title: Utilizing time-linkage property in dops: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments publication-title: Soft comput – volume: 60 start-page: 100786 year: 2020 ident: bib0011 article-title: A prediction strategy based on decision variable analysis for dynamic multi-objective optimization publication-title: Swarm Evol Comput – year: 1990 ident: bib0035 article-title: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments publication-title: Nrl Memorandum Report – year: 2019 ident: bib0004 article-title: The collaborative local search based on dynamic-constrained decomposition with grids for combinatorial multiobjective optimization publication-title: IEEE Trans Cybern – volume: 5 start-page: 7648 year: 2017 end-page: 7658 ident: bib0041 article-title: Query-based learning for dynamic particle swarm optimization publication-title: IEEE Access – volume: PP year: 2017 ident: bib0042 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 58 start-page: 631 year: 2017 end-page: 647 ident: bib0064 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl Soft Comput – start-page: 1 year: 2020 end-page: 6 ident: bib0003 article-title: Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following publication-title: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) – volume: 44 start-page: 962 year: 2008 end-page: 965 ident: bib0020 article-title: Dynamic multiobjective optimization: a way to the shape design with transient magnetic fields publication-title: IEEE Trans Magn – start-page: 337 year: 2010 end-page: 342 ident: bib0007 article-title: Handling dynamic multiobjective problems with particle swarm optimization publication-title: ICAART (1) – start-page: 1 year: 2018 end-page: 13 ident: bib0030 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans Cybern – volume: 4 start-page: 243 year: 2007 end-page: 254 ident: bib0038 article-title: A hybrid immigrants scheme for genetic algorithms in dynamic environments publication-title: Int. J. Autom. Comput. – volume: 61 start-page: 806 year: 2017 end-page: 818 ident: bib0066 article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization publication-title: Appl Soft Comput – volume: 20 start-page: 52 year: 2015 end-page: 64 ident: bib0060 article-title: Are all the subproblems equally important? resource allocation in decomposition-based multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: bib0069 article-title: Individual comparisons by ranking methods publication-title: Biometrics bulletin – volume: 21 start-page: 169 year: 2017 end-page: 190 ident: bib0025 article-title: Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 1 year: 2018 ident: bib0070 article-title: Evolutionary many-objective optimization: acomparative study of the state-of-the-art publication-title: IEEE Access – start-page: 630 year: 2009 end-page: 637 ident: bib0055 article-title: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment publication-title: 2009 IEEE Congress on Evolutionary Computation – start-page: 95 year: 2002 end-page: 100 ident: bib0062 article-title: Spea2: improving the strength pareto evolutionary algorithm for multiobjective optimization publication-title: Evolutionary Methods for Design, Optimization, and Control – start-page: 1711 year: 2011 end-page: 1718 ident: bib0013 article-title: An adaptive approach for solving dynamic scheduling with time-varying number of tasks part ii publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC) – volume: 100 start-page: 106996 year: 2021 ident: bib0001 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl Soft Comput – volume: 44 start-page: 40 year: 2013 end-page: 53 ident: bib0032 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans Cybern – year: 1995 ident: bib0067 article-title: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization publication-title: Technical Report – start-page: 2759 year: 2011 end-page: 2766 ident: bib0031 article-title: On dynamic multi-objective optimization, classification and performance measures publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC) – volume: 46 start-page: 2862 year: 2015 ident: bib0049 article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction publication-title: IEEE Trans Cybern – start-page: 1201 year: 2006 ident: 10.1016/j.swevo.2021.100987_bib0046 article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach – volume: 58 start-page: 631 year: 2017 ident: 10.1016/j.swevo.2021.100987_bib0064 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.05.008 – volume: 261 start-page: 1028 issue: 3 year: 2017 ident: 10.1016/j.swevo.2021.100987_bib0029 article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.03.048 – start-page: 95 year: 2002 ident: 10.1016/j.swevo.2021.100987_bib0062 article-title: Spea2: improving the strength pareto evolutionary algorithm for multiobjective optimization publication-title: Evolutionary Methods for Design, Optimization, and Control – volume: 2 start-page: 87 issue: 2 year: 2010 ident: 10.1016/j.swevo.2021.100987_bib0056 article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment publication-title: Memetic Computing doi: 10.1007/s12293-009-0026-7 – start-page: 2033 year: 2011 ident: 10.1016/j.swevo.2021.100987_bib0039 article-title: Generalized immigration schemes for dynamic evolutionary multiobjective optimization – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.swevo.2021.100987_bib0070 article-title: Evolutionary many-objective optimization: acomparative study of the state-of-the-art publication-title: IEEE Access – start-page: 337 year: 2010 ident: 10.1016/j.swevo.2021.100987_bib0007 article-title: Handling dynamic multiobjective problems with particle swarm optimization – volume: 44 start-page: 40 issue: 1 year: 2013 ident: 10.1016/j.swevo.2021.100987_bib0032 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2245892 – start-page: 1 year: 2020 ident: 10.1016/j.swevo.2021.100987_bib0003 article-title: Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following – volume: 5 start-page: 7648 year: 2017 ident: 10.1016/j.swevo.2021.100987_bib0041 article-title: Query-based learning for dynamic particle swarm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2694843 – year: 2019 ident: 10.1016/j.swevo.2021.100987_bib0052 article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans Cybern – volume: 60 start-page: 100786 year: 2020 ident: 10.1016/j.swevo.2021.100987_bib0011 article-title: A prediction strategy based on decision variable analysis for dynamic multi-objective optimization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100786 – year: 2019 ident: 10.1016/j.swevo.2021.100987_bib0004 article-title: The collaborative local search based on dynamic-constrained decomposition with grids for combinatorial multiobjective optimization publication-title: IEEE Trans Cybern – volume: 44 start-page: 962 issue: 6 year: 2008 ident: 10.1016/j.swevo.2021.100987_bib0020 article-title: Dynamic multiobjective optimization: a way to the shape design with transient magnetic fields publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2007.916502 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: 10.1016/j.swevo.2021.100987_bib0010 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.831456 – volume: 28 start-page: 227 issue: 2 year: 2020 ident: 10.1016/j.swevo.2021.100987_bib0026 article-title: What weights work for you? adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation publication-title: IEEE Trans. Evol. Comput. – year: 2020 ident: 10.1016/j.swevo.2021.100987_bib0054 article-title: A dynamic multi-objective evolutionary algorithm based on intensity of environmental change publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2020.02.071 – volume: 4 start-page: 243 issue: 3 year: 2007 ident: 10.1016/j.swevo.2021.100987_bib0038 article-title: A hybrid immigrants scheme for genetic algorithms in dynamic environments publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-007-0243-9 – start-page: 803 year: 2007 ident: 10.1016/j.swevo.2021.100987_bib0012 article-title: Dynamic multi-objective optimization and decision-making using modified nsga-ii: a case study on hydro-thermal power scheduling – year: 2018 ident: 10.1016/j.swevo.2021.100987_bib0028 article-title: Evolutionary many-objective optimization based on adversarial decomposition publication-title: IEEE Trans Cybern – volume: 24 start-page: 193 issue: 2 year: 2002 ident: 10.1016/j.swevo.2021.100987_bib0058 article-title: On scalarizing functions in multiobjective optimization publication-title: OR spectrum doi: 10.1007/s00291-001-0092-9 – start-page: 1179 year: 2010 ident: 10.1016/j.swevo.2021.100987_bib0021 article-title: Multiobjective evolutionary algorithms for dynamic social network clustering – volume: 46 start-page: 2862 issue: 12 year: 2015 ident: 10.1016/j.swevo.2021.100987_bib0049 article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2490738 – start-page: 2759 year: 2011 ident: 10.1016/j.swevo.2021.100987_bib0017 article-title: On dynamic multi-objective optimization, classification and performance measures – volume: 13 start-page: 103 issue: 1 year: 2009 ident: 10.1016/j.swevo.2021.100987_bib0037 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.920671 – year: 1995 ident: 10.1016/j.swevo.2021.100987_bib0067 article-title: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization – volume: 20 start-page: 821 issue: 6 year: 2016 ident: 10.1016/j.swevo.2021.100987_bib0057 article-title: Decomposition-based algorithms using pareto adaptive scalarizing methods publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2521175 – year: 2007 ident: 10.1016/j.swevo.2021.100987_bib0014 – volume: 44 start-page: 40 issue: 1 year: 2014 ident: 10.1016/j.swevo.2021.100987_bib0047 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2245892 – volume: 12 start-page: 3526 issue: 11 year: 2012 ident: 10.1016/j.swevo.2021.100987_bib0048 article-title: A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.06.008 – start-page: 1 year: 2020 ident: 10.1016/j.swevo.2021.100987_bib0063 article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review publication-title: Artif Intell Rev – start-page: 1711 year: 2011 ident: 10.1016/j.swevo.2021.100987_bib0013 article-title: An adaptive approach for solving dynamic scheduling with time-varying number of tasks part ii – volume: 85 start-page: 105673 year: 2019 ident: 10.1016/j.swevo.2021.100987_bib0024 article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105673 – start-page: 376 year: 1996 ident: 10.1016/j.swevo.2021.100987_bib0036 article-title: A genetic algorithm with variable range of local search for tracking changing environments – year: 2021 ident: 10.1016/j.swevo.2021.100987_bib0006 article-title: Multi-objective feature selection with missing data in classification publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – year: 1990 ident: 10.1016/j.swevo.2021.100987_bib0035 article-title: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments publication-title: Nrl Memorandum Report – start-page: 627 year: 2007 ident: 10.1016/j.swevo.2021.100987_bib0040 article-title: Genetic algorithms with elitism-based immigrants for changing optimization problems – volume: 47 start-page: 4223 issue: 12 year: 2017 ident: 10.1016/j.swevo.2021.100987_bib0050 article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2602561 – volume: PP issue: 99 year: 2017 ident: 10.1016/j.swevo.2021.100987_sbref0042 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 5 start-page: 378 issue: 4 year: 2004 ident: 10.1016/j.swevo.2021.100987_bib0015 article-title: Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms publication-title: Journal of Zhejiang University SCIENCE doi: 10.1631/jzus.2004.0378 – volume: 14 start-page: 64 issue: 1 year: 2015 ident: 10.1016/j.swevo.2021.100987_bib0009 article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2015.2476796 – volume: 8 start-page: 959 issue: 2 year: 2008 ident: 10.1016/j.swevo.2021.100987_bib0016 article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.07.005 – volume: 76 start-page: 473 year: 2019 ident: 10.1016/j.swevo.2021.100987_bib0023 article-title: Decomposition-based evolutionary dynamic multiobjective optimization using a difference model publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.12.031 – volume: 20 issue: 5 year: 2016 ident: 10.1016/j.swevo.2021.100987_bib0027 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – volume: 19 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.swevo.2021.100987_bib0008 article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.swevo.2021.100987_bib0034 article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 22 start-page: 501 issue: 4 year: 2017 ident: 10.1016/j.swevo.2021.100987_bib0051 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2771451 – start-page: 2047 year: 2011 ident: 10.1016/j.swevo.2021.100987_bib0045 article-title: Archive management for dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation – start-page: 832 year: 2007 ident: 10.1016/j.swevo.2021.100987_bib0065 article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization – volume: 100 start-page: 106996 year: 2021 ident: 10.1016/j.swevo.2021.100987_bib0001 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106996 – start-page: 548 year: 2008 ident: 10.1016/j.swevo.2021.100987_bib0018 article-title: Development of a memetic algorithm for dynamic multi-objective optimization and its applications for online neural network modeling of uavs – start-page: 630 year: 2009 ident: 10.1016/j.swevo.2021.100987_bib0055 article-title: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment – volume: 61 start-page: 806 year: 2017 ident: 10.1016/j.swevo.2021.100987_bib0066 article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.08.004 – volume: 21 start-page: 169 issue: 2 year: 2017 ident: 10.1016/j.swevo.2021.100987_bib0025 article-title: Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2587749 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.swevo.2021.100987_bib0022 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.swevo.2021.100987_bib0069 article-title: Individual comparisons by ranking methods publication-title: Biometrics bulletin doi: 10.2307/3001968 – volume: 20 start-page: 52 issue: 1 year: 2015 ident: 10.1016/j.swevo.2021.100987_bib0060 article-title: Are all the subproblems equally important? resource allocation in decomposition-based multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2424251 – volume: 7 start-page: 177082 year: 2019 ident: 10.1016/j.swevo.2021.100987_bib0061 article-title: A novel hybrid multi-objective particle swarm optimization algorithm with an adaptive resource allocation strategy publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957637 – start-page: 2759 year: 2011 ident: 10.1016/j.swevo.2021.100987_bib0031 article-title: On dynamic multi-objective optimization, classification and performance measures – volume: 11 start-page: 295 issue: 3–4 year: 2017 ident: 10.1016/j.swevo.2021.100987_bib0059 article-title: Stochastic stability of particle swarm optimisation publication-title: Swarm Intell. doi: 10.1007/s11721-017-0144-7 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.swevo.2021.100987_bib0068 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – start-page: 1 year: 2010 ident: 10.1016/j.swevo.2021.100987_bib0019 article-title: An evolutionary multi-objective approach for dynamic mission planning – volume: 16 start-page: 556 issue: 4 year: 2012 ident: 10.1016/j.swevo.2021.100987_bib0043 article-title: A general framework of multipopulation methods with clustering in undetectable dynamic environments publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2011.2169966 – start-page: 1 year: 2020 ident: 10.1016/j.swevo.2021.100987_bib0002 article-title: Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs – volume: 49 start-page: 3586 issue: 9 year: 2018 ident: 10.1016/j.swevo.2021.100987_bib0005 article-title: A grid weighted sum pareto local search for combinatorial multi and many-objective optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2849403 – start-page: 1 year: 2018 ident: 10.1016/j.swevo.2021.100987_bib0030 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans Cybern – volume: 47 start-page: 198 issue: 1 year: 2017 ident: 10.1016/j.swevo.2021.100987_bib0033 article-title: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2510698 – volume: 18 start-page: 1199 issue: 6 year: 2014 ident: 10.1016/j.swevo.2021.100987_bib0044 article-title: Utilizing time-linkage property in dops: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments publication-title: Soft comput doi: 10.1007/s00500-013-1138-z – volume: 3 start-page: 1875 year: 1999 ident: 10.1016/j.swevo.2021.100987_bib0053 article-title: Memory enhanced evolutionary algorithms for changing optimization problems |
| SSID | ssj0000602559 |
| Score | 2.477719 |
| Snippet | Many multi-objective optimization problems in the real world are dynamic, with objectives that conflict and change over time. These problems put higher demands... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100987 |
| SubjectTerms | Adversarial decomposition Dynamic multi-objective optimization Particle swarm optimization |
| Title | A dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution |
| URI | https://dx.doi.org/10.1016/j.swevo.2021.100987 |
| Volume | 69 |
| WOSCitedRecordID | wos000782991200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMXKC9RoGgP3Iwrr19rHyNU1CJUIbWH0Itlr8dNosSO8mo48GP4p8w-_EipInrgYkWT9djOfJmdGc-DkI8MTdAYLWWbge_aPkBoZ04e2p6AMOCZAyxThcLf-MVFNBzG33u933UtzGbKyzLabuP5fxU10lDYsnT2AeJumCIBP6PQ8Yhix-M_CX5g5XrKvE4WtKtsopWaNTerreVtuphZFWqLmSnDtNLpTbUYr0YzS-5ruXyHkMpZzctUjfXIQeaemwQv9cKhlDFVBJBqiwwb80hdW_dSXUWubb6WKXpCzZHYSQC4HoFJDB6Xo3Xakk0w-xp-rhtitdbVJC2sf9Qxb8lmi3i_6cYy0A1ukrm0ynPRAbXRZtzRz3qUi1GwTDZA5ffqfh2GmJwsb_Gp0PN32Um7erfT9p0dsMlLrFPeJolikkgmiWbyiBy4HGHdJweD89Ph1yaQ54TKLZNDDOu7r7tbqTzCv27nfguoY9VcHZKnxh2hAw2M56QH5QvyrB71QY3mf0l-DahBFb2DKlqjiipU0S6qaIMqqlBFJalFFd1BFUWk0C6qaAObV-Tyy-nV5zPbTO6whedHKxv8MPbS1IfCi8CNGNrsGQRZzL2Ae0WEOiAQwD2_4OBkLOBOwQsQaZyjPmGF95r0y6qEN4QGBe5IgYig8GUnvTyNMgEszAo0-xmI8Ii49W-ZCNPUXs5WmSZ7RHlEPjUnzXVPl_3Lw1pIiTFLtbmZIPL2nfj2Ydd5R560_4n3pL9arOGYPBab1Xi5-GBg9wdLHLkf |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+multi-objective+particle+swarm+optimization+algorithm+based+on+adversarial+decomposition+and+neighborhood+evolution&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Zheng%2C+Jinhua&rft.au=Zhang%2C+Zeyu&rft.au=Zou%2C+Juan&rft.au=Yang%2C+Shengxiang&rft.date=2022-03-01&rft.issn=2210-6502&rft.volume=69&rft.spage=100987&rft_id=info:doi/10.1016%2Fj.swevo.2021.100987&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2021_100987 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |