Multimodel ensemble estimation of Landsat-like global terrestrial latent heat flux using a generalized deep CNN-LSTM integration algorithm

•CNN-LSTM-ILE outperforms all the LE products used in integration method.•CNN-LSTM-ILE that combines information from LE products, EC and topography.•The spatial and temporal information of the forcing inputs were integrated. Accurate estimates of high-spatial-resolution global terrestrial latent he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural and forest meteorology Jg. 349; S. 109962
Hauptverfasser: Guo, Xiaozheng, Yao, Yunjun, Tang, Qingxin, Liang, Shunlin, Shao, Changliang, Fisher, Joshua B., Chen, Jiquan, Jia, Kun, Zhang, Xiaotong, Shang, Ke, Yang, Junming, Yu, Ruiyang, Xie, Zijing, Liu, Lu, Ning, Jing, Zhang, Lilin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.04.2024
Schlagworte:
ISSN:0168-1923, 1873-2240
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •CNN-LSTM-ILE outperforms all the LE products used in integration method.•CNN-LSTM-ILE that combines information from LE products, EC and topography.•The spatial and temporal information of the forcing inputs were integrated. Accurate estimates of high-spatial-resolution global terrestrial latent heat flux (LE) from Landsat data are crucial for many basic and applied research. Yet current Landsat-derived LE products were developed using single algorithm with large uncertainties and discrepancies. Here we proposed a convolutional neural network-long short-term memory (CNN-LSTM)-based integrated LE (CNN-LSTM-ILE) framework that integrates five Landsat-derived physical LE algorithms, topography-related variables (elevation, slope and aspect) and eddy covariance (EC) observations to estimate 30-m global terrestrial LE. CNN-LSTM-ILE not only conserves good performance of LE estimation from pure deep learning (DL) algorithm, but partially inherits physical mechanism of the individual physical algorithms for improving the generalization of the integration algorithms for extreme cases. CNN-LSTM is an algorithm that combines two deep learning structures (CNN and LSTM) to effectively utilize the spatial and temporal information contained in the forcing inputs. The data were collected from 190 globally distributed EC observations from 2000 to 2015 and were provided by FLUXNET. The cross-validation results indicated that the CNN-LSTM integration algorithm improved the LE estimates by reducing the root mean square error (RMSE) of 5–8 W/m2 and increasing Kling-Gupta efficiency (KGE) of 0.05–0.16 when compared with the individual LE algorithms and the results of three other machine learning integration algorithms (multiple linear regression, MLR; random forest, RF; and deep neural networks, DNN). The CNN-LSTM integration algorithm had highest KGE (0.81) and R2 (0.66) compared to ground-measured and was applied to generate the Landsat-like regional and global terrestrial LE. An innovation of our strategy is that the CNN-LSTM-ILE model integrates pixel proximity effects and daily LE variations to enhance the accuracy of 16-day LE estimations. This approach can produce a more reliable Landsat-like global terrestrial LE product to improve the representativeness of heterogeneous regions for monitoring hydrological variables.
AbstractList Accurate estimates of high-spatial-resolution global terrestrial latent heat flux (LE) from Landsat data are crucial for many basic and applied research. Yet current Landsat-derived LE products were developed using single algorithm with large uncertainties and discrepancies. Here we proposed a convolutional neural network-long short-term memory (CNN-LSTM)-based integrated LE (CNN-LSTM-ILE) framework that integrates five Landsat-derived physical LE algorithms, topography-related variables (elevation, slope and aspect) and eddy covariance (EC) observations to estimate 30-m global terrestrial LE. CNN-LSTM-ILE not only conserves good performance of LE estimation from pure deep learning (DL) algorithm, but partially inherits physical mechanism of the individual physical algorithms for improving the generalization of the integration algorithms for extreme cases. CNN-LSTM is an algorithm that combines two deep learning structures (CNN and LSTM) to effectively utilize the spatial and temporal information contained in the forcing inputs. The data were collected from 190 globally distributed EC observations from 2000 to 2015 and were provided by FLUXNET. The cross-validation results indicated that the CNN-LSTM integration algorithm improved the LE estimates by reducing the root mean square error (RMSE) of 5–8 W/m² and increasing Kling-Gupta efficiency (KGE) of 0.05–0.16 when compared with the individual LE algorithms and the results of three other machine learning integration algorithms (multiple linear regression, MLR; random forest, RF; and deep neural networks, DNN). The CNN-LSTM integration algorithm had highest KGE (0.81) and R² (0.66) compared to ground-measured and was applied to generate the Landsat-like regional and global terrestrial LE. An innovation of our strategy is that the CNN-LSTM-ILE model integrates pixel proximity effects and daily LE variations to enhance the accuracy of 16-day LE estimations. This approach can produce a more reliable Landsat-like global terrestrial LE product to improve the representativeness of heterogeneous regions for monitoring hydrological variables.
•CNN-LSTM-ILE outperforms all the LE products used in integration method.•CNN-LSTM-ILE that combines information from LE products, EC and topography.•The spatial and temporal information of the forcing inputs were integrated. Accurate estimates of high-spatial-resolution global terrestrial latent heat flux (LE) from Landsat data are crucial for many basic and applied research. Yet current Landsat-derived LE products were developed using single algorithm with large uncertainties and discrepancies. Here we proposed a convolutional neural network-long short-term memory (CNN-LSTM)-based integrated LE (CNN-LSTM-ILE) framework that integrates five Landsat-derived physical LE algorithms, topography-related variables (elevation, slope and aspect) and eddy covariance (EC) observations to estimate 30-m global terrestrial LE. CNN-LSTM-ILE not only conserves good performance of LE estimation from pure deep learning (DL) algorithm, but partially inherits physical mechanism of the individual physical algorithms for improving the generalization of the integration algorithms for extreme cases. CNN-LSTM is an algorithm that combines two deep learning structures (CNN and LSTM) to effectively utilize the spatial and temporal information contained in the forcing inputs. The data were collected from 190 globally distributed EC observations from 2000 to 2015 and were provided by FLUXNET. The cross-validation results indicated that the CNN-LSTM integration algorithm improved the LE estimates by reducing the root mean square error (RMSE) of 5–8 W/m2 and increasing Kling-Gupta efficiency (KGE) of 0.05–0.16 when compared with the individual LE algorithms and the results of three other machine learning integration algorithms (multiple linear regression, MLR; random forest, RF; and deep neural networks, DNN). The CNN-LSTM integration algorithm had highest KGE (0.81) and R2 (0.66) compared to ground-measured and was applied to generate the Landsat-like regional and global terrestrial LE. An innovation of our strategy is that the CNN-LSTM-ILE model integrates pixel proximity effects and daily LE variations to enhance the accuracy of 16-day LE estimations. This approach can produce a more reliable Landsat-like global terrestrial LE product to improve the representativeness of heterogeneous regions for monitoring hydrological variables.
ArticleNumber 109962
Author Guo, Xiaozheng
Zhang, Xiaotong
Shang, Ke
Jia, Kun
Fisher, Joshua B.
Xie, Zijing
Zhang, Lilin
Yao, Yunjun
Shao, Changliang
Yang, Junming
Ning, Jing
Liang, Shunlin
Chen, Jiquan
Yu, Ruiyang
Tang, Qingxin
Liu, Lu
Author_xml – sequence: 1
  givenname: Xiaozheng
  surname: Guo
  fullname: Guo, Xiaozheng
  organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 2
  givenname: Yunjun
  surname: Yao
  fullname: Yao, Yunjun
  email: boyyunjun@163.com
  organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 3
  givenname: Qingxin
  surname: Tang
  fullname: Tang, Qingxin
  organization: School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
– sequence: 4
  givenname: Shunlin
  surname: Liang
  fullname: Liang, Shunlin
  organization: Department of Geographical Sciences, University of Hong Kong, Hongkong 999077, China
– sequence: 5
  givenname: Changliang
  surname: Shao
  fullname: Shao, Changliang
  organization: State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 6
  givenname: Joshua B.
  orcidid: 0000-0003-4734-9085
  surname: Fisher
  fullname: Fisher, Joshua B.
  organization: Schmid College of Science and Technology, Chapman University, University Drive, Orange, CA 92866, USA
– sequence: 7
  givenname: Jiquan
  orcidid: 0000-0003-0761-9458
  surname: Chen
  fullname: Chen, Jiquan
  organization: Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48823, USA
– sequence: 8
  givenname: Kun
  surname: Jia
  fullname: Jia, Kun
  organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 9
  givenname: Xiaotong
  surname: Zhang
  fullname: Zhang, Xiaotong
  organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 10
  givenname: Ke
  orcidid: 0000-0001-7564-6509
  surname: Shang
  fullname: Shang, Ke
  organization: School of Space Information, Space Engineering University, Beijing 101416, China
– sequence: 11
  givenname: Junming
  surname: Yang
  fullname: Yang, Junming
  organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 12
  givenname: Ruiyang
  orcidid: 0000-0001-5000-0779
  surname: Yu
  fullname: Yu, Ruiyang
  organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 13
  givenname: Zijing
  surname: Xie
  fullname: Xie, Zijing
  organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 14
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 15
  givenname: Jing
  surname: Ning
  fullname: Ning, Jing
  organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 16
  givenname: Lilin
  orcidid: 0000-0003-3350-4566
  surname: Zhang
  fullname: Zhang, Lilin
  organization: Faculty of Geo-Information and Earth Observation (ITC), University of Twente, AE Enschede 7500, the Netherlands
BookMark eNqNkMFu1DAQhi3USmy3PAM-csnWTryJc-BQrYAibcuh7dly7HHqxbEX26mAR-Cp8RLEgQucZjT6_5n5vwt05oMHhF5TsqGEtleHjRyjCXGCvKlJzcq079v6BVpR3jVVXTNyhlZFySva181LdJHSgRBad12_Qj9uZ5ftFDQ4DD7BNDjAkMpIZhs8DgbvpddJ5srZz4BHFwbpcIYYiyra0juZwWf8BDJj4-aveE7Wj1jiETxE6ex30FgDHPHu7q7a3z_cYuszjHG5IN0Yos1P0yU6N9IlePW7rtHj-3cPu5tq_-nDx931vlIN47mCU2pe3u8Nb007MGKI1oSyppGt4pwrZgappCKqY5q1BGBQxPCBwQBcD80avVn2HmP4MpcUYrJJgXPSQ5iTaOi22bZkW-itUbdIVQwpRTDiGAuZ-E1QIk5_iIP4Q1-c6IuFfnG-_cupbP4VOEdp3X_4rxc_FBLPFqJIyoJXoG0ElYUO9p87fgKtqayx
CitedBy_id crossref_primary_10_1007_s13131_024_2392_x
crossref_primary_10_1155_etep_2442893
crossref_primary_10_1016_j_ast_2025_110283
crossref_primary_10_3390_f15081472
crossref_primary_10_1016_j_jhydrol_2025_133824
Cites_doi 10.1016/j.agrformet.2017.01.009
10.1016/j.rse.2021.112440
10.1029/2012JG002027
10.1002/qj.49711146910
10.1016/j.rse.2013.08.045
10.1175/JCLI-D-16-0758.1
10.1016/j.agrformet.2021.108582
10.1016/j.agrformet.2012.11.016
10.3390/s19183929
10.1002/2016GL072235
10.1016/S0168-1923(00)00123-4
10.1016/j.ecoinf.2021.101325
10.1002/2016WR020175
10.1007/s10712-008-9037-z
10.3390/rs12172763
10.1016/j.jhydrol.2015.06.059
10.1109/5.726791
10.1016/j.agrformet.2016.04.008
10.1016/j.agrformet.2010.01.015
10.1016/j.rse.2022.112901
10.5194/hess-26-1579-2022
10.1002/hyp.8391
10.1016/j.jhydrol.2009.08.003
10.5194/bg-12-433-2015
10.1038/s41586-019-1559-7
10.1029/2010JG001566
10.1016/j.isprsjprs.2019.06.008
10.3390/s90503801
10.1016/S0034-4257(02)00096-2
10.1002/2016JD026370
10.1016/S0022-1694(98)00254-6
10.1016/j.rse.2013.05.029
10.1016/j.rse.2021.112600
10.1111/j.1365-2486.2005.001002.x
10.1109/TPAMI.2016.2577031
10.1371/journal.pone.0160150
10.1016/j.rse.2020.111716
10.3390/rs11202333
10.1016/j.agrformet.2012.11.019
10.1016/j.agwat.2010.12.015
10.1162/neco.1997.9.8.1735
10.1016/j.rse.2011.02.019
10.1016/j.rse.2021.112750
10.1038/323533a0
10.1016/S0034-4257(96)00215-5
10.3390/rs14112651
10.1029/2019WR026058
10.1016/j.rse.2007.04.015
10.1016/S0022-1694(98)00253-4
10.1029/2011JD017037
10.1071/BT07151
10.1038/nature14539
10.1016/j.rse.2006.03.014
10.1016/j.biosystemseng.2017.09.015
10.1016/j.rse.2020.112189
10.1016/j.rse.2009.10.012
10.1890/06-0922.1
10.1016/j.jhydrol.2020.124664
10.1002/2017WR022240
10.1109/TGRS.2020.3020125
10.5194/piahs-364-398-2014
10.1016/S0168-1923(02)00109-0
10.1016/j.rse.2008.07.009
10.1016/j.neunet.2005.06.042
10.1023/A:1018991015119
10.1016/S0034-4257(01)00273-5
10.1175/JCLI-D-11-00015.1
10.1016/0168-1923(95)02265-Y
10.1016/j.rse.2019.02.015
10.1016/0893-6080(91)90009-T
10.1016/j.jher.2017.10.006
10.1038/s41591-018-0316-z
10.1109/JSTARS.2010.2048556
10.5194/essd-13-447-2021
10.1016/j.agrformet.2008.06.013
10.1061/(ASCE)0733-9437(2007)133:4(380)
10.1016/j.agwat.2019.105875
10.1016/j.agrformet.2013.11.008
10.1016/j.jhydrol.2017.08.013
10.1016/j.buildenv.2018.10.024
10.3390/rs12040687
10.1029/2007GL030014
10.1016/j.rse.2010.01.022
10.1016/j.agrformet.2009.05.016
10.1016/j.rse.2015.05.013
10.1016/j.neucom.2015.09.116
10.1016/j.isprsjprs.2017.03.022
10.5589/m03-004
10.1016/j.rse.2020.111692
10.1016/j.agrformet.2013.09.003
10.3390/atmos10070373
10.1029/2011RG000373
10.1002/jgrd.50259
10.1016/j.agrformet.2018.05.010
10.1029/2019GL085291
10.5194/hess-6-85-2002
10.1016/j.isprsjprs.2022.01.005
10.1023/A:1010933404324
10.1016/j.isprsjprs.2017.02.006
10.1016/j.envsoft.2004.04.009
10.1016/j.rse.2007.06.025
10.1016/j.rse.2004.12.011
10.5194/bg-10-4055-2013
10.1002/2013JD020864
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agrformet.2024.109962
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
EISSN 1873-2240
ExternalDocumentID 10_1016_j_agrformet_2024_109962
S0168192324000777
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABLJU
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
WH7
Y6R
ZMT
~02
~G-
~KM
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
LW9
LY3
R2-
SEP
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c348t-e101681279f86f6b40f0dd01433a6c888c4fbacac0c74d460eebc0f8b4ebe8db3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001209198300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1923
IngestDate Thu Oct 02 11:41:45 EDT 2025
Sat Nov 29 07:26:20 EST 2025
Tue Nov 18 21:55:51 EST 2025
Sat Mar 30 16:18:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Integration algorithm
High-spatial-resolution products
CNN-LSTM
Latent heat flux
Landsat
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-e101681279f86f6b40f0dd01433a6c888c4fbacac0c74d460eebc0f8b4ebe8db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7564-6509
0000-0003-4734-9085
0000-0003-0761-9458
0000-0003-3350-4566
0000-0001-5000-0779
PQID 3153560587
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153560587
crossref_primary_10_1016_j_agrformet_2024_109962
crossref_citationtrail_10_1016_j_agrformet_2024_109962
elsevier_sciencedirect_doi_10_1016_j_agrformet_2024_109962
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Agricultural and forest meteorology
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shen, Jiang, Li, Cheng, Zeng, Zhang (bib0091) 2020; 240
Yuan, Liu, Yu (bib0125) 2010; 114
Foken (bib0034) 2008; 18
Widlowski, Pinty, Lavergne, Verstraete, Gobron (bib0109) 2006; 103
Liu, Xu, Song, Zhao, Ge, Xu, Ma, Zhu, Jia, Zhang (bib0068) 2016; 230
Shuttleworth, Wallace (bib0094) 1985; 111
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bib0047) 2002; 83
Kandasamy, Baret, Verger, Neveux, Weiss (bib0055) 2013; 10
McCabe, Aragon, Houborg, Mascaro (bib0074) 2017; 53
Mu, Heinsch, Zhao, Running (bib0077) 2007; 111
Gupta, Kling, Yilmaz, Martinez (bib0042) 2009; 377
Kraft, Jung, Körner, Koirala, Reichstein (bib0061) 2021; 26
Ren, He, Girshick, Sun (bib0084) 2017; 39
Hornik (bib0046) 1991; 4
Anderson, Norman, Kustas, Houborg, Starks, Agam (bib0006) 2008; 112
Talsma, Good, Jimenez, Martens, Fisher, Miralles, McCabe, Purdy (bib0098) 2018; 260-261
Twine, Kustas, Norman, Cook, Houser, Meyers, Prueger, Starks, Wesely (bib0101) 2000; 103
Cascone, Coma, Gagliano, Pérez (bib0017) 2019; 147
Mu, Zhao, Running (bib0078) 2011; 115
Masolele, De Sy, Herold, Marcos, Verbesselt, Gieseke, Mullissa, Martius (bib0072) 2021; 264
Chang, Luo (bib0018) 2019; 11
Zhao, Gentine, Reichstein, Zhang, Zhou, Wen, Lin, Li, Qiu (bib0129) 2019; 46
Allen, Pereira, Howell, Jensen (bib0002) 2011; 98
Jin, Li, Liang, Ma, Xie, Liu, He (bib0050) 2022; 6
Amazirh, Er-Raki, Chehbouni, Rivalland, Diarra, Khabba, Ezzahar, Merlin (bib0004) 2017; 164
Jung, Reichstein, Margolis, Cescatti, Richardson, Arain, Arneth, Bernhofer, Bonal, Chen, Gianelle, Gobron, Kiely, Kutsch, Lasslop, Law, Lindroth, Merbold, Montagnani, Moors, Papale, Sottocornola, Vaccari, Williams (bib0052) 2011; 116
Fisher, Lee, Purdy, Halverson, Dohlen, Cawse-Nicholson (bib0031) 2020; 56
Shang, Yao, Liang, Zhang, Fisher, Chen, Liu, Xu, Zhang, Jia, Zhang, Yang, Bei, Guo, Yu, Xie, Zhang (bib0088) 2021; 308-309
Yuan, Shen, Li, Li, Li, Jiang, Xu, Tan, Yang, Wang, Gao, Zhang (bib0124) 2020; 241
Bhattarai, Shaw, Quackenbush, Im, Niraula (bib0013) 2016; 49
Fisher, Tu, Baldocchi (bib0033) 2008; 112
Hochreiter, Schmidhuber (bib0045) 1997; 9
McVicar, Jupp (bib0076) 2002; 79
Wang, Dickinson, Wild, Liang (bib0105) 2010; 115
Liang, Feng, Fisher, Li, Li, Liu, Ma, Miyata, Mu, Sun, Tang, Wang, Wen, Xue, Yu, Zha, Zhang, Zhang, Zhao, Zhao, Yuan (bib0019) 2014; 140
Ershadi, Mccabe, Evans, Chaney, Wood (bib0027) 2014; 187
Anderson, Yang, Xue, Knipper, Yang, Gao, Hain, Kustas, Cawse-Nicholson, Hulley, Fisher, Alfieri, Meyers, Prueger, Baldocchi, Rey-Sanchez (bib0007) 2021; 252
Bastiaanssen, Menenti, Feddes, Holtslag (bib0011) 1998; 212
Mallick, Jarvis, Wohlfahrt, Kiely, Hirano, Miyata, Yamamoto, Hoffmann (bib0073) 2015; 12
Talsma, Good, Miralles, Fisher, Martens, Jiménez, Purdy (bib0097) 2018; 10
Shi, Chen, Li, Wang (bib0093) 2020; 28
Yao, Liang, Yu, Chen, Liu, Lin, Fisher, McVicar, Cheng, Jia, Zhang, Xie, Jiang, Sun (bib0122) 2017; 122
Yao, Liang, Li, Zhang, Chen, Jia, Zhang, Fisher, Wang, Zhang, Xu, Shao, Posse, Li, Magliulo, Varlagin, Moors, Boike, Macfarlane, Kato, Buchmann, Billesbach, Beringer, Wolf, Papuga, Wohlfahrt, Montagnani, Ardo, Paul-Limoges, Emmel, Hortnagl, Sachs, Gruening, Gioli, Lopez-Ballesteros, Steinbrecher, Gielen (bib0120) 2017; 553
Rumelhart, Hinton, Williams (bib0087) 1986; 323
Yamaç, Todorovic (bib0113) 2020; 228
Zhang, Liang, Zhu, Ma, He (bib0127) 2022; 185
Burchard-Levine, Nieto, Riaño, Migliavacca, El-Madany, Guzinski, Carrara, Martín (bib0016) 2021; 260
Oishi, Oren, Stoy (bib0080) 2008; 148
Esteva, Robicquet, Ramsundar, Kuleshov, DePristo, Chou, Cui, Corrado, Thrun, Dean (bib0028) 2019; 25
Li, Tang, Wan, Bi, Zhou, Tang, Yan, Zhang (bib0065) 2009; 9
Tang, Li, Tang (bib0099) 2010; 114
Yang, Shang (bib0114) 2013; 118
Glenn, Doody, Guerschman, Huete, King, McVicar, Van Dijk, Van Niel, Yebra, Zhang (bib0036) 2011; 25
Ham, Kim, Luo (bib0043) 2019; 573
Norman, Kustas, Humes (bib0079) 1995; 77
Sun, Di, Sun, Shen, Lai (bib0096) 2019
Guo, Liu, Oerlemans, Lao, Wu, Lew (bib0041) 2016; 187
Bai, Zhang, Bhattarai, Mallick, Liu, Tang, Im, Guo, Zhang (bib0009) 2021; 298
Khaldi, Khaldi, Hamimed (bib0058) 2014; 364
Wei, Wang, Jasechko, Lee, Yoshimura (bib0108) 2017
Baldocchi (bib0010) 2008; 56
Kalma, McVicar, McCabe (bib0053) 2008; 29
Kool, Agam, Lazarovitch, Heitman, Sauer, Ben-Gal (bib0059) 2014; 184
Anderson, Norman, Diak, Kustas, Mecikalski (bib0005) 1997; 60
Breiman (bib0015) 2001; 45
Allen, Tasumi, Trezza (bib0003) 2007; 133
Jiang, Han, Liang, Liang, Yin, Peng, He, Ma (bib0049) 2023; 23
Perez-Priego, El-Madany, Migliavacca, Kowalski, Jung, Carrara, Kolle, Martin, Pacheco-Labrador, Moreno, Reichstein (bib0082) 2017; 236
Jia, Liu, Xu, Chen, Zhu (bib0048) 2012; 117
Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen, Dwyer, Erb, Gao, Griffiths, Helder, Hermosillo, Hipple, Hostert, Hughes, Huntington, Johnson, Kennedy, Kilic, Li, Lymburner, McCorkel, Pahlevan, Scambos, Schaaf, Schott, Sheng, Storey, Vermote, Vogelmann, White, Wynne, Zhu (bib0112) 2019; 225
Zamani Joharestani, Cao, Ni, Bashir, Talebiesfandarani (bib0126) 2019; 10
Song, Wang, He, Wang, Liang (bib0095) 2022; 6
Gelaro, McCarty, Suarez, Todling, Molod, Takacs, Randles, Darmenov, Bosilovich, Reichle, Wargan, Coy, Cullather, Draper, Akella, Buchard, Conaty, da Silva, Gu, Kim, Koster, Lucchesi, Merkova, Nielsen, Partyka, Pawson, Putman, Rienecker, Schubert, Sienkiewicz, Zhao (bib0035) 2017; 30
Guo, Yao, Zhang, Lin, Jiang, Jia, Zhang, Xie, Zhang, Shang, Yang, Bei (bib0040) 2020; 12
Yao, Liang, Fisher, Zhang, Cheng, Chen, Jia, Zhang, Bei, Shang, Guo, Yang (bib0117) 2021; 59
Allen, Pereira, Raes, Smith, Allen, Pereira, Martin (bib0001) 1998; 56
Kormann, Meixner (bib0060) 2001; 99
Fisher, Melton, Middleton, Hain, Anderson, Allen, McCabe, Hook, Baldocchi, Townsend, Kilic, Tu, Miralles, Perret, Lagouarde, Waliser, Purdy, French, Schimel, Famiglietti, Stephens, Wood (bib0030) 2017; 53
Demarty, Chevallier, Friend, Viovy, Piao, Ciais (bib0024) 2007; 34
Lecun, Bottou, Bengio, Haffner (bib0064) 1998; 86
Liang, Wang, Zhang, Wild (bib0066) 2010; 3
Wilson, Goldstein, Falge, Aubinet, Baldocchi, Berbigier, Bernhofer, Ceulemans, Dolman, Field, Grelle, Ibrom, Law, Kowalski, Meyers, Moncrieff, Monson, Oechel, Tenhunen, Valentini, Verma (bib0110) 2002; 113
Elnashar, Wang, Wu, Zhu, Zeng (bib0026) 2021; 13
LeCun, Bengio, Hinton (bib0063) 2015; 521
Rienecker, Suarez, Gelaro, Todling, Bacmeister, Liu, Bosilovich, Schubert, Takacs, Kim, Bloom, Chen, Collins, Conaty, Da Silva, Gu, Joiner, Koster, Lucchesi, Molod, Owens, Pawson, Pegion, Redder, Reichle, Robertson, Ruddick, Sienkiewicz, Woollen (bib0085) 2011; 24
Zhao, Heinsch, Nemani (bib0128) 2005; 95
Feng, Li, Yao, Liang, Chen, Zhao, Jia, Pinter, McCaughey (bib0032) 2016; 11
Kessomkiat, Franssen, Graf, Vereecken (bib0057) 2013; 171
Yebra, Dennison, Chuvieco, Riaño, Zylstra, Hunt, Danson, Qi, Jurdao (bib0123) 2013; 136
Yao, Liang, Cheng, Liu, Fisher, Zhang, Jia, Zhao, Qin, Zhao, Han, Zhou, Zhou, Li, Zhao (bib0116) 2013; 171-172
Wagle, Bhattarai, Gowda, Kakani (bib0103) 2017; 128
Wang, Dickinson (bib0104) 2012; 50
Graves, Schmidhuber (bib0038) 2005; 18
Fisher, DeBiase, Qi, Xu, Goldstein (bib0029) 2005; 20
Mahrt (bib0071) 2010; 150
Yao, Liang, Li, Hong, Fisher, Zhang, Chen, Cheng, Zhao, Zhang, Jiang, Sun, Jia, Wang, Chen, Mu, Feng (bib0119) 2014; 119
Bastiaanssen, Pelgrum, Wang, Ma, Moreno, Roerink, van der Wal (bib0012) 1998; 212
Ke, Im, Park, Gong (bib0056) 2017; 126
Shirmard, Farahbakhsh, Müller, Chandra (bib0092) 2022; 268
Lin, Huang, Zheng, Zhang, Yuan (bib0067) 2022; 14
Goulden, Anderson, Bales, Kelly, Meadows, Winston (bib0037) 2012; 117
Bai, Bhattarai, Mallick, Zhang, Hu, Zhang (bib0008) 2022; 271
Tsagkatakis, Aidini, Fotiadou, Giannopoulos, Tsakalides (bib0100) 2019; 19
Jin, Li, Xu, Xiao, Jiang, Xue (bib0051) 2019; 154
Boulila, Ghandorh, Khan, Ahmed, Ahmad (bib0014) 2021; 64
Yao, Liang, Li, Chen, Wang, Jia, Cheng, Jiang, Fisher, Mu, Grunwald, Bemhofer, Roupsard (bib0118) 2015; 169
Kustas, Anderson (bib0062) 2009; 149
Shang, Yao, Li, Yang, Jia, Zhang, Chen, Bei, Guo (bib0089) 2020; 12
Reichstein, Falge, Baldocchi, Papale, Aubinet, Berbigier, Bernhofer, Buchmann, Gilmanov, Granier, Grünwald, Havránková, Ilvesniemi, Janous, Knohl, Laurila, Lohila, Loustau, Matteucci, Meyers, Miglietta, Ourcival, Pumpanen, Rambal, Rotenberg, Sanz, Tenhunen, Seufert, Vaccari, Vesala, Yakir, Valentini (bib0083) 2005; 11
Penman (bib0081) 1948; 193
Chen, Yuan, Xia, Fisher, Dong, Zhang, Liang, Ye, Cai, Feng (bib0021) 2015; 528
Wu, Yang, Liu, Wang (bib0111) 2020; 584
Eklundh, Hall, Eriksson, Ardo, Pilesjo (bib0025) 2003; 29
Su (bib131) 2002; 6
Kormann (10.1016/j.agrformet.2024.109962_bib0060) 2001; 99
Bastiaanssen (10.1016/j.agrformet.2024.109962_bib0012) 1998; 212
Talsma (10.1016/j.agrformet.2024.109962_bib0098) 2018; 260-261
Bhattarai (10.1016/j.agrformet.2024.109962_bib0013) 2016; 49
Kessomkiat (10.1016/j.agrformet.2024.109962_bib0057) 2013; 171
Talsma (10.1016/j.agrformet.2024.109962_bib0097) 2018; 10
Eklundh (10.1016/j.agrformet.2024.109962_bib0025) 2003; 29
Kool (10.1016/j.agrformet.2024.109962_bib0059) 2014; 184
Mallick (10.1016/j.agrformet.2024.109962_bib0073) 2015; 12
Guo (10.1016/j.agrformet.2024.109962_bib0041) 2016; 187
Cascone (10.1016/j.agrformet.2024.109962_bib0017) 2019; 147
Jin (10.1016/j.agrformet.2024.109962_bib0050) 2022; 6
Norman (10.1016/j.agrformet.2024.109962_bib0079) 1995; 77
Allen (10.1016/j.agrformet.2024.109962_bib0001) 1998; 56
Jia (10.1016/j.agrformet.2024.109962_bib0048) 2012; 117
Yao (10.1016/j.agrformet.2024.109962_bib0122) 2017; 122
Ham (10.1016/j.agrformet.2024.109962_bib0043) 2019; 573
Yao (10.1016/j.agrformet.2024.109962_bib0120) 2017; 553
Graves (10.1016/j.agrformet.2024.109962_bib0038) 2005; 18
Chang (10.1016/j.agrformet.2024.109962_bib0018) 2019; 11
Zhao (10.1016/j.agrformet.2024.109962_bib0129) 2019; 46
Mu (10.1016/j.agrformet.2024.109962_bib0077) 2007; 111
Su (10.1016/j.agrformet.2024.109962_bib131) 2002; 6
Anderson (10.1016/j.agrformet.2024.109962_bib0006) 2008; 112
Sun (10.1016/j.agrformet.2024.109962_bib0096) 2019
Feng (10.1016/j.agrformet.2024.109962_bib0032) 2016; 11
Li (10.1016/j.agrformet.2024.109962_bib0065) 2009; 9
Fisher (10.1016/j.agrformet.2024.109962_bib0030) 2017; 53
Liu (10.1016/j.agrformet.2024.109962_bib0068) 2016; 230
Zhao (10.1016/j.agrformet.2024.109962_bib0128) 2005; 95
Allen (10.1016/j.agrformet.2024.109962_bib0003) 2007; 133
Glenn (10.1016/j.agrformet.2024.109962_bib0036) 2011; 25
Widlowski (10.1016/j.agrformet.2024.109962_bib0109) 2006; 103
McVicar (10.1016/j.agrformet.2024.109962_bib0076) 2002; 79
Mu (10.1016/j.agrformet.2024.109962_bib0078) 2011; 115
Shirmard (10.1016/j.agrformet.2024.109962_bib0092) 2022; 268
Yuan (10.1016/j.agrformet.2024.109962_bib0125) 2010; 114
Wang (10.1016/j.agrformet.2024.109962_bib0104) 2012; 50
Kraft (10.1016/j.agrformet.2024.109962_bib0061) 2021; 26
Wu (10.1016/j.agrformet.2024.109962_bib0111) 2020; 584
Fisher (10.1016/j.agrformet.2024.109962_bib0029) 2005; 20
Tsagkatakis (10.1016/j.agrformet.2024.109962_bib0100) 2019; 19
Baldocchi (10.1016/j.agrformet.2024.109962_bib0010) 2008; 56
Foken (10.1016/j.agrformet.2024.109962_bib0034) 2008; 18
Khaldi (10.1016/j.agrformet.2024.109962_bib0058) 2014; 364
Burchard-Levine (10.1016/j.agrformet.2024.109962_bib0016) 2021; 260
Kandasamy (10.1016/j.agrformet.2024.109962_bib0055) 2013; 10
Tang (10.1016/j.agrformet.2024.109962_bib0099) 2010; 114
Bastiaanssen (10.1016/j.agrformet.2024.109962_bib0011) 1998; 212
Breiman (10.1016/j.agrformet.2024.109962_bib0015) 2001; 45
Lin (10.1016/j.agrformet.2024.109962_bib0067) 2022; 14
Wilson (10.1016/j.agrformet.2024.109962_bib0110) 2002; 113
Demarty (10.1016/j.agrformet.2024.109962_bib0024) 2007; 34
Shi (10.1016/j.agrformet.2024.109962_bib0093) 2020; 28
Perez-Priego (10.1016/j.agrformet.2024.109962_bib0082) 2017; 236
Zhang (10.1016/j.agrformet.2024.109962_bib0127) 2022; 185
Anderson (10.1016/j.agrformet.2024.109962_bib0005) 1997; 60
Jin (10.1016/j.agrformet.2024.109962_bib0051) 2019; 154
Anderson (10.1016/j.agrformet.2024.109962_bib0007) 2021; 252
Reichstein (10.1016/j.agrformet.2024.109962_bib0083) 2005; 11
Rienecker (10.1016/j.agrformet.2024.109962_bib0085) 2011; 24
Song (10.1016/j.agrformet.2024.109962_bib0095) 2022; 6
Yuan (10.1016/j.agrformet.2024.109962_bib0124) 2020; 241
Bai (10.1016/j.agrformet.2024.109962_bib0008) 2022; 271
Chen (10.1016/j.agrformet.2024.109962_bib0021) 2015; 528
Fisher (10.1016/j.agrformet.2024.109962_bib0031) 2020; 56
Bai (10.1016/j.agrformet.2024.109962_bib0009) 2021; 298
Boulila (10.1016/j.agrformet.2024.109962_bib0014) 2021; 64
Zamani Joharestani (10.1016/j.agrformet.2024.109962_bib0126) 2019; 10
Lecun (10.1016/j.agrformet.2024.109962_bib0064) 1998; 86
Yao (10.1016/j.agrformet.2024.109962_bib0116) 2013; 171-172
Goulden (10.1016/j.agrformet.2024.109962_bib0037) 2012; 117
Shang (10.1016/j.agrformet.2024.109962_bib0088) 2021; 308-309
Gelaro (10.1016/j.agrformet.2024.109962_bib0035) 2017; 30
Oishi (10.1016/j.agrformet.2024.109962_bib0080) 2008; 148
Jiang (10.1016/j.agrformet.2024.109962_bib0049) 2023; 23
Yamaç (10.1016/j.agrformet.2024.109962_bib0113) 2020; 228
Guo (10.1016/j.agrformet.2024.109962_bib0040) 2020; 12
Wei (10.1016/j.agrformet.2024.109962_bib0108) 2017
Ershadi (10.1016/j.agrformet.2024.109962_bib0027) 2014; 187
Allen (10.1016/j.agrformet.2024.109962_bib0002) 2011; 98
Ke (10.1016/j.agrformet.2024.109962_bib0056) 2017; 126
Jung (10.1016/j.agrformet.2024.109962_bib0052) 2011; 116
LeCun (10.1016/j.agrformet.2024.109962_bib0063) 2015; 521
Wulder (10.1016/j.agrformet.2024.109962_bib0112) 2019; 225
Amazirh (10.1016/j.agrformet.2024.109962_bib0004) 2017; 164
Wagle (10.1016/j.agrformet.2024.109962_bib0103) 2017; 128
Ren (10.1016/j.agrformet.2024.109962_bib0084) 2017; 39
Yebra (10.1016/j.agrformet.2024.109962_bib0123) 2013; 136
Elnashar (10.1016/j.agrformet.2024.109962_bib0026) 2021; 13
Liang (10.1016/j.agrformet.2024.109962_bib0066) 2010; 3
Penman (10.1016/j.agrformet.2024.109962_bib0081) 1948; 193
Huete (10.1016/j.agrformet.2024.109962_bib0047) 2002; 83
Wang (10.1016/j.agrformet.2024.109962_bib0105) 2010; 115
Yao (10.1016/j.agrformet.2024.109962_bib0118) 2015; 169
Gupta (10.1016/j.agrformet.2024.109962_bib0042) 2009; 377
Fisher (10.1016/j.agrformet.2024.109962_bib0033) 2008; 112
Masolele (10.1016/j.agrformet.2024.109962_bib0072) 2021; 264
Kustas (10.1016/j.agrformet.2024.109962_bib0062) 2009; 149
Shen (10.1016/j.agrformet.2024.109962_bib0091) 2020; 240
Twine (10.1016/j.agrformet.2024.109962_bib0101) 2000; 103
Shang (10.1016/j.agrformet.2024.109962_bib0089) 2020; 12
Yao (10.1016/j.agrformet.2024.109962_bib0119) 2014; 119
Hochreiter (10.1016/j.agrformet.2024.109962_bib0045) 1997; 9
Liang (10.1016/j.agrformet.2024.109962_bib0019) 2014; 140
Mahrt (10.1016/j.agrformet.2024.109962_bib0071) 2010; 150
Rumelhart (10.1016/j.agrformet.2024.109962_bib0087) 1986; 323
Yao (10.1016/j.agrformet.2024.109962_bib0117) 2021; 59
Shuttleworth (10.1016/j.agrformet.2024.109962_bib0094) 1985; 111
Yang (10.1016/j.agrformet.2024.109962_bib0114) 2013; 118
Kalma (10.1016/j.agrformet.2024.109962_bib0053) 2008; 29
McCabe (10.1016/j.agrformet.2024.109962_bib0074) 2017; 53
Esteva (10.1016/j.agrformet.2024.109962_bib0028) 2019; 25
Hornik (10.1016/j.agrformet.2024.109962_bib0046) 1991; 4
References_xml – volume: 49
  start-page: 75
  year: 2016
  end-page: 86
  ident: bib0013
  article-title: Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 6
  start-page: 85
  year: 2002
  end-page: 100
  ident: bib131
  article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heatfluxes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 11
  year: 2019
  ident: bib0018
  article-title: Bidirectional convolutional LSTM neural network for remote sensing image super-resolution
  publication-title: Remote Sens.
– volume: 114
  start-page: 540
  year: 2010
  end-page: 551
  ident: bib0099
  article-title: An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation
  publication-title: Remote Sens. Environ.
– volume: 60
  start-page: 195
  year: 1997
  end-page: 216
  ident: bib0005
  article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing
  publication-title: Remote Sens. Environ.
– volume: 126
  start-page: 79
  year: 2017
  end-page: 93
  ident: bib0056
  article-title: Spatiotemporal downscaling approaches for monitoring 8-day 30m actual evapotranspiration
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 133
  start-page: 380
  year: 2007
  end-page: 394
  ident: bib0003
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - model
  publication-title: J. Irrig. Drain. Eng.
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: bib0038
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Networks
– volume: 95
  start-page: 164
  year: 2005
  end-page: 176
  ident: bib0128
  article-title: Improvements of the MODIS terrestrial gross and net primary production global data set
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 1781
  year: 2011
  end-page: 1800
  ident: bib0078
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sens. Environ.
– volume: 149
  start-page: 2071
  year: 2009
  end-page: 2081
  ident: bib0062
  article-title: Advances in thermal infrared remote sensing for land surface modeling
  publication-title: Agric. For. Meteorol.
– volume: 236
  start-page: 87
  year: 2017
  end-page: 99
  ident: bib0082
  article-title: Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem
  publication-title: Agric. For. Meteorol.
– volume: 103
  start-page: 279
  year: 2000
  end-page: 300
  ident: bib0101
  article-title: Correcting eddy-covariance flux underestimates over a grassland
  publication-title: Agric. For. Meteorol.
– volume: 112
  start-page: 901
  year: 2008
  end-page: 919
  ident: bib0033
  article-title: Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0015
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 29
  start-page: 349
  year: 2003
  end-page: 362
  ident: bib0025
  article-title: Investigating the use of landsat thematic mapper data for estimation of forest leaf area index in southern Sweden
  publication-title: Can. J. Remote Sens.
– volume: 271
  year: 2022
  ident: bib0008
  article-title: Thermally derived evapotranspiration from the surface temperature initiated closure (STIC) model improves cropland GPP estimates under dry conditions
  publication-title: Remote Sens. Environ.
– volume: 11
  year: 2016
  ident: bib0032
  article-title: An empirical orthogonal function-based algorithm for estimating terrestrial latent heat flux from eddy covariance, meteorological and satellite observations
  publication-title: PLoS One
– volume: 184
  start-page: 56
  year: 2014
  end-page: 70
  ident: bib0059
  article-title: A review of approaches for evapotranspiration partitioning
  publication-title: Agric. For. Meteorol.
– year: 2017
  ident: bib0108
  article-title: Revisiting the contribution of transpiration to global terrestrial evapotranspiration
  publication-title: Geophys. Res. Lett.
– volume: 30
  start-page: 5419
  year: 2017
  end-page: 5454
  ident: bib0035
  article-title: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)
  publication-title: J. Clim.
– volume: 50
  year: 2012
  ident: bib0104
  article-title: A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability
  publication-title: Rev. Geophys.
– volume: 6
  year: 2022
  ident: bib0095
  article-title: Estimation and validation of 30m fractional vegetation cover over China through integrated use of Landsat 8 and Gaofen 2 data
  publication-title: Sci. Remote Sens.
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bib0084
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 59
  start-page: 4105
  year: 2021
  end-page: 4119
  ident: bib0117
  article-title: A novel NIR-red spectral domain evapotranspiration model from the Chinese GF-1 satellite: application to the Huailai agricultural region of China
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 212
  start-page: 198
  year: 1998
  end-page: 212
  ident: bib0011
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation
  publication-title: J. Hydrol.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0064
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 11
  start-page: 1424
  year: 2005
  end-page: 1439
  ident: bib0083
  article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm
  publication-title: Glob. Change Biol.
– volume: 140
  start-page: 279
  year: 2014
  end-page: 293
  ident: bib0019
  article-title: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China
  publication-title: Remote Sens. Environ.
– volume: 573
  start-page: 568
  year: 2019
  end-page: 572
  ident: bib0043
  article-title: Deep learning for multi-year ENSO forecasts
  publication-title: Nature
– volume: 6
  year: 2022
  ident: bib0050
  article-title: Generating high spatial resolution GLASS FAPAR product from Landsat images
  publication-title: Sci. Remote Sens.
– volume: 264
  year: 2021
  ident: bib0072
  article-title: Spatial and temporal deep learning methods for deriving land-use following deforestation: a pan-tropical case study using Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 117
  year: 2012
  ident: bib0048
  article-title: Validation of remotely sensed evapotranspiration over the Hai River Basin, China
  publication-title: J. Geophys. Res. Atmos.
– start-page: 19
  year: 2019
  ident: bib0096
  article-title: County-level soybean yield prediction using deep CNN-LSTM model
  publication-title: Sensors
– volume: 79
  start-page: 199
  year: 2002
  end-page: 212
  ident: bib0076
  article-title: Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: a novel use of remotely sensed data
  publication-title: Remote Sens. Environ.
– volume: 98
  start-page: 899
  year: 2011
  end-page: 920
  ident: bib0002
  article-title: Evapotranspiration information reporting: I. Factors governing measurement accuracy
  publication-title: Agric. Water Manag.
– volume: 171
  start-page: 203
  year: 2013
  end-page: 219
  ident: bib0057
  article-title: Estimating random errors of eddy covariance data: an extended two-tower approach
  publication-title: Agric. For. Meteorol.
– volume: 12
  year: 2020
  ident: bib0040
  article-title: Discrepancies in the simulated global terrestrial latent heat flux from GLASS and MERRA-2 surface net radiation products
  publication-title: Remote Sens.
– volume: 364
  start-page: 398
  year: 2014
  end-page: 403
  ident: bib0058
  article-title: Using the priestley-taylor expression for estimating actual evapotranspiration from satellite landsat ETM + data
  publication-title: Proc. IAHS
– volume: 99
  start-page: 207
  year: 2001
  end-page: 224
  ident: bib0060
  article-title: An analytical footprint model for non-neutral stratification
  publication-title: Bound. Layer Meteorol.
– volume: 10
  start-page: 4055
  year: 2013
  end-page: 4071
  ident: bib0055
  article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations - application to MODIS LAI products
  publication-title: Biogeosciences
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: bib0047
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 2651
  year: 2022
  ident: bib0067
  article-title: An open data approach for estimating vegetation gross primary production at fine spatial resolution
  publication-title: Remote Sens.
– volume: 24
  start-page: 3624
  year: 2011
  end-page: 3648
  ident: bib0085
  article-title: MERRA: nASA's modern-era retrospective analysis for research and applications
  publication-title: J. Clim.
– volume: 3
  start-page: 225
  year: 2010
  end-page: 240
  ident: bib0066
  article-title: Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 53
  year: 2017
  ident: bib0074
  article-title: CubeSats in hydrology: ultrahigh-resolution insights into vegetation dynamics and terrestrial evaporation
  publication-title: Water Resour. Res.
– volume: 252
  year: 2021
  ident: bib0007
  article-title: Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 3929
  year: 2019
  ident: bib0100
  article-title: Survey of deep-learning approaches for remote sensing observation enhancement
  publication-title: Sensors
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: bib0041
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing.
– volume: 25
  start-page: 24
  year: 2019
  end-page: 29
  ident: bib0028
  article-title: A guide to deep learning in healthcare
  publication-title: Nat. Med.
– volume: 115
  year: 2010
  ident: bib0105
  article-title: Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development
  publication-title: J. Geophys. Res. Atmos.
– volume: 377
  start-page: 80
  year: 2009
  end-page: 91
  ident: bib0042
  article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling
  publication-title: J. Hydrol.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib0087
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 10
  year: 2019
  ident: bib0126
  article-title: PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data
  publication-title: Atmosphere
– volume: 128
  start-page: 192
  year: 2017
  end-page: 203
  ident: bib0103
  article-title: Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 64
  year: 2021
  ident: bib0014
  article-title: A novel CNN-LSTM-based approach to predict urban expansion
  publication-title: Ecol. Inform.
– volume: 230
  start-page: 97
  year: 2016
  end-page: 113
  ident: bib0068
  article-title: Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces
  publication-title: Agric. For. Meteorol.
– volume: 553
  start-page: 508
  year: 2017
  end-page: 526
  ident: bib0120
  article-title: Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
  publication-title: J. Hydrol.
– volume: 308-309
  year: 2021
  ident: bib0088
  article-title: DNN-MET: a deep neural networks method to integrate satellite-derived evapotranspiration products, eddy covariance observations and ancillary information
  publication-title: Agric. For. Meteorol.
– volume: 9
  start-page: 3801
  year: 2009
  end-page: 3853
  ident: bib0065
  article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data
  publication-title: Sensors
– volume: 77
  start-page: 263
  year: 1995
  end-page: 293
  ident: bib0079
  article-title: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface-temperature
  publication-title: Agric. For. Meteorol.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0045
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 212
  start-page: 213
  year: 1998
  end-page: 229
  ident: bib0012
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL) - 2. Validation
  publication-title: J. Hydrol.
– volume: 112
  start-page: 4227
  year: 2008
  end-page: 4241
  ident: bib0006
  article-title: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales
  publication-title: Remote Sens. Environ.
– volume: 103
  start-page: 379
  year: 2006
  end-page: 397
  ident: bib0109
  article-title: Horizontal radiation transport in 3-D forest canopies at multiple spatial resolutions: simulated impact on canopy absorption
  publication-title: Remote Sens. Environ.
– volume: 56
  start-page: 1
  year: 2008
  end-page: 26
  ident: bib0010
  article-title: Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems
  publication-title: Aust. J. Bot.
– volume: 268
  year: 2022
  ident: bib0092
  article-title: A review of machine learning in processing remote sensing data for mineral exploration
  publication-title: Remote Sens. Environ.
– volume: 25
  start-page: 4103
  year: 2011
  end-page: 4116
  ident: bib0036
  article-title: Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience
  publication-title: Hydrol. Process.
– volume: 225
  start-page: 127
  year: 2019
  end-page: 147
  ident: bib0112
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 447
  year: 2021
  end-page: 480
  ident: bib0026
  article-title: Synthesis of global actual evapotranspiration from 1982 to 2019
  publication-title: Earth Syst. Sci. Data
– volume: 46
  start-page: 14496
  year: 2019
  end-page: 14507
  ident: bib0129
  article-title: Physics-constrained machine learning of evapotranspiration
  publication-title: Geophys. Res. Lett.
– volume: 260-261
  start-page: 131
  year: 2018
  end-page: 143
  ident: bib0098
  article-title: Partitioning of evapotranspiration in remote sensing-based models
  publication-title: Agric. For. Meteorol.
– volume: 164
  start-page: 68
  year: 2017
  end-page: 84
  ident: bib0004
  article-title: Modified Penman–Monteith equation for monitoring evapotranspiration of wheat crop: relationship between the surface resistance and remotely sensed stress index
  publication-title: Biosyst. Eng.
– volume: 111
  start-page: 519
  year: 2007
  end-page: 536
  ident: bib0077
  article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 223
  year: 2002
  end-page: 243
  ident: bib0110
  article-title: Energy balance closure at FLUXNET sites
  publication-title: Agric. For. Meteorol.
– volume: 28
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib0093
  article-title: A new method for estimation of spatially distributed rainfall through merging satellite observations, raingauge records, and terrain digital elevation model data
  publication-title: J. Hydro Environ. Res.
– volume: 116
  year: 2011
  ident: bib0052
  article-title: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations
  publication-title: J. Geophys. Res. Biogeosciences
– volume: 584
  year: 2020
  ident: bib0111
  article-title: A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China
  publication-title: J. Hydrol.
– volume: 118
  start-page: 2284
  year: 2013
  end-page: 2300
  ident: bib0114
  article-title: A hybrid dual-source scheme and trapezoid framework–based evapotranspiration model (HTEM) using satellite images: algorithm and model test
  publication-title: J. Geophys. Res. Atmos.
– volume: 154
  start-page: 176
  year: 2019
  end-page: 188
  ident: bib0051
  article-title: Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 29
  start-page: 421
  year: 2008
  end-page: 469
  ident: bib0053
  article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data
  publication-title: Surv. Geophys.
– volume: 122
  start-page: 5211
  year: 2017
  end-page: 5236
  ident: bib0122
  article-title: A simple temperature domain two-source model for estimating agricultural field surface energy fluxes from Landsat images
  publication-title: J. Geophys. Res. Atmos.
– volume: 148
  start-page: 1719
  year: 2008
  end-page: 1732
  ident: bib0080
  article-title: Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements
  publication-title: Agric. For. Meteorol.
– volume: 187
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0027
  article-title: Multi-site evaluation of terrestrial evaporation models using FLUXNET data
  publication-title: Agric. For. Meteorol.
– volume: 228
  year: 2020
  ident: bib0113
  article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data
  publication-title: Agric. Water Manag.
– volume: 193
  start-page: 120
  year: 1948
  end-page: 145
  ident: bib0081
  article-title: Natural evaporation from open water, bare soil and grass
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
– volume: 260
  year: 2021
  ident: bib0016
  article-title: The effect of pixel heterogeneity for remote sensing based retrievals of evapotranspiration in a semi-arid tree-grass ecosystem
  publication-title: Remote Sens. Environ.
– volume: 150
  start-page: 501
  year: 2010
  end-page: 509
  ident: bib0071
  article-title: Computing turbulent fluxes near the surface: needed improvements
  publication-title: Agric. For. Meteorol.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 28
  ident: bib0097
  article-title: Sensitivity of evapotranspiration components in remote sensing-based models
  publication-title: Remote Sens.
– volume: 23
  year: 2023
  ident: bib0049
  article-title: The Hi-GLASS all-wave daily net radiation product: algorithm and product validation
  publication-title: Sci. Remote Sens.
– volume: 56
  year: 1998
  ident: bib0001
  article-title: Crop evapotranspiration: guidelines for computing crop water requirements, FAO irrigation and drainage paper 56
  publication-title: FAO
– volume: 117
  year: 2012
  ident: bib0037
  article-title: Evapotranspiration along an elevation gradient in California's Sierra Nevada
  publication-title: J. Geophys. Res. Biogeosciences
– volume: 136
  start-page: 455
  year: 2013
  end-page: 468
  ident: bib0123
  article-title: A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products
  publication-title: Remote Sens. Environ.
– volume: 298
  year: 2021
  ident: bib0009
  article-title: On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient
  publication-title: Agric. For. Meteorol.
– volume: 240
  year: 2020
  ident: bib0091
  article-title: Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data
  publication-title: Remote Sens. Environ.
– volume: 53
  start-page: 2618
  year: 2017
  end-page: 2626
  ident: bib0030
  article-title: The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources
  publication-title: Water Resour. Res.
– volume: 12
  start-page: 433
  year: 2015
  end-page: 451
  ident: bib0073
  article-title: Components of near-surface energy balance derived from satellite soundings - Part 1: noontime net available energy
  publication-title: Biogeosciences.
– volume: 56
  year: 2020
  ident: bib0031
  article-title: ECOSTRESS: nASA's next generation mission to measure evapotranspiration from the international space station
  publication-title: Water Resour. Res.
– volume: 528
  start-page: 537
  year: 2015
  end-page: 549
  ident: bib0021
  article-title: Using Bayesian model averaging to estimate terrestrial evapotranspiration in China
  publication-title: J. Hydrol.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0063
  article-title: Deep learning
  publication-title: Nature
– volume: 12
  year: 2020
  ident: bib0089
  article-title: Fusion of five satellite-derived products using extremely randomized trees to estimate terrestrial latent heat flux over Europe
  publication-title: Remote Sens.
– volume: 18
  start-page: 1351
  year: 2008
  end-page: 1367
  ident: bib0034
  article-title: The energy balance closure problem: an overview
  publication-title: Ecol. Appl.
– volume: 119
  start-page: 4521
  year: 2014
  end-page: 4545
  ident: bib0119
  article-title: Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations
  publication-title: J. Geophys. Res. Atmos.
– volume: 241
  year: 2020
  ident: bib0124
  article-title: Deep learning in environmental remote sensing: achievements and challenges
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: bib0046
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
– volume: 185
  start-page: 32
  year: 2022
  end-page: 47
  ident: bib0127
  article-title: Soil moisture content retrieval from Landsat 8 data using ensemble learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 26
  start-page: 1579
  year: 2021
  end-page: 1614
  ident: bib0061
  article-title: Towards hybrid modeling of the global hydrological cycle
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 20
  start-page: 783
  year: 2005
  end-page: 796
  ident: bib0029
  article-title: Evapotranspiration models compared on a Sierra Nevada forest ecosystem
  publication-title: Environ. Model. Softw.
– volume: 171-172
  start-page: 187
  year: 2013
  end-page: 202
  ident: bib0116
  article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified priestley–taylor algorithm
  publication-title: Agric. For. Meteorol.
– volume: 147
  start-page: 337
  year: 2019
  end-page: 355
  ident: bib0017
  article-title: The evapotranspiration process in green roofs: a review
  publication-title: Build. Environ.
– volume: 169
  start-page: 216
  year: 2015
  end-page: 233
  ident: bib0118
  article-title: A satellite-based hybrid algorithm to determine the priestley-taylor parameter for global terrestrial latent heat flux estimation across multiple biomes
  publication-title: Remote Sens. Environ.
– volume: 34
  year: 2007
  ident: bib0024
  article-title: Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model
  publication-title: Geophys. Res. Lett.
– volume: 114
  start-page: 1416
  year: 2010
  end-page: 1431
  ident: bib0125
  article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data
  publication-title: Remote Sens. Environ.
– volume: 111
  start-page: 839
  year: 1985
  end-page: 855
  ident: bib0094
  article-title: Evaporation from sparse crops-an energy combination theory
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 236
  start-page: 87
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0082
  article-title: Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.01.009
– volume: 260
  year: 2021
  ident: 10.1016/j.agrformet.2024.109962_bib0016
  article-title: The effect of pixel heterogeneity for remote sensing based retrievals of evapotranspiration in a semi-arid tree-grass ecosystem
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112440
– volume: 117
  year: 2012
  ident: 10.1016/j.agrformet.2024.109962_bib0037
  article-title: Evapotranspiration along an elevation gradient in California's Sierra Nevada
  publication-title: J. Geophys. Res. Biogeosciences
  doi: 10.1029/2012JG002027
– volume: 111
  start-page: 839
  year: 1985
  ident: 10.1016/j.agrformet.2024.109962_bib0094
  article-title: Evaporation from sparse crops-an energy combination theory
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49711146910
– volume: 140
  start-page: 279
  year: 2014
  ident: 10.1016/j.agrformet.2024.109962_bib0019
  article-title: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.045
– volume: 30
  start-page: 5419
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0035
  article-title: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0758.1
– volume: 308-309
  year: 2021
  ident: 10.1016/j.agrformet.2024.109962_bib0088
  article-title: DNN-MET: a deep neural networks method to integrate satellite-derived evapotranspiration products, eddy covariance observations and ancillary information
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108582
– volume: 193
  start-page: 120
  year: 1948
  ident: 10.1016/j.agrformet.2024.109962_bib0081
  article-title: Natural evaporation from open water, bare soil and grass
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
– volume: 171-172
  start-page: 187
  year: 2013
  ident: 10.1016/j.agrformet.2024.109962_bib0116
  article-title: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified priestley–taylor algorithm
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.11.016
– volume: 19
  start-page: 3929
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0100
  article-title: Survey of deep-learning approaches for remote sensing observation enhancement
  publication-title: Sensors
  doi: 10.3390/s19183929
– year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0108
  article-title: Revisiting the contribution of transpiration to global terrestrial evapotranspiration
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL072235
– volume: 103
  start-page: 279
  year: 2000
  ident: 10.1016/j.agrformet.2024.109962_bib0101
  article-title: Correcting eddy-covariance flux underestimates over a grassland
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(00)00123-4
– volume: 10
  start-page: 1
  issue: 1601
  year: 2018
  ident: 10.1016/j.agrformet.2024.109962_bib0097
  article-title: Sensitivity of evapotranspiration components in remote sensing-based models
  publication-title: Remote Sens.
– volume: 64
  year: 2021
  ident: 10.1016/j.agrformet.2024.109962_bib0014
  article-title: A novel CNN-LSTM-based approach to predict urban expansion
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101325
– volume: 53
  start-page: 2618
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0030
  article-title: The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR020175
– volume: 29
  start-page: 421
  year: 2008
  ident: 10.1016/j.agrformet.2024.109962_bib0053
  article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-008-9037-z
– volume: 12
  year: 2020
  ident: 10.1016/j.agrformet.2024.109962_bib0040
  article-title: Discrepancies in the simulated global terrestrial latent heat flux from GLASS and MERRA-2 surface net radiation products
  publication-title: Remote Sens.
  doi: 10.3390/rs12172763
– volume: 528
  start-page: 537
  year: 2015
  ident: 10.1016/j.agrformet.2024.109962_bib0021
  article-title: Using Bayesian model averaging to estimate terrestrial evapotranspiration in China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.059
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.agrformet.2024.109962_bib0064
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 115
  year: 2010
  ident: 10.1016/j.agrformet.2024.109962_bib0105
  article-title: Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development
  publication-title: J. Geophys. Res. Atmos.
– volume: 230
  start-page: 97
  year: 2016
  ident: 10.1016/j.agrformet.2024.109962_bib0068
  article-title: Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.04.008
– volume: 150
  start-page: 501
  year: 2010
  ident: 10.1016/j.agrformet.2024.109962_bib0071
  article-title: Computing turbulent fluxes near the surface: needed improvements
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2010.01.015
– volume: 271
  year: 2022
  ident: 10.1016/j.agrformet.2024.109962_bib0008
  article-title: Thermally derived evapotranspiration from the surface temperature initiated closure (STIC) model improves cropland GPP estimates under dry conditions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112901
– volume: 26
  start-page: 1579
  year: 2021
  ident: 10.1016/j.agrformet.2024.109962_bib0061
  article-title: Towards hybrid modeling of the global hydrological cycle
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-26-1579-2022
– volume: 56
  year: 1998
  ident: 10.1016/j.agrformet.2024.109962_bib0001
  article-title: Crop evapotranspiration: guidelines for computing crop water requirements, FAO irrigation and drainage paper 56
  publication-title: FAO
– volume: 25
  start-page: 4103
  year: 2011
  ident: 10.1016/j.agrformet.2024.109962_bib0036
  article-title: Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.8391
– volume: 377
  start-page: 80
  year: 2009
  ident: 10.1016/j.agrformet.2024.109962_bib0042
  article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.08.003
– volume: 12
  start-page: 433
  issue: 2
  year: 2015
  ident: 10.1016/j.agrformet.2024.109962_bib0073
  article-title: Components of near-surface energy balance derived from satellite soundings - Part 1: noontime net available energy
  publication-title: Biogeosciences.
  doi: 10.5194/bg-12-433-2015
– volume: 573
  start-page: 568
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0043
  article-title: Deep learning for multi-year ENSO forecasts
  publication-title: Nature
  doi: 10.1038/s41586-019-1559-7
– volume: 116
  year: 2011
  ident: 10.1016/j.agrformet.2024.109962_bib0052
  article-title: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations
  publication-title: J. Geophys. Res. Biogeosciences
  doi: 10.1029/2010JG001566
– volume: 154
  start-page: 176
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0051
  article-title: Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.06.008
– volume: 9
  start-page: 3801
  year: 2009
  ident: 10.1016/j.agrformet.2024.109962_bib0065
  article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data
  publication-title: Sensors
  doi: 10.3390/s90503801
– volume: 83
  start-page: 195
  year: 2002
  ident: 10.1016/j.agrformet.2024.109962_bib0047
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 122
  start-page: 5211
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0122
  article-title: A simple temperature domain two-source model for estimating agricultural field surface energy fluxes from Landsat images
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2016JD026370
– volume: 212
  start-page: 213
  year: 1998
  ident: 10.1016/j.agrformet.2024.109962_bib0012
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL) - 2. Validation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00254-6
– volume: 136
  start-page: 455
  year: 2013
  ident: 10.1016/j.agrformet.2024.109962_bib0123
  article-title: A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.05.029
– volume: 264
  year: 2021
  ident: 10.1016/j.agrformet.2024.109962_bib0072
  article-title: Spatial and temporal deep learning methods for deriving land-use following deforestation: a pan-tropical case study using Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112600
– volume: 11
  start-page: 1424
  year: 2005
  ident: 10.1016/j.agrformet.2024.109962_bib0083
  article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2005.001002.x
– volume: 39
  start-page: 1137
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0084
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 11
  year: 2016
  ident: 10.1016/j.agrformet.2024.109962_bib0032
  article-title: An empirical orthogonal function-based algorithm for estimating terrestrial latent heat flux from eddy covariance, meteorological and satellite observations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160150
– volume: 241
  year: 2020
  ident: 10.1016/j.agrformet.2024.109962_bib0124
  article-title: Deep learning in environmental remote sensing: achievements and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111716
– volume: 11
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0018
  article-title: Bidirectional convolutional LSTM neural network for remote sensing image super-resolution
  publication-title: Remote Sens.
  doi: 10.3390/rs11202333
– volume: 171
  start-page: 203
  year: 2013
  ident: 10.1016/j.agrformet.2024.109962_bib0057
  article-title: Estimating random errors of eddy covariance data: an extended two-tower approach
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.11.019
– volume: 98
  start-page: 899
  year: 2011
  ident: 10.1016/j.agrformet.2024.109962_bib0002
  article-title: Evapotranspiration information reporting: I. Factors governing measurement accuracy
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2010.12.015
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.agrformet.2024.109962_bib0045
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 115
  start-page: 1781
  year: 2011
  ident: 10.1016/j.agrformet.2024.109962_bib0078
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.019
– volume: 268
  year: 2022
  ident: 10.1016/j.agrformet.2024.109962_bib0092
  article-title: A review of machine learning in processing remote sensing data for mineral exploration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112750
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.agrformet.2024.109962_bib0087
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 60
  start-page: 195
  year: 1997
  ident: 10.1016/j.agrformet.2024.109962_bib0005
  article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00215-5
– volume: 14
  start-page: 2651
  year: 2022
  ident: 10.1016/j.agrformet.2024.109962_bib0067
  article-title: An open data approach for estimating vegetation gross primary production at fine spatial resolution
  publication-title: Remote Sens.
  doi: 10.3390/rs14112651
– volume: 56
  year: 2020
  ident: 10.1016/j.agrformet.2024.109962_bib0031
  article-title: ECOSTRESS: nASA's next generation mission to measure evapotranspiration from the international space station
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026058
– volume: 111
  start-page: 519
  year: 2007
  ident: 10.1016/j.agrformet.2024.109962_bib0077
  article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.04.015
– volume: 212
  start-page: 198
  year: 1998
  ident: 10.1016/j.agrformet.2024.109962_bib0011
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00253-4
– volume: 117
  year: 2012
  ident: 10.1016/j.agrformet.2024.109962_bib0048
  article-title: Validation of remotely sensed evapotranspiration over the Hai River Basin, China
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2011JD017037
– volume: 23
  year: 2023
  ident: 10.1016/j.agrformet.2024.109962_bib0049
  article-title: The Hi-GLASS all-wave daily net radiation product: algorithm and product validation
  publication-title: Sci. Remote Sens.
– volume: 49
  start-page: 75
  year: 2016
  ident: 10.1016/j.agrformet.2024.109962_bib0013
  article-title: Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 56
  start-page: 1
  year: 2008
  ident: 10.1016/j.agrformet.2024.109962_bib0010
  article-title: Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT07151
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.agrformet.2024.109962_bib0063
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 103
  start-page: 379
  year: 2006
  ident: 10.1016/j.agrformet.2024.109962_bib0109
  article-title: Horizontal radiation transport in 3-D forest canopies at multiple spatial resolutions: simulated impact on canopy absorption
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.014
– start-page: 19
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0096
  article-title: County-level soybean yield prediction using deep CNN-LSTM model
  publication-title: Sensors
– volume: 164
  start-page: 68
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0004
  article-title: Modified Penman–Monteith equation for monitoring evapotranspiration of wheat crop: relationship between the surface resistance and remotely sensed stress index
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.09.015
– volume: 6
  year: 2022
  ident: 10.1016/j.agrformet.2024.109962_bib0050
  article-title: Generating high spatial resolution GLASS FAPAR product from Landsat images
  publication-title: Sci. Remote Sens.
– volume: 252
  year: 2021
  ident: 10.1016/j.agrformet.2024.109962_bib0007
  article-title: Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112189
– volume: 114
  start-page: 540
  year: 2010
  ident: 10.1016/j.agrformet.2024.109962_bib0099
  article-title: An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.10.012
– volume: 18
  start-page: 1351
  year: 2008
  ident: 10.1016/j.agrformet.2024.109962_bib0034
  article-title: The energy balance closure problem: an overview
  publication-title: Ecol. Appl.
  doi: 10.1890/06-0922.1
– volume: 584
  year: 2020
  ident: 10.1016/j.agrformet.2024.109962_bib0111
  article-title: A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124664
– volume: 53
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0074
  article-title: CubeSats in hydrology: ultrahigh-resolution insights into vegetation dynamics and terrestrial evaporation
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR022240
– volume: 59
  start-page: 4105
  year: 2021
  ident: 10.1016/j.agrformet.2024.109962_bib0117
  article-title: A novel NIR-red spectral domain evapotranspiration model from the Chinese GF-1 satellite: application to the Huailai agricultural region of China
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3020125
– volume: 364
  start-page: 398
  year: 2014
  ident: 10.1016/j.agrformet.2024.109962_bib0058
  article-title: Using the priestley-taylor expression for estimating actual evapotranspiration from satellite landsat ETM + data
  publication-title: Proc. IAHS
  doi: 10.5194/piahs-364-398-2014
– volume: 113
  start-page: 223
  year: 2002
  ident: 10.1016/j.agrformet.2024.109962_bib0110
  article-title: Energy balance closure at FLUXNET sites
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(02)00109-0
– volume: 112
  start-page: 4227
  year: 2008
  ident: 10.1016/j.agrformet.2024.109962_bib0006
  article-title: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.07.009
– volume: 18
  start-page: 602
  year: 2005
  ident: 10.1016/j.agrformet.2024.109962_bib0038
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2005.06.042
– volume: 99
  start-page: 207
  year: 2001
  ident: 10.1016/j.agrformet.2024.109962_bib0060
  article-title: An analytical footprint model for non-neutral stratification
  publication-title: Bound. Layer Meteorol.
  doi: 10.1023/A:1018991015119
– volume: 79
  start-page: 199
  year: 2002
  ident: 10.1016/j.agrformet.2024.109962_bib0076
  article-title: Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: a novel use of remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00273-5
– volume: 24
  start-page: 3624
  year: 2011
  ident: 10.1016/j.agrformet.2024.109962_bib0085
  article-title: MERRA: nASA's modern-era retrospective analysis for research and applications
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00015.1
– volume: 77
  start-page: 263
  year: 1995
  ident: 10.1016/j.agrformet.2024.109962_bib0079
  article-title: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface-temperature
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02265-Y
– volume: 225
  start-page: 127
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0112
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 4
  start-page: 251
  year: 1991
  ident: 10.1016/j.agrformet.2024.109962_bib0046
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90009-T
– volume: 28
  start-page: 1
  year: 2020
  ident: 10.1016/j.agrformet.2024.109962_bib0093
  article-title: A new method for estimation of spatially distributed rainfall through merging satellite observations, raingauge records, and terrain digital elevation model data
  publication-title: J. Hydro Environ. Res.
  doi: 10.1016/j.jher.2017.10.006
– volume: 25
  start-page: 24
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0028
  article-title: A guide to deep learning in healthcare
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0316-z
– volume: 3
  start-page: 225
  year: 2010
  ident: 10.1016/j.agrformet.2024.109962_bib0066
  article-title: Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2048556
– volume: 13
  start-page: 447
  issue: 2
  year: 2021
  ident: 10.1016/j.agrformet.2024.109962_bib0026
  article-title: Synthesis of global actual evapotranspiration from 1982 to 2019
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-447-2021
– volume: 148
  start-page: 1719
  year: 2008
  ident: 10.1016/j.agrformet.2024.109962_bib0080
  article-title: Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.06.013
– volume: 133
  start-page: 380
  year: 2007
  ident: 10.1016/j.agrformet.2024.109962_bib0003
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - model
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
– volume: 228
  year: 2020
  ident: 10.1016/j.agrformet.2024.109962_bib0113
  article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105875
– volume: 187
  start-page: 46
  year: 2014
  ident: 10.1016/j.agrformet.2024.109962_bib0027
  article-title: Multi-site evaluation of terrestrial evaporation models using FLUXNET data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2013.11.008
– volume: 553
  start-page: 508
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0120
  article-title: Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.08.013
– volume: 147
  start-page: 337
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0017
  article-title: The evapotranspiration process in green roofs: a review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.10.024
– volume: 12
  year: 2020
  ident: 10.1016/j.agrformet.2024.109962_bib0089
  article-title: Fusion of five satellite-derived products using extremely randomized trees to estimate terrestrial latent heat flux over Europe
  publication-title: Remote Sens.
  doi: 10.3390/rs12040687
– volume: 34
  year: 2007
  ident: 10.1016/j.agrformet.2024.109962_bib0024
  article-title: Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL030014
– volume: 114
  start-page: 1416
  issue: 7
  year: 2010
  ident: 10.1016/j.agrformet.2024.109962_bib0125
  article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.01.022
– volume: 149
  start-page: 2071
  year: 2009
  ident: 10.1016/j.agrformet.2024.109962_bib0062
  article-title: Advances in thermal infrared remote sensing for land surface modeling
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.05.016
– volume: 169
  start-page: 216
  year: 2015
  ident: 10.1016/j.agrformet.2024.109962_bib0118
  article-title: A satellite-based hybrid algorithm to determine the priestley-taylor parameter for global terrestrial latent heat flux estimation across multiple biomes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.05.013
– volume: 187
  start-page: 27
  year: 2016
  ident: 10.1016/j.agrformet.2024.109962_bib0041
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2015.09.116
– volume: 128
  start-page: 192
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0103
  article-title: Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.03.022
– volume: 29
  start-page: 349
  year: 2003
  ident: 10.1016/j.agrformet.2024.109962_bib0025
  article-title: Investigating the use of landsat thematic mapper data for estimation of forest leaf area index in southern Sweden
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m03-004
– volume: 240
  year: 2020
  ident: 10.1016/j.agrformet.2024.109962_bib0091
  article-title: Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111692
– volume: 184
  start-page: 56
  year: 2014
  ident: 10.1016/j.agrformet.2024.109962_bib0059
  article-title: A review of approaches for evapotranspiration partitioning
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2013.09.003
– volume: 10
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0126
  article-title: PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data
  publication-title: Atmosphere
  doi: 10.3390/atmos10070373
– volume: 50
  year: 2012
  ident: 10.1016/j.agrformet.2024.109962_bib0104
  article-title: A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability
  publication-title: Rev. Geophys.
  doi: 10.1029/2011RG000373
– volume: 118
  start-page: 2284
  year: 2013
  ident: 10.1016/j.agrformet.2024.109962_bib0114
  article-title: A hybrid dual-source scheme and trapezoid framework–based evapotranspiration model (HTEM) using satellite images: algorithm and model test
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50259
– volume: 260-261
  start-page: 131
  year: 2018
  ident: 10.1016/j.agrformet.2024.109962_bib0098
  article-title: Partitioning of evapotranspiration in remote sensing-based models
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.05.010
– volume: 46
  start-page: 14496
  year: 2019
  ident: 10.1016/j.agrformet.2024.109962_bib0129
  article-title: Physics-constrained machine learning of evapotranspiration
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL085291
– volume: 6
  start-page: 85
  year: 2002
  ident: 10.1016/j.agrformet.2024.109962_bib131
  article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heatfluxes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-6-85-2002
– volume: 185
  start-page: 32
  year: 2022
  ident: 10.1016/j.agrformet.2024.109962_bib0127
  article-title: Soil moisture content retrieval from Landsat 8 data using ensemble learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.01.005
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.agrformet.2024.109962_bib0015
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 126
  start-page: 79
  year: 2017
  ident: 10.1016/j.agrformet.2024.109962_bib0056
  article-title: Spatiotemporal downscaling approaches for monitoring 8-day 30m actual evapotranspiration
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.02.006
– volume: 6
  year: 2022
  ident: 10.1016/j.agrformet.2024.109962_bib0095
  article-title: Estimation and validation of 30m fractional vegetation cover over China through integrated use of Landsat 8 and Gaofen 2 data
  publication-title: Sci. Remote Sens.
– volume: 298
  year: 2021
  ident: 10.1016/j.agrformet.2024.109962_bib0009
  article-title: On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient
  publication-title: Agric. For. Meteorol.
– volume: 20
  start-page: 783
  issue: 6
  year: 2005
  ident: 10.1016/j.agrformet.2024.109962_bib0029
  article-title: Evapotranspiration models compared on a Sierra Nevada forest ecosystem
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2004.04.009
– volume: 112
  start-page: 901
  year: 2008
  ident: 10.1016/j.agrformet.2024.109962_bib0033
  article-title: Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.06.025
– volume: 95
  start-page: 164
  issue: 2
  year: 2005
  ident: 10.1016/j.agrformet.2024.109962_bib0128
  article-title: Improvements of the MODIS terrestrial gross and net primary production global data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.12.011
– volume: 10
  start-page: 4055
  year: 2013
  ident: 10.1016/j.agrformet.2024.109962_bib0055
  article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations - application to MODIS LAI products
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-4055-2013
– volume: 119
  start-page: 4521
  year: 2014
  ident: 10.1016/j.agrformet.2024.109962_bib0119
  article-title: Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2013JD020864
SSID ssj0012779
Score 2.4730008
Snippet •CNN-LSTM-ILE outperforms all the LE products used in integration method.•CNN-LSTM-ILE that combines information from LE products, EC and topography.•The...
Accurate estimates of high-spatial-resolution global terrestrial latent heat flux (LE) from Landsat data are crucial for many basic and applied research. Yet...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109962
SubjectTerms algorithms
applied research
CNN-LSTM
eddy covariance
forests
High-spatial-resolution products
hydrology
Integration algorithm
Landsat
Latent heat flux
memory
meteorology
regression analysis
Title Multimodel ensemble estimation of Landsat-like global terrestrial latent heat flux using a generalized deep CNN-LSTM integration algorithm
URI https://dx.doi.org/10.1016/j.agrformet.2024.109962
https://www.proquest.com/docview/3153560587
Volume 349
WOSCitedRecordID wos001209198300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IFhAW14yEuJSZRU1aR7cqmp5abcCUaRyimzHaVPSpOomq2p_An-JP8eMHSftAip74BI1luy6nq_jz-N5EPIqEU4MxIBbA2a7lssDZgGrjy0PXmNfMBH3Y1Vswh-Pg-k0_NTp_DSxMJeZn-fBZhOu_quooQ2EjaGzNxB3Myg0wGcQOjxB7PD8J8GrkFpV4KYHR1S5xNAoTKWxbMjhGYb3stLK0u_SZASB5cUqHaqGRwb8My-RQ5a9JKs2vUoZFBiWW0YTVnoFLDWWctUbjcfW2ZfJeZN1Qjk3Z7NinZbz5TbxHc7WbZYPNNYDWYbvwwrWsljv2PbfVcp8O01ZcTWX9c6Kiomp9m9Vvqha9-Ha3v0ZZrhJW_-i1NjB5xXmAtk2bvSVT4wO7zT2Tg8OuaEOSTYK29FJTmuVi1d7WqH_thtow8TihM1UDIZE39m-e9L22M2_fW1fbLwVjSPcImoGinCgSA90ixz2_UEIKvVw-OF0-rG5xOr7OtWj-Q077oV_nNPfyNE1mqC4z-Q-uVcfWuhQg-0B6cj8iNxtRSqPSPe8FSR9TUcZ4k29PSQ_WkhSA0naQpIWCd2GJNWQpFuQpBqSFCFJEZJUQZIyugVJipCkBpJ0C5K0geQj8vXt6WT03qprgFjCcYPSkrhcQEL9MAm8xOOundhxjEkpHeaJIAiEm3AGOsUWvhu7ni0lF3YScBe0UxBz5zE5yItcHhPKfRhHcBhODlwJx4JQOoKHMuTxQIqAd4lnFj8SdYJ8rNOSRXsA0CV203Glc8Ts7_LGSDeqqa6msBFgd3_nlwYPEWwGeMPHcllUF5ED_GWAjg7-k5vP6Sm50_4Fn5GDcl3J5-S2uCzTi_WLGty_AHmx5hE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodel+ensemble+estimation+of+Landsat-like+global+terrestrial+latent+heat+flux+using+a+generalized+deep+CNN-LSTM+integration+algorithm&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Guo%2C+Xiaozheng&rft.au=Yao%2C+Yunjun&rft.au=Tang%2C+Qingxin&rft.au=Liang%2C+Shunlin&rft.date=2024-04-15&rft.issn=0168-1923&rft.volume=349&rft.spage=109962&rft_id=info:doi/10.1016%2Fj.agrformet.2024.109962&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agrformet_2024_109962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon