Medical card data imputation and patient psychological and behavioral profile construction
Missing data is a typical problem for many hands-on tasks and researches, which has required human intervention and contributed to an increase in errors during algorithms application that demand for a large number of metrics. Solving this particular problem is essential for medicine and healthcare,...
Gespeichert in:
| Veröffentlicht in: | Procedia computer science Jg. 160; S. 354 - 361 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
2019
|
| Schlagworte: | |
| ISSN: | 1877-0509, 1877-0509 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Missing data is a typical problem for many hands-on tasks and researches, which has required human intervention and contributed to an increase in errors during algorithms application that demand for a large number of metrics. Solving this particular problem is essential for medicine and healthcare, because it allows more easily diagnosing certain types of diseases, improving medical service quality, etc. The main approach for medical data imputation is to automate this process at all stages, beginning from finding the NA (Not Available) or missing Data, to the completion of the analysis and insertion of lost information entity. The proposed methods of mathematical computing and modeling, statistical functions, data flow diagrams during the imputation, and the use of computer programming tools should be implemented in the medical field to improve and address the missing data issue. The evaluation of key characteristics (algorithm’s error, number of imputed data, datasets dimensionality) helped to determine the factors for obtaining the most accurate result with the help of various algorithms and functions. The study is useful for the medical industry in general, since it will eliminate the missing data values in patient medical records by applying statistical methods and artificial intelligence, which will significantly shorten the automation of large datasets processing and facilitate their descriptive and exploratory analysis during further data discovery to identify certain patterns and features. |
|---|---|
| AbstractList | Missing data is a typical problem for many hands-on tasks and researches, which has required human intervention and contributed to an increase in errors during algorithms application that demand for a large number of metrics. Solving this particular problem is essential for medicine and healthcare, because it allows more easily diagnosing certain types of diseases, improving medical service quality, etc. The main approach for medical data imputation is to automate this process at all stages, beginning from finding the NA (Not Available) or missing Data, to the completion of the analysis and insertion of lost information entity. The proposed methods of mathematical computing and modeling, statistical functions, data flow diagrams during the imputation, and the use of computer programming tools should be implemented in the medical field to improve and address the missing data issue. The evaluation of key characteristics (algorithm’s error, number of imputed data, datasets dimensionality) helped to determine the factors for obtaining the most accurate result with the help of various algorithms and functions. The study is useful for the medical industry in general, since it will eliminate the missing data values in patient medical records by applying statistical methods and artificial intelligence, which will significantly shorten the automation of large datasets processing and facilitate their descriptive and exploratory analysis during further data discovery to identify certain patterns and features. |
| Author | Fedushko, Solomiia Ustyianovych, Taras Gregus ml, Michal |
| Author_xml | – sequence: 1 givenname: Solomiia surname: Fedushko fullname: Fedushko, Solomiia email: solomiia.s.fedushko@lpnu.ua organization: Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013, Ukraine – sequence: 2 givenname: Michal surname: Gregus ml fullname: Gregus ml, Michal organization: Faculty of management, Comenius University in Bratislava, Odbojárov 10, Bratislava, Slovak Republic – sequence: 3 givenname: Taras surname: Ustyianovych fullname: Ustyianovych, Taras organization: Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013, Ukraine |
| BookMark | eNqFkL1OwzAQgC1UJErpE7DkBRJ8SRM7AwOq-JOKWGBhsZzLhbpK48hOK_XtcVoGxAC3-M6-73T-Ltmksx0xdg08AQ7FzSbpnUWfpBzKBCDhkp-xKUghYp7zcvIjv2Bz7zc8RCZlCWLKPl6oNqjbCLWro1oPOjLbfjfowdgu0l0d9SGlboh6f8C1be3nsX18qWit98a6UIYNGtNShLbzg9vhSF-x80a3nubf54y9P9y_LZ_i1evj8_JuFWO2kENMHKiW1CDXgrgGggYrLWQKUFSQijpfwKIQGgDzKmsyUVBeYibzNNxVVZPNWHmai85676hRaE77D06bVgFXoye1UUdPavSkAFTwFNjsF9s7s9Xu8A91e6IofGtvyCmPwREGlY5wULU1f_Jf_YCHig |
| CitedBy_id | crossref_primary_10_32604_cmc_2022_019882 crossref_primary_10_3390_su151511683 crossref_primary_10_1016_j_chaos_2021_111236 crossref_primary_10_3390_electronics9040668 crossref_primary_10_1016_j_micpro_2020_103636 crossref_primary_10_3390_ijerph192416717 crossref_primary_10_1016_j_procs_2021_03_033 crossref_primary_10_3390_math10132325 crossref_primary_10_3390_sym13040612 |
| Cites_doi | 10.1007/978-3-642-00985-3_5 10.1146/annurev.psych.58.110405.085530 10.1177/096228029900800102 10.1007/978-3-030-16621-2_58 10.1109/SCC.2017.72 10.1007/s11121-007-0070-9 10.1111/stan.12023 10.1207/s15327906mbr3304_5 10.1016/j.procs.2018.10.150 10.1007/978-3-030-20521-8_39 10.1348/000711006X117574 10.1080/01621459.1996.10476908 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.procs.2019.11.080 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1877-0509 |
| EndPage | 361 |
| ExternalDocumentID | 10_1016_j_procs_2019_11_080 S1877050919317806 |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ 9DU AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD |
| ID | FETCH-LOGICAL-c348t-e01ed8efc0a7e0a1e1fcba782116b127d541467a11c5b3f376e59c38527a1bbf3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515510100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1877-0509 |
| IngestDate | Tue Nov 18 21:17:20 EST 2025 Sat Nov 29 04:10:12 EST 2025 Wed May 17 00:11:47 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | feature analysis intelligent systems data imputation medicine missing data healthcare |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-e01ed8efc0a7e0a1e1fcba782116b127d541467a11c5b3f376e59c38527a1bbf3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.procs.2019.11.080 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_procs_2019_11_080 crossref_primary_10_1016_j_procs_2019_11_080 elsevier_sciencedirect_doi_10_1016_j_procs_2019_11_080 |
| PublicationCentury | 2000 |
| PublicationDate | 2019 2019-00-00 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | ICCSEEA 2019, 938, p. 625-636. doi:10.1007/978-3-030-16621-2_58 Kryvinska, Poniszewska-Maranda, Gregus (bib00022) 2018; 141 Rubin (bib0004) 1987 Rubin (bib0005) 1996; 91 Allison, P. D. (2001). Home Medical Visits – Healthcare. Fedushko, S., & Ustyianovych, T. (2020). Predicting Pupil’s successfulness factors using machine learning algorithms and mathematical modelling methods. Schmitt, Mandel, Guedj (bib0007) 2015; 6 Fedushko (bib00018) 2014; 11 68(1), pp.61-90. Poniszewska-Maranda, Matusiak, Kryvinska (bib00023) 2017; 8035025 Pickles (bib00011) 2005 Izonin, I., Tkachenko, R., Kryvinska, N., Tkachenko, P., Greguš ml, M. (2019) “Multiple Linear Regression Based on Coefficients Identification Using Non-iterative SGTM Neural-like Structure”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11506 LNCS, 467-479. Unian. TVI. Vink, G., Frank, L.E., Pannekoek, J. and Van Buuren, S. (2014). “Predictive mean matching imputation of semicontinuous variables”. Kryvinska, N., Strauss, C., Auer, L., Zinterhof, P. (2009) “Hierarchical modelling and an approximate analysis of parallel queues models to the NGN SCEs”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5468, pp. 58-71. van Ginkel, van der Ark, Sijtsma (bib00015) 2007; 60 Schafer (bib00013) 1999; 8 Glas, Pimental (bib0008) 2008; 68 Prostir. The Sage handbook of quantitative methods in psychology,72-89. Kryvinska, N., Da Silva, M.M. (2017) “Foreword of the thematic track quality aspects in service management”. Proceedings - 2016 10th International Conference on the Quality of Information and Communications Technology, QUATIC 2016, 7814549, 209. Schafer, Olsen (bib00014) 1998; 33 Graham, Olchowski, Gilreath (bib00010) 2007; 8 Schafer (bib00012) 1997 Little, Rubin (bib0006) 1987 Graham (bib0009) 2009; 60 Graham (10.1016/j.procs.2019.11.080_bib0009) 2009; 60 10.1016/j.procs.2019.11.080_bib00025 10.1016/j.procs.2019.11.080_bib00024 10.1016/j.procs.2019.11.080_bib0003 10.1016/j.procs.2019.11.080_bib00021 Poniszewska-Maranda (10.1016/j.procs.2019.11.080_bib00023) 2017; 8035025 10.1016/j.procs.2019.11.080_bib00020 Fedushko (10.1016/j.procs.2019.11.080_bib00018) 2014; 11 10.1016/j.procs.2019.11.080_bib0001 10.1016/j.procs.2019.11.080_bib0002 Kryvinska (10.1016/j.procs.2019.11.080_bib00022) 2018; 141 Rubin (10.1016/j.procs.2019.11.080_bib0004) 1987 Graham (10.1016/j.procs.2019.11.080_bib00010) 2007; 8 10.1016/j.procs.2019.11.080_bib00019 Schafer (10.1016/j.procs.2019.11.080_bib00014) 1998; 33 10.1016/j.procs.2019.11.080_bib00017 10.1016/j.procs.2019.11.080_bib00016 Schafer (10.1016/j.procs.2019.11.080_bib00012) 1997 van Ginkel (10.1016/j.procs.2019.11.080_bib00015) 2007; 60 Little (10.1016/j.procs.2019.11.080_bib0006) 1987 Pickles (10.1016/j.procs.2019.11.080_bib00011) 2005 Schmitt (10.1016/j.procs.2019.11.080_bib0007) 2015; 6 Rubin (10.1016/j.procs.2019.11.080_bib0005) 1996; 91 Glas (10.1016/j.procs.2019.11.080_bib0008) 2008; 68 Schafer (10.1016/j.procs.2019.11.080_bib00013) 1999; 8 |
| References_xml | – reference: . The Sage handbook of quantitative methods in psychology,72-89. – volume: 60 start-page: 549 year: 2009 end-page: 576 ident: bib0009 article-title: Missing data analysis: Making it work in the real world. publication-title: Annual Review of Psychology – reference: ICCSEEA 2019, 938, p. 625-636. doi:10.1007/978-3-030-16621-2_58 – year: 1997 ident: bib00012 publication-title: Analysis of incomplete multivariate data – volume: 8 start-page: 3 year: 1999 end-page: 15 ident: bib00013 article-title: Multiple imputation: A primer publication-title: Statistical Methods in Medical Research – reference: Kryvinska, N., Strauss, C., Auer, L., Zinterhof, P. (2009) “Hierarchical modelling and an approximate analysis of parallel queues models to the NGN SCEs”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5468, pp. 58-71. – volume: 6 start-page: 1 year: 2015 end-page: 6 ident: bib0007 article-title: “A Comparison of Six Methods for Missing Data Imputation” publication-title: J Biom Biostat – reference: Unian. – volume: 8035025 start-page: 491 year: 2017 end-page: 494 ident: bib00023 article-title: “Use of salesforce platform for building real-time service systems in cloud” publication-title: Proceedings - 2017 IEEE 14th International Conference on Services Computing, SCC 2017 – reference: Home Medical Visits – Healthcare. – volume: 141 start-page: 64 year: 2018 end-page: 71 ident: bib00022 article-title: “An approach towards service system building for road traffic signs detection and recognition”. publication-title: Procedia Computer Science – reference: , 68(1), pp.61-90. – year: 1987 ident: bib0004 publication-title: Multiple imputation for nonresponse in surveys – reference: Izonin, I., Tkachenko, R., Kryvinska, N., Tkachenko, P., Greguš ml, M. (2019) “Multiple Linear Regression Based on Coefficients Identification Using Non-iterative SGTM Neural-like Structure”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11506 LNCS, 467-479. – volume: 8 start-page: 206 year: 2007 end-page: 213 ident: bib00010 article-title: How many imputations are really needed? publication-title: Prevention Science – year: 1987 ident: bib0006 publication-title: Statistical analysis with missing data – volume: 60 start-page: 315 year: 2007 end-page: 337 ident: bib00015 article-title: “Multiple imputation for item scores when test data are factorial complex”. publication-title: British Journal of Mathematical and Statistical Psychology – reference: Fedushko, S., & Ustyianovych, T. (2020). Predicting Pupil’s successfulness factors using machine learning algorithms and mathematical modelling methods. – reference: Vink, G., Frank, L.E., Pannekoek, J. and Van Buuren, S. (2014). “Predictive mean matching imputation of semicontinuous variables”. – volume: 91 start-page: 473 year: 1996 end-page: 489 ident: bib0005 article-title: Multiple imputation after 18+ years publication-title: Journal of the American Statistical Association – reference: Allison, P. D. (2001). “ – volume: 11 start-page: 1 year: 2014 end-page: 14 ident: bib00018 article-title: “Development of a software for computer-linguistic verification of socio-demographic profile of web-community member” publication-title: Webology – reference: Kryvinska, N., Da Silva, M.M. (2017) “Foreword of the thematic track quality aspects in service management”. Proceedings - 2016 10th International Conference on the Quality of Information and Communications Technology, QUATIC 2016, 7814549, 209. – volume: 33 start-page: 545 year: 1998 end-page: 571 ident: bib00014 article-title: Multiple imputation for multivariate missing-data problems publication-title: Multivariate Behavioral Reserch – reference: Prostir. – start-page: 689 year: 2005 end-page: 694 ident: bib00011 publication-title: Missing data, problems and solutions. In Encyclopedia of Social Measurement – reference: TVI. – volume: 68 start-page: 907 year: 2008 end-page: 922 ident: bib0008 article-title: Modeling nonignorable missing data in speeded tests publication-title: EPM – ident: 10.1016/j.procs.2019.11.080_bib0001 – ident: 10.1016/j.procs.2019.11.080_bib00025 doi: 10.1007/978-3-642-00985-3_5 – ident: 10.1016/j.procs.2019.11.080_bib0003 – volume: 6 start-page: 1 issue: 224 year: 2015 ident: 10.1016/j.procs.2019.11.080_bib0007 article-title: “A Comparison of Six Methods for Missing Data Imputation” publication-title: J Biom Biostat – volume: 60 start-page: 549 year: 2009 ident: 10.1016/j.procs.2019.11.080_bib0009 article-title: Missing data analysis: Making it work in the real world. publication-title: Annual Review of Psychology doi: 10.1146/annurev.psych.58.110405.085530 – start-page: 689 year: 2005 ident: 10.1016/j.procs.2019.11.080_bib00011 – volume: 8 start-page: 3 issue: 1 year: 1999 ident: 10.1016/j.procs.2019.11.080_bib00013 article-title: Multiple imputation: A primer publication-title: Statistical Methods in Medical Research doi: 10.1177/096228029900800102 – year: 1987 ident: 10.1016/j.procs.2019.11.080_bib0006 – volume: 11 start-page: 1 issue: 2 year: 2014 ident: 10.1016/j.procs.2019.11.080_bib00018 article-title: “Development of a software for computer-linguistic verification of socio-demographic profile of web-community member” publication-title: Webology – ident: 10.1016/j.procs.2019.11.080_bib00019 doi: 10.1007/978-3-030-16621-2_58 – year: 1997 ident: 10.1016/j.procs.2019.11.080_bib00012 – ident: 10.1016/j.procs.2019.11.080_bib0002 – ident: 10.1016/j.procs.2019.11.080_bib00024 – volume: 68 start-page: 907 issue: 6 year: 2008 ident: 10.1016/j.procs.2019.11.080_bib0008 article-title: Modeling nonignorable missing data in speeded tests publication-title: EPM – ident: 10.1016/j.procs.2019.11.080_bib00020 – volume: 8035025 start-page: 491 year: 2017 ident: 10.1016/j.procs.2019.11.080_bib00023 article-title: “Use of salesforce platform for building real-time service systems in cloud” publication-title: Proceedings - 2017 IEEE 14th International Conference on Services Computing, SCC 2017 doi: 10.1109/SCC.2017.72 – volume: 8 start-page: 206 issue: 3 year: 2007 ident: 10.1016/j.procs.2019.11.080_bib00010 article-title: How many imputations are really needed? publication-title: Prevention Science doi: 10.1007/s11121-007-0070-9 – ident: 10.1016/j.procs.2019.11.080_bib00021 doi: 10.1111/stan.12023 – volume: 33 start-page: 545 issue: 4 year: 1998 ident: 10.1016/j.procs.2019.11.080_bib00014 article-title: Multiple imputation for multivariate missing-data problems publication-title: Multivariate Behavioral Reserch doi: 10.1207/s15327906mbr3304_5 – volume: 141 start-page: 64 year: 2018 ident: 10.1016/j.procs.2019.11.080_bib00022 article-title: “An approach towards service system building for road traffic signs detection and recognition”. publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.10.150 – year: 1987 ident: 10.1016/j.procs.2019.11.080_bib0004 – ident: 10.1016/j.procs.2019.11.080_bib00016 doi: 10.1007/978-3-030-20521-8_39 – volume: 60 start-page: 315 year: 2007 ident: 10.1016/j.procs.2019.11.080_bib00015 article-title: “Multiple imputation for item scores when test data are factorial complex”. publication-title: British Journal of Mathematical and Statistical Psychology doi: 10.1348/000711006X117574 – ident: 10.1016/j.procs.2019.11.080_bib00017 – volume: 91 start-page: 473 issue: 434 year: 1996 ident: 10.1016/j.procs.2019.11.080_bib0005 article-title: Multiple imputation after 18+ years publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1996.10476908 |
| SSID | ssj0000388917 |
| Score | 2.2388499 |
| Snippet | Missing data is a typical problem for many hands-on tasks and researches, which has required human intervention and contributed to an increase in errors during... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 354 |
| SubjectTerms | data imputation feature analysis healthcare intelligent systems medicine missing data |
| Title | Medical card data imputation and patient psychological and behavioral profile construction |
| URI | https://dx.doi.org/10.1016/j.procs.2019.11.080 |
| Volume | 160 |
| WOSCitedRecordID | wos000515510100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EMvLfQhaGnlAzeaKo436_iIqqIeEKrEglAvkePY6tIlIPYhuPAD-NXM-JEsBa3KgUu062yc3cy3M-PxzDeEbKdapJm2aWJqWST9XFaJMlIm_UopAEhtldsuON4XBwfFyYn81evdxlqY-Vg0TXF1JS-eVdQwBsLG0tkniLudFAbgNQgdjiB2OP6X4OPWi8YAASaAYiXkLCQVOloAT6UaCrCi7sMzCzX7oZc3ZqW3FLOLjqwrMABsuZx0bAuxE2xp51vWs8mfvy4Sewh3ORuNWguAhTGzyc7ZuE3cb_M8jibTa0Ds-fza96gaqkt1LzQRVJ_Xo4UQCVLLeDPzyFhUvr6bQFCf3BNKB0vMPU37AyXv4w2naGI0Mq4z-c0RsaadTYv7-P-YujYBMea2nZZukhIngcVQCZO8IKuZgGUWpoHedPE6ZM2RroFz-zsiiZVLF3zwZR53dBacl-EaeR1WHXTXo2Wd9EzzlryJHT1oUPDvyO8AHorgoQge2oGHAkRoAA-9Bx53pgMPDeChi-B5T472fgy__0xC941E834xTUzKTF0Yq1MlTKqYYVZXChxKxgYVy0SNDeQHQjGm84pbMFQml5oXeQZjVWX5B7LSnDdmg1BuBeM1GNK8En1Tc1komCMTtrbG2Jxtkiw-qlIHanrskDIul8hpk3xtL7rwzCzLPz6IMijDH8I7jSXAatmFH592n0_kFb7zUbotsgJP2XwmL_V8OppcfnGYugONG6Kx |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+card+data+imputation+and+patient+psychological+and+behavioral+profile+construction&rft.jtitle=Procedia+computer+science&rft.au=Fedushko%2C+Solomiia&rft.au=Gregus+ml%2C+Michal&rft.au=Ustyianovych%2C+Taras&rft.date=2019&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=160&rft.spage=354&rft.epage=361&rft_id=info:doi/10.1016%2Fj.procs.2019.11.080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2019_11_080 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |