Kullback–Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability

This paper addresses distributed state estimation over a sensor network wherein each node–equipped with processing, communication and sensing capabilities–repeatedly fuses local information with information from the neighbors. Estimation is cast in a Bayesian framework and an information-theoretic a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 50; číslo 3; s. 707 - 718
Hlavní autoři: Battistelli, Giorgio, Chisci, Luigi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.03.2014
Elsevier
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper addresses distributed state estimation over a sensor network wherein each node–equipped with processing, communication and sensing capabilities–repeatedly fuses local information with information from the neighbors. Estimation is cast in a Bayesian framework and an information-theoretic approach to data fusion is adopted by formulating a consensus problem on the Kullback–Leibler average of the local probability density functions (PDFs) to be fused. Exploiting such a consensus on local posterior PDFs, a novel distributed state estimator is derived. It is shown that, for a linear system, the proposed estimator guarantees stability, i.e. mean-square boundedness of the state estimation error in all network nodes, under the minimal requirements of network connectivity and system observability, and for any number of consensus steps. Finally, simulation experiments demonstrate the validity of the proposed approach.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2013.11.042