Medical card data imputation and patient psychological and behavioral profile construction

Missing data is a typical problem for many hands-on tasks and researches, which has required human intervention and contributed to an increase in errors during algorithms application that demand for a large number of metrics. Solving this particular problem is essential for medicine and healthcare,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 160; s. 354 - 361
Hlavní autoři: Fedushko, Solomiia, Gregus ml, Michal, Ustyianovych, Taras
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2019
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Missing data is a typical problem for many hands-on tasks and researches, which has required human intervention and contributed to an increase in errors during algorithms application that demand for a large number of metrics. Solving this particular problem is essential for medicine and healthcare, because it allows more easily diagnosing certain types of diseases, improving medical service quality, etc. The main approach for medical data imputation is to automate this process at all stages, beginning from finding the NA (Not Available) or missing Data, to the completion of the analysis and insertion of lost information entity. The proposed methods of mathematical computing and modeling, statistical functions, data flow diagrams during the imputation, and the use of computer programming tools should be implemented in the medical field to improve and address the missing data issue. The evaluation of key characteristics (algorithm’s error, number of imputed data, datasets dimensionality) helped to determine the factors for obtaining the most accurate result with the help of various algorithms and functions. The study is useful for the medical industry in general, since it will eliminate the missing data values in patient medical records by applying statistical methods and artificial intelligence, which will significantly shorten the automation of large datasets processing and facilitate their descriptive and exploratory analysis during further data discovery to identify certain patterns and features.
AbstractList Missing data is a typical problem for many hands-on tasks and researches, which has required human intervention and contributed to an increase in errors during algorithms application that demand for a large number of metrics. Solving this particular problem is essential for medicine and healthcare, because it allows more easily diagnosing certain types of diseases, improving medical service quality, etc. The main approach for medical data imputation is to automate this process at all stages, beginning from finding the NA (Not Available) or missing Data, to the completion of the analysis and insertion of lost information entity. The proposed methods of mathematical computing and modeling, statistical functions, data flow diagrams during the imputation, and the use of computer programming tools should be implemented in the medical field to improve and address the missing data issue. The evaluation of key characteristics (algorithm’s error, number of imputed data, datasets dimensionality) helped to determine the factors for obtaining the most accurate result with the help of various algorithms and functions. The study is useful for the medical industry in general, since it will eliminate the missing data values in patient medical records by applying statistical methods and artificial intelligence, which will significantly shorten the automation of large datasets processing and facilitate their descriptive and exploratory analysis during further data discovery to identify certain patterns and features.
Author Fedushko, Solomiia
Ustyianovych, Taras
Gregus ml, Michal
Author_xml – sequence: 1
  givenname: Solomiia
  surname: Fedushko
  fullname: Fedushko, Solomiia
  email: solomiia.s.fedushko@lpnu.ua
  organization: Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013, Ukraine
– sequence: 2
  givenname: Michal
  surname: Gregus ml
  fullname: Gregus ml, Michal
  organization: Faculty of management, Comenius University in Bratislava, Odbojárov 10, Bratislava, Slovak Republic
– sequence: 3
  givenname: Taras
  surname: Ustyianovych
  fullname: Ustyianovych, Taras
  organization: Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013, Ukraine
BookMark eNqFkL1OwzAQgC1UJErpE7DkBRJ8SRM7AwOq-JOKWGBhsZzLhbpK48hOK_XtcVoGxAC3-M6-73T-Ltmksx0xdg08AQ7FzSbpnUWfpBzKBCDhkp-xKUghYp7zcvIjv2Bz7zc8RCZlCWLKPl6oNqjbCLWro1oPOjLbfjfowdgu0l0d9SGlboh6f8C1be3nsX18qWit98a6UIYNGtNShLbzg9vhSF-x80a3nubf54y9P9y_LZ_i1evj8_JuFWO2kENMHKiW1CDXgrgGggYrLWQKUFSQijpfwKIQGgDzKmsyUVBeYibzNNxVVZPNWHmai85676hRaE77D06bVgFXoye1UUdPavSkAFTwFNjsF9s7s9Xu8A91e6IofGtvyCmPwREGlY5wULU1f_Jf_YCHig
CitedBy_id crossref_primary_10_32604_cmc_2022_019882
crossref_primary_10_3390_su151511683
crossref_primary_10_1016_j_chaos_2021_111236
crossref_primary_10_3390_electronics9040668
crossref_primary_10_1016_j_micpro_2020_103636
crossref_primary_10_3390_ijerph192416717
crossref_primary_10_1016_j_procs_2021_03_033
crossref_primary_10_3390_math10132325
crossref_primary_10_3390_sym13040612
Cites_doi 10.1007/978-3-642-00985-3_5
10.1146/annurev.psych.58.110405.085530
10.1177/096228029900800102
10.1007/978-3-030-16621-2_58
10.1109/SCC.2017.72
10.1007/s11121-007-0070-9
10.1111/stan.12023
10.1207/s15327906mbr3304_5
10.1016/j.procs.2018.10.150
10.1007/978-3-030-20521-8_39
10.1348/000711006X117574
10.1080/01621459.1996.10476908
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2019.11.080
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1877-0509
EndPage 361
ExternalDocumentID 10_1016_j_procs_2019_11_080
S1877050919317806
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c348t-e01ed8efc0a7e0a1e1fcba782116b127d541467a11c5b3f376e59c38527a1bbf3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515510100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-0509
IngestDate Tue Nov 18 21:17:20 EST 2025
Sat Nov 29 04:10:12 EST 2025
Wed May 17 00:11:47 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords feature analysis
intelligent systems
data imputation
medicine
missing data
healthcare
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-e01ed8efc0a7e0a1e1fcba782116b127d541467a11c5b3f376e59c38527a1bbf3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2019.11.080
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_procs_2019_11_080
crossref_primary_10_1016_j_procs_2019_11_080
elsevier_sciencedirect_doi_10_1016_j_procs_2019_11_080
PublicationCentury 2000
PublicationDate 2019
2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References ICCSEEA 2019, 938, p. 625-636. doi:10.1007/978-3-030-16621-2_58
Kryvinska, Poniszewska-Maranda, Gregus (bib00022) 2018; 141
Rubin (bib0004) 1987
Rubin (bib0005) 1996; 91
Allison, P. D. (2001).
Home Medical Visits – Healthcare.
Fedushko, S., & Ustyianovych, T. (2020). Predicting Pupil’s successfulness factors using machine learning algorithms and mathematical modelling methods.
Schmitt, Mandel, Guedj (bib0007) 2015; 6
Fedushko (bib00018) 2014; 11
68(1), pp.61-90.
Poniszewska-Maranda, Matusiak, Kryvinska (bib00023) 2017; 8035025
Pickles (bib00011) 2005
Izonin, I., Tkachenko, R., Kryvinska, N., Tkachenko, P., Greguš ml, M. (2019) “Multiple Linear Regression Based on Coefficients Identification Using Non-iterative SGTM Neural-like Structure”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11506 LNCS, 467-479.
Unian.
TVI.
Vink, G., Frank, L.E., Pannekoek, J. and Van Buuren, S. (2014). “Predictive mean matching imputation of semicontinuous variables”.
Kryvinska, N., Strauss, C., Auer, L., Zinterhof, P. (2009) “Hierarchical modelling and an approximate analysis of parallel queues models to the NGN SCEs”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5468, pp. 58-71.
van Ginkel, van der Ark, Sijtsma (bib00015) 2007; 60
Schafer (bib00013) 1999; 8
Glas, Pimental (bib0008) 2008; 68
Prostir.
The Sage handbook of quantitative methods in psychology,72-89.
Kryvinska, N., Da Silva, M.M. (2017) “Foreword of the thematic track quality aspects in service management”. Proceedings - 2016 10th International Conference on the Quality of Information and Communications Technology, QUATIC 2016, 7814549, 209.
Schafer, Olsen (bib00014) 1998; 33
Graham, Olchowski, Gilreath (bib00010) 2007; 8
Schafer (bib00012) 1997
Little, Rubin (bib0006) 1987
Graham (bib0009) 2009; 60
Graham (10.1016/j.procs.2019.11.080_bib0009) 2009; 60
10.1016/j.procs.2019.11.080_bib00025
10.1016/j.procs.2019.11.080_bib00024
10.1016/j.procs.2019.11.080_bib0003
10.1016/j.procs.2019.11.080_bib00021
Poniszewska-Maranda (10.1016/j.procs.2019.11.080_bib00023) 2017; 8035025
10.1016/j.procs.2019.11.080_bib00020
Fedushko (10.1016/j.procs.2019.11.080_bib00018) 2014; 11
10.1016/j.procs.2019.11.080_bib0001
10.1016/j.procs.2019.11.080_bib0002
Kryvinska (10.1016/j.procs.2019.11.080_bib00022) 2018; 141
Rubin (10.1016/j.procs.2019.11.080_bib0004) 1987
Graham (10.1016/j.procs.2019.11.080_bib00010) 2007; 8
10.1016/j.procs.2019.11.080_bib00019
Schafer (10.1016/j.procs.2019.11.080_bib00014) 1998; 33
10.1016/j.procs.2019.11.080_bib00017
10.1016/j.procs.2019.11.080_bib00016
Schafer (10.1016/j.procs.2019.11.080_bib00012) 1997
van Ginkel (10.1016/j.procs.2019.11.080_bib00015) 2007; 60
Little (10.1016/j.procs.2019.11.080_bib0006) 1987
Pickles (10.1016/j.procs.2019.11.080_bib00011) 2005
Schmitt (10.1016/j.procs.2019.11.080_bib0007) 2015; 6
Rubin (10.1016/j.procs.2019.11.080_bib0005) 1996; 91
Glas (10.1016/j.procs.2019.11.080_bib0008) 2008; 68
Schafer (10.1016/j.procs.2019.11.080_bib00013) 1999; 8
References_xml – reference: . The Sage handbook of quantitative methods in psychology,72-89.
– volume: 60
  start-page: 549
  year: 2009
  end-page: 576
  ident: bib0009
  article-title: Missing data analysis: Making it work in the real world.
  publication-title: Annual Review of Psychology
– reference: ICCSEEA 2019, 938, p. 625-636. doi:10.1007/978-3-030-16621-2_58
– year: 1997
  ident: bib00012
  publication-title: Analysis of incomplete multivariate data
– volume: 8
  start-page: 3
  year: 1999
  end-page: 15
  ident: bib00013
  article-title: Multiple imputation: A primer
  publication-title: Statistical Methods in Medical Research
– reference: Kryvinska, N., Strauss, C., Auer, L., Zinterhof, P. (2009) “Hierarchical modelling and an approximate analysis of parallel queues models to the NGN SCEs”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5468, pp. 58-71.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib0007
  article-title: “A Comparison of Six Methods for Missing Data Imputation”
  publication-title: J Biom Biostat
– reference: Unian.
– volume: 8035025
  start-page: 491
  year: 2017
  end-page: 494
  ident: bib00023
  article-title: “Use of salesforce platform for building real-time service systems in cloud”
  publication-title: Proceedings - 2017 IEEE 14th International Conference on Services Computing, SCC 2017
– reference: Home Medical Visits – Healthcare.
– volume: 141
  start-page: 64
  year: 2018
  end-page: 71
  ident: bib00022
  article-title: “An approach towards service system building for road traffic signs detection and recognition”.
  publication-title: Procedia Computer Science
– reference: , 68(1), pp.61-90.
– year: 1987
  ident: bib0004
  publication-title: Multiple imputation for nonresponse in surveys
– reference: Izonin, I., Tkachenko, R., Kryvinska, N., Tkachenko, P., Greguš ml, M. (2019) “Multiple Linear Regression Based on Coefficients Identification Using Non-iterative SGTM Neural-like Structure”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11506 LNCS, 467-479.
– volume: 8
  start-page: 206
  year: 2007
  end-page: 213
  ident: bib00010
  article-title: How many imputations are really needed?
  publication-title: Prevention Science
– year: 1987
  ident: bib0006
  publication-title: Statistical analysis with missing data
– volume: 60
  start-page: 315
  year: 2007
  end-page: 337
  ident: bib00015
  article-title: “Multiple imputation for item scores when test data are factorial complex”.
  publication-title: British Journal of Mathematical and Statistical Psychology
– reference: Fedushko, S., & Ustyianovych, T. (2020). Predicting Pupil’s successfulness factors using machine learning algorithms and mathematical modelling methods.
– reference: Vink, G., Frank, L.E., Pannekoek, J. and Van Buuren, S. (2014). “Predictive mean matching imputation of semicontinuous variables”.
– volume: 91
  start-page: 473
  year: 1996
  end-page: 489
  ident: bib0005
  article-title: Multiple imputation after 18+ years
  publication-title: Journal of the American Statistical Association
– reference: Allison, P. D. (2001). “
– volume: 11
  start-page: 1
  year: 2014
  end-page: 14
  ident: bib00018
  article-title: “Development of a software for computer-linguistic verification of socio-demographic profile of web-community member”
  publication-title: Webology
– reference: Kryvinska, N., Da Silva, M.M. (2017) “Foreword of the thematic track quality aspects in service management”. Proceedings - 2016 10th International Conference on the Quality of Information and Communications Technology, QUATIC 2016, 7814549, 209.
– volume: 33
  start-page: 545
  year: 1998
  end-page: 571
  ident: bib00014
  article-title: Multiple imputation for multivariate missing-data problems
  publication-title: Multivariate Behavioral Reserch
– reference: Prostir.
– start-page: 689
  year: 2005
  end-page: 694
  ident: bib00011
  publication-title: Missing data, problems and solutions. In Encyclopedia of Social Measurement
– reference: TVI.
– volume: 68
  start-page: 907
  year: 2008
  end-page: 922
  ident: bib0008
  article-title: Modeling nonignorable missing data in speeded tests
  publication-title: EPM
– ident: 10.1016/j.procs.2019.11.080_bib0001
– ident: 10.1016/j.procs.2019.11.080_bib00025
  doi: 10.1007/978-3-642-00985-3_5
– ident: 10.1016/j.procs.2019.11.080_bib0003
– volume: 6
  start-page: 1
  issue: 224
  year: 2015
  ident: 10.1016/j.procs.2019.11.080_bib0007
  article-title: “A Comparison of Six Methods for Missing Data Imputation”
  publication-title: J Biom Biostat
– volume: 60
  start-page: 549
  year: 2009
  ident: 10.1016/j.procs.2019.11.080_bib0009
  article-title: Missing data analysis: Making it work in the real world.
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev.psych.58.110405.085530
– start-page: 689
  year: 2005
  ident: 10.1016/j.procs.2019.11.080_bib00011
– volume: 8
  start-page: 3
  issue: 1
  year: 1999
  ident: 10.1016/j.procs.2019.11.080_bib00013
  article-title: Multiple imputation: A primer
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/096228029900800102
– year: 1987
  ident: 10.1016/j.procs.2019.11.080_bib0006
– volume: 11
  start-page: 1
  issue: 2
  year: 2014
  ident: 10.1016/j.procs.2019.11.080_bib00018
  article-title: “Development of a software for computer-linguistic verification of socio-demographic profile of web-community member”
  publication-title: Webology
– ident: 10.1016/j.procs.2019.11.080_bib00019
  doi: 10.1007/978-3-030-16621-2_58
– year: 1997
  ident: 10.1016/j.procs.2019.11.080_bib00012
– ident: 10.1016/j.procs.2019.11.080_bib0002
– ident: 10.1016/j.procs.2019.11.080_bib00024
– volume: 68
  start-page: 907
  issue: 6
  year: 2008
  ident: 10.1016/j.procs.2019.11.080_bib0008
  article-title: Modeling nonignorable missing data in speeded tests
  publication-title: EPM
– ident: 10.1016/j.procs.2019.11.080_bib00020
– volume: 8035025
  start-page: 491
  year: 2017
  ident: 10.1016/j.procs.2019.11.080_bib00023
  article-title: “Use of salesforce platform for building real-time service systems in cloud”
  publication-title: Proceedings - 2017 IEEE 14th International Conference on Services Computing, SCC 2017
  doi: 10.1109/SCC.2017.72
– volume: 8
  start-page: 206
  issue: 3
  year: 2007
  ident: 10.1016/j.procs.2019.11.080_bib00010
  article-title: How many imputations are really needed?
  publication-title: Prevention Science
  doi: 10.1007/s11121-007-0070-9
– ident: 10.1016/j.procs.2019.11.080_bib00021
  doi: 10.1111/stan.12023
– volume: 33
  start-page: 545
  issue: 4
  year: 1998
  ident: 10.1016/j.procs.2019.11.080_bib00014
  article-title: Multiple imputation for multivariate missing-data problems
  publication-title: Multivariate Behavioral Reserch
  doi: 10.1207/s15327906mbr3304_5
– volume: 141
  start-page: 64
  year: 2018
  ident: 10.1016/j.procs.2019.11.080_bib00022
  article-title: “An approach towards service system building for road traffic signs detection and recognition”.
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.10.150
– year: 1987
  ident: 10.1016/j.procs.2019.11.080_bib0004
– ident: 10.1016/j.procs.2019.11.080_bib00016
  doi: 10.1007/978-3-030-20521-8_39
– volume: 60
  start-page: 315
  year: 2007
  ident: 10.1016/j.procs.2019.11.080_bib00015
  article-title: “Multiple imputation for item scores when test data are factorial complex”.
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1348/000711006X117574
– ident: 10.1016/j.procs.2019.11.080_bib00017
– volume: 91
  start-page: 473
  issue: 434
  year: 1996
  ident: 10.1016/j.procs.2019.11.080_bib0005
  article-title: Multiple imputation after 18+ years
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1996.10476908
SSID ssj0000388917
Score 2.2389498
Snippet Missing data is a typical problem for many hands-on tasks and researches, which has required human intervention and contributed to an increase in errors during...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 354
SubjectTerms data imputation
feature analysis
healthcare
intelligent systems
medicine
missing data
Title Medical card data imputation and patient psychological and behavioral profile construction
URI https://dx.doi.org/10.1016/j.procs.2019.11.080
Volume 160
WOSCitedRecordID wos000515510100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWtgcutFAQBYp86K0ExfFubB9RBeKAKiS2UsUlsh1HbNmmVfeh9sIP4Fcz40eypdWKHrhEu87G2fV8OzOezHxDyIGSzNZG6EyABoYNSm4zWZg6K41i0hSlktp3Lfkijo_l6an6Ohj8TrUwy6loW3l9rS7_q6hhDISNpbMPEHc3KQzAaxA6HEHscPwnwadHLxYDBJgAipWQi5hU6GkBApVqLMBKug_PrNTsx17emJXeUcyuOrK-wACw5XPSsS3EYbSlvW9ZL2Y_fvpI7De4y_lk0lkALIxZzA7Pp13ifpfncTKb3wBiL5Y3oUfVWF_pW6GJqPqCHpVCZEgtE8zMPWNJ-YZuAlF98kAoHS0xDzTtd5R8iDecoYmxyLjO1HtPxJr3Ni09x__L1HUJiCm37azyk1Q4CWyGKpjkEdksBGyzMA30Vx-vQ9Yc5Rs4d78jkVj5dME7X-Z-R2fFeRnvkCdx10E_BLQ8JQPXPiPbqaMHjQp-l3yP4KEIHorgoT14KECERvDQW-DxZ3rw0Ageugqe5-Tk08fx0ecsdt_ILB_KeeZy5mrpGptr4XLNHGus0eBQMlYaVogaG8iXQjNmR4Y3YKjcSFkuRwWMGdPwF2SjvWjdS0ILC7rdwKoOFR-6kuuRc41AKsSmUdzVe6RIS1XZSE2PHVKm1Ro57ZF33UWXgZll_cfLJIMq_iGC01gBrNZd-Oph93lNHuO7EKV7QzZgld0-2bLL-WR29dZj6g-ON6GN
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+card+data+imputation+and+patient+psychological+and+behavioral+profile+construction&rft.jtitle=Procedia+computer+science&rft.au=Fedushko%2C+Solomiia&rft.au=Gregus+ml%2C+Michal&rft.au=Ustyianovych%2C+Taras&rft.date=2019&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=160&rft.spage=354&rft.epage=361&rft_id=info:doi/10.1016%2Fj.procs.2019.11.080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2019_11_080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon