A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction

New metaheuristic algorithms have soared over the past ten years. A common practice in proposing a new algorithm is validating it on several benchmark functions and engineering problems. Although CEC benchmark problems are specifically designed to validate the performance of new meta-heuristics, eng...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 118; s. 105521
Hlavní autori: Tzanetos, Alexandros, Blondin, Maude
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2023
Predmet:
ISSN:0952-1976, 1873-6769, 1873-6769
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract New metaheuristic algorithms have soared over the past ten years. A common practice in proposing a new algorithm is validating it on several benchmark functions and engineering problems. Although CEC benchmark problems are specifically designed to validate the performance of new meta-heuristics, engineering design problems from pressure vessels to springs have been used in hundreds of papers to prove algorithm efficiency. To date, no benchmark practices have been established yet, i.e., researchers design their own benchmark to validate their algorithm. Thus, the high number of new algorithms combined with the high number of different benchmarking setups complicates the comparing and validating processes. In this paper, we study benchmark practices related to engineering applications. In particular, our exhaustive qualitative systematic review focuses on metaheuristics applied to the tension/compression spring design problem (TCSDP). The aim of this study is threefold: (i) evaluate where the field stands in regards of algorithm performance on the TCSDP, (ii) evaluate benchmarking practices, and (iii) facilitate future algorithm comparison. For these purposes, we first review all the existing metaheuristics applied to the TCSDP in their first publication. For each paper, we gather the data regarding the problem definition, the simulation setup, and the optimized design. We evaluated the data through several metrics to find the best-optimized design so far. Our findings and analysis concluded that the field of metaheuristics and its benchmarking practice have not reached maturity yet. Thus, we recommend some actions to address the issues and provide future research directions.
AbstractList New metaheuristic algorithms have soared over the past ten years. A common practice in proposing a new algorithm is validating it on several benchmark functions and engineering problems. Although CEC benchmark problems are specifically designed to validate the performance of new meta-heuristics, engineering design problems from pressure vessels to springs have been used in hundreds of papers to prove algorithm efficiency. To date, no benchmark practices have been established yet, i.e., researchers design their own benchmark to validate their algorithm. Thus, the high number of new algorithms combined with the high number of different benchmarking setups complicates the comparing and validating processes. In this paper, we study benchmark practices related to engineering applications. In particular, our exhaustive qualitative systematic review focuses on metaheuristics applied to the tension/compression spring design problem (TCSDP). The aim of this study is threefold: (i) evaluate where the field stands in regards of algorithm performance on the TCSDP, (ii) evaluate benchmarking practices, and (iii) facilitate future algorithm comparison. For these purposes, we first review all the existing metaheuristics applied to the TCSDP in their first publication. For each paper, we gather the data regarding the problem definition, the simulation setup, and the optimized design. We evaluated the data through several metrics to find the best-optimized design so far. Our findings and analysis concluded that the field of metaheuristics and its benchmarking practice have not reached maturity yet. Thus, we recommend some actions to address the issues and provide future research directions.
ArticleNumber 105521
Author Blondin, Maude
Tzanetos, Alexandros
Author_xml – sequence: 1
  givenname: Alexandros
  orcidid: 0000-0002-1319-513X
  surname: Tzanetos
  fullname: Tzanetos, Alexandros
  email: alexandros.tzanetos@usherbrooke.ca
  organization: Management and Decision Engineering Laboratory (MDE Lab), Department of Financial and Management Engineering, School of Engineering, University of the Aegean, Greece
– sequence: 2
  givenname: Maude
  orcidid: 0000-0001-7844-8874
  surname: Blondin
  fullname: Blondin, Maude
  email: maude.blondin2@usherbrooke.ca
  organization: Multiobjective Optimization REsearch Lab (MORE Lab), Department of Electrical Engineering and Computer Engineering, Université de Sherbrooke, Sherbrooke, Canada
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-63824$$DView record from Swedish Publication Index (Högskolan i Jönköping)
BookMark eNqFUcFu1DAQtVCR2BZ-AflOs7WTrBMjDqwWKEiVuFRcLcee7HqV2MHjtOrv9EvxNtADl548fvPeG828c3LmgwdC3nO25oyLq-Ma_F5Pk3brkpVlBjebkr8iK942VSEaIc_IislNWXDZiDfkHPHIGKvaWqzI45b-nvXgkk7uDig-YIIx14ZGuHNwT0NPR0j6AHN0mHGkedTgwNIUaAKPLvgrE8YpAp5qilN0fk8toNt7OsXQDTB-pLs5RvCJoktz9g_-Mk_IuhG8ffrjJdXeZhBBR3Og1uX-qfGWvO71gPDu73tBbr99vd19L25-Xv_YbW8KU9VtKqxkVV8LgF6Wpuayg77rdGkNZ9KUVcP7TooNY6Jpa5s5lrWVznzT9EKCrC7Ih8UW72GaO5XXGHV8UEE79cX92qoQ9-pwVKJqyzqzxcI2MSBG6J_5nKlTLOqo_sWiTrGoJZYs_PSf0DwdP_gUtRteln9e5JAvkQOKCo0Db2A5l7LBvWTxB17mthg
CitedBy_id crossref_primary_10_1007_s11227_024_06713_6
crossref_primary_10_1007_s00521_024_09603_3
crossref_primary_10_1016_j_euromechsol_2024_105385
crossref_primary_10_1093_jcde_qwae050
crossref_primary_10_1016_j_rineng_2025_106868
crossref_primary_10_3390_sym17081200
crossref_primary_10_1080_00207721_2024_2367079
crossref_primary_10_3390_sym15112077
crossref_primary_10_1080_0305215X_2025_2463976
crossref_primary_10_3390_biomimetics9100595
crossref_primary_10_3390_axioms13060361
crossref_primary_10_1038_s41598_024_78761_0
crossref_primary_10_3390_biomimetics10090612
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_7717_peerj_cs_2722
crossref_primary_10_3390_make7010024
crossref_primary_10_1016_j_swevo_2024_101679
crossref_primary_10_1038_s41598_024_78589_8
crossref_primary_10_1038_s41598_024_56521_4
crossref_primary_10_3390_computation11120245
crossref_primary_10_3390_math12071084
crossref_primary_10_1007_s10462_024_10923_y
crossref_primary_10_1007_s12065_023_00868_6
crossref_primary_10_3390_math11183861
crossref_primary_10_1038_s41598_024_58806_0
crossref_primary_10_12677_csa_2025_155139
crossref_primary_10_3390_computation11050091
crossref_primary_10_1371_journal_pone_0288071
crossref_primary_10_1016_j_biosystemseng_2024_07_018
crossref_primary_10_1007_s11227_025_07833_3
crossref_primary_10_1088_2631_8695_ad6d2e
crossref_primary_10_1016_j_matpr_2023_03_258
crossref_primary_10_3390_automation6020013
crossref_primary_10_3390_a17090417
crossref_primary_10_3390_math12101459
crossref_primary_10_3390_app15094921
crossref_primary_10_3390_computers12110225
crossref_primary_10_1016_j_jestch_2025_101982
crossref_primary_10_3390_math12223464
Cites_doi 10.1007/s10489-020-01727-y
10.1007/s00521-019-04229-2
10.3390/e23070874
10.1007/s00500-018-3381-9
10.1016/j.engappai.2020.103731
10.1016/j.advengsoft.2013.12.007
10.3390/sym9100203
10.1007/s00500-015-1716-3
10.1287/moor.6.1.19
10.1007/s42979-019-0050-8
10.1016/j.knosys.2015.07.006
10.1016/j.advengsoft.2017.07.002
10.1016/j.engappai.2020.103541
10.1016/j.swevo.2020.100665
10.1016/j.ins.2012.11.013
10.1007/s11047-020-09837-9
10.1016/j.asoc.2010.05.011
10.1108/EC-05-2017-0174
10.1007/s11721-019-00165-y
10.1016/j.advengsoft.2015.11.004
10.1186/1748-7188-5-32
10.1007/s10710-012-9177-2
10.1007/s00366-016-0457-y
10.1016/j.ins.2012.12.053
10.1155/2015/904364
10.1016/j.dib.2020.105792
10.1007/s10462-020-09893-8
10.1080/18756891.2015.1046324
10.1016/j.engappai.2019.103249
10.1016/j.asoc.2012.11.026
10.1016/j.knosys.2014.07.025
10.1016/j.future.2019.07.015
10.1016/j.advengsoft.2005.04.005
10.4236/am.2012.330215
10.1016/j.engappai.2016.04.004
10.1007/BF02430363
10.1016/j.eswa.2016.04.018
10.1007/s11081-017-9366-1
10.1016/j.cie.2019.106040
10.1007/s10462-017-9605-z
10.1016/j.advengsoft.2017.05.014
10.1016/j.asoc.2015.07.045
10.1016/j.advengsoft.2016.01.008
10.1016/j.ins.2014.01.026
10.1016/j.eswa.2020.113377
10.1016/j.advengsoft.2017.03.014
10.1016/j.ins.2019.03.049
10.1007/s00707-009-0270-4
10.1007/s40996-016-0042-z
10.1016/j.swevo.2021.100973
10.1111/coin.12053
10.1007/s00500-018-3102-4
10.1016/j.ins.2020.06.037
10.1108/EC-03-2020-0137
10.1109/ACCESS.2019.2918406
10.1016/j.swevo.2011.02.002
10.1007/s42107-020-00250-2
10.1111/itor.12001
10.1007/s10732-008-9080-4
10.1111/itor.12461
10.1016/j.swevo.2015.07.003
10.1016/j.compstruc.2012.09.003
10.1016/j.cad.2010.12.015
10.1080/0305215X.2019.1565282
10.1007/s00521-019-04641-8
10.1016/j.engappai.2019.103300
10.14419/ijsw.v7i1.29497
10.1016/j.compstruc.2014.04.005
10.1016/j.swevo.2020.100693
10.1016/j.ins.2013.02.041
10.1007/s00500-016-2471-9
10.1016/j.istruc.2020.07.058
10.1016/j.asoc.2017.06.033
10.1007/s00500-019-04410-8
10.1109/TEVC.2012.2232931
10.1016/j.biosystems.2018.09.007
10.1109/TEVC.2016.2591064
10.1007/s10489-015-0706-6
10.1007/s00500-017-2810-5
10.1007/s00521-019-04452-x
10.1016/j.asoc.2017.11.043
10.1016/j.asoc.2019.03.012
10.1016/j.ins.2020.02.013
10.1016/j.engappai.2019.03.021
10.1109/TEVC.2019.2921598
10.1007/s12652-019-01598-3
10.1023/A:1011319115230
10.1016/j.knosys.2018.06.001
10.1016/j.future.2019.02.028
10.1016/j.compstruc.2016.01.008
10.1016/j.swevo.2019.04.008
10.1016/j.compstruc.2012.07.010
10.1016/j.knosys.2018.11.024
10.1016/j.compstruc.2016.03.001
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
ADTPV
AOWAS
D8X
DOI 10.1016/j.engappai.2022.105521
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Högskolan i Jönköping
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID oai_DiVA_org_hj_63824
10_1016_j_engappai_2022_105521
S0952197622005115
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTPV
AOWAS
D8X
ID FETCH-LOGICAL-c348t-d903f46eef92c419befbba2dc109c2371fb965006784df92d083a46ec7f69e93
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000894964700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
1873-6769
IngestDate Tue Nov 04 16:02:09 EST 2025
Sat Nov 29 07:05:44 EST 2025
Tue Nov 18 20:41:43 EST 2025
Fri Feb 23 02:37:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Benchmarking
Metaheuristics
Engineering optimization problem
Qualitative systematic review
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-d903f46eef92c419befbba2dc109c2371fb965006784df92d083a46ec7f69e93
ORCID 0000-0002-1319-513X
0000-0001-7844-8874
ParticipantIDs swepub_primary_oai_DiVA_org_hj_63824
crossref_primary_10_1016_j_engappai_2022_105521
crossref_citationtrail_10_1016_j_engappai_2022_105521
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105521
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Barr, Golden, Kelly, Resende, Stewart (b9) 1995; 1
Ismael, Al-Asady, Al-Asadi (b54) 2020; 21
Qais, Hasanien, Alghuwainem (b88) 2020; 50
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b75) 2017; 114
García, Molina, Lozano, Herrera (b42) 2009; 15
Biswas, Das, Suganthan, Coello (b12) 2014
Azizyan, Miarnaeimi, Rashki, Shabakhty (b8) 2019; 11
Kumar, Wu, Ali, Mallipeddi, Suganthan, Das (b66) 2020; 56
Phan, Ellis, Barca, Dorin (b82) 2020; 32
Yang, Deb, Zhao, Fong, He (b118) 2018; 22
Dokeroglu, Sevinc, Kucukyilmaz, Cosar (b31) 2019; 137
Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello, Herrera (b24) 2019; 48
Tzanetos, Fister Jr., Dounias (b106) 2020; 31
Lones (b71) 2020; 1
Sörensen (b97) 2015; 22
Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b21) 2017
Askarzadeh (b7) 2016; 169
Chakraborty, Kar (b20) 2017
Wei, Huang, Wang, Han, Li (b111) 2019; 7
Boussaïd, Lepagnot, Siarry (b15) 2013; 237
Villalón, Stützle, Dorigo (b108) 2020
Qu, Liang, Wang, Chen, Suganthan (b89) 2016; 26
Worasucheep (b115) 2008
LaTorre, Molina, Osaba, Poyatos, Del Ser, Herrera (b67) 2021; 67
.
Faramarzi, Heidarinejad, Stephens, Mirjalili (b36) 2019
Mezura-Montes, Coello, Landa-Becerra (b73) 2003
Yapici, Cetinkaya (b120) 2019; 78
Massoudi, Sarjamei, Esfandi Sarafraz (b72) 2020; 21
Spotts (b99) 1953
Arora, Singh (b6) 2019; 23
Blum, Juan, Ramalhinho, Stutzle (b14) 2018; 25
Braik, Sheta, Al-Hiary (b16) 2020
Farasat, Menhaj, Mansouri, Moghadam (b37) 2010; 10
Salimi (b94) 2015; 75
Sulaiman, Salhi (b101) 2015; 2015
Xiong, Molina, Ortiz, Herrera (b116) 2015; 8
Almufti (b4) 2019; 7
Yang, Chen, Yu, Gu, Li, Zhang, Zhang (b117) 2016; 21
Camacho-Villalón, Dorigo, Stützle (b17) 2019; 13
Mirjalili, Mirjalili, Lewis (b77) 2014; 69
Mohammadi, Khodaygan (b80) 2020; 11
Ahmadianfar, Bozorg-Haddad, Chu (b3) 2020; 540
Feng, Lau, Yu (b38) 2013; 233
Subramanian, Sekar, Subramanian (b100) 2013; 8
Wang, Qin, Wan, Song (b110) 2021; 23
Canayaz, Karci (b18) 2016; 44
Arora (b5) 2011
Eskandar, Sadollah, Bahreininejad, Hamdi (b34) 2012; 110–111
Kaveh, Bakhshpoori (b58) 2016; 167
Rahmanzadeh, Pishvaee (b90) 2020; 24
Yang, He (b119) 2019
Weyland (b113) 2015; 2
Kaveh, Zolghadr (b65) 2016; 6
Hussain, Salleh, Cheng, Shi (b53) 2019; 52
Zhang, Wang, Yang, Lewis, Chiclana, Yang (b123) 2019; 23
Civicioglu (b22) 2013; 229
Hu, Wu, Weir (b51) 2012; 17
Dhiman, Kaur (b26) 2019; 82
Gandomi (b41) 2014; 53
Huang, Li, Yao (b52) 2019; 24
Zaldívar, Morales, Rodríguez, Valdivia-G, Cuevas, Pérez-Cisneros (b122) 2018; 174
Zhao, Wang, Zhang (b124) 2020; 32
Shigley (b95) 1972
Weise, Zapf, Chiong, Nebro (b112) 2009
Dhiman, Kumar (b28) 2018; 159
Tzanetos, Dounias (b104) 2020; Vol. 18
Dhiman, Kumar (b27) 2017; 114
Rardin, Uzsoy (b92) 2001; 7
Punnathanam, Kotecha (b87) 2016; 54
Tzanetos, Dounias (b105) 2021; 54
Kaveh, Talatahari (b64) 2010; 213
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b47) 2019; 97
Jamil, Yang (b55) 2013; 4
Solis, Wets (b96) 1981; 6
Kaur, Awasthi, Sangal, Dhiman (b57) 2020; 90
Varaee, Ghasemi (b107) 2017; 33
Mirjalili, Lewis (b76) 2016; 95
Piotrowski, Napiorkowski, Rowinski (b84) 2014; 267
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b35) 2020; 152
Feng, Ma, Yu (b39) 2016; 32
Rao, Savsani, Vakharia (b91) 2011; 43
Kaveh, Dadras (b59) 2017; 110
Tang, Dong, Jiang, Li, Huang (b102) 2015; 36
Zou (b127) 2019; 36
Eftimov, Korošec (b32) 2019; 489
Moez, Kaveh, Taghizadieh (b78) 2016; 40
Belegundu (b11) 1983
Carrasco, García, Rueda, Das, Herrera (b19) 2020; 54
Ahmadi-Javid (b2) 2011
de Armas, Lalla-Ruiz, Tilahun, Voß (b23) 2022; 21
Haug, Arora (b45) 1979
Dhiman, Kumar (b29) 2019; 165
Fister, Strnad, Yang (b40) 2015
Wahl (b109) 1963
Połap, Woz’ niak (b85) 2017; 9
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b44) 2019; 101
White, Mcdermott, Castelli, Manzoni, Goldman, Kronberger, Jaśkowski, O’Reilly, Luke (b114) 2013; 14
Ab. Rashid (b1) 2021; 38
Journal of Heuristics, ., 2015. Policies on heuristic search, J. Heurist. URL
Tzanetos, Dounias (b103) 2017; 26
Li, Tang, Omidvar, Yang, Qin, China (b69) 2013; 7
Moghdani, Salimifard (b79) 2018; 64
Derrac, García, Molina, Herrera (b25) 2011; 1
Pornsing, Sodhi, Lamond (b86) 2016; 20
Yilmaz, Sen (b121) 2020; 32
Kar (b56) 2016; 59
Sörensen, Sevaux, Glover (b98) 2018
Hosseini (b49) 2007
Mirjalili (b74) 2015; 89
Li, Zhao, Weng, Han (b70) 2016; 92
Pijarski, Kacejko (b83) 2019; 51
Hayyolalam, Pourhaji Kazem (b46) 2020; 87
Nematollahi, Rahiminejad, Vahidi (b81) 2017; 59
Beiranvand, Hare, Lucet (b10) 2017; 18
Kaveh, Mahdavi (b63) 2014; 139
Erol, Eksin (b33) 2006; 37
García-Martínez, Gutiérrez, Molina, Lozano, Herrera (b43) 2017; 21
Kaveh, Khayatazad (b61) 2012; 112–113
Kaveh, Kooshkebaghi (b62) 2019; 26
Zheng, Liu, Zhou, Liang, Wang (b126) 2010; 5
Houssein, Saad, Hashim, Shaban, Hassaballah (b50) 2020; 94
Zhao, Zhang, Wang (b125) 2020; 87
Kaveh, Khanzadi, Rastegar Moghaddam (b60) 2020; 27
Blondin (b13) 2021
Dieterich, Hartke (b30) 2012; 3
Le-Duc, Nguyen, Nguyen-Xuan (b68) 2020; 520
Sadollah, Bahreininejad, Eskandar, Hamdi (b93) 2013; 13
Azizyan (10.1016/j.engappai.2022.105521_b8) 2019; 11
Hayyolalam (10.1016/j.engappai.2022.105521_b46) 2020; 87
Heidari (10.1016/j.engappai.2022.105521_b47) 2019; 97
Jamil (10.1016/j.engappai.2022.105521_b55) 2013; 4
Mirjalili (10.1016/j.engappai.2022.105521_b74) 2015; 89
Tzanetos (10.1016/j.engappai.2022.105521_b104) 2020; Vol. 18
Yang (10.1016/j.engappai.2022.105521_b117) 2016; 21
Blum (10.1016/j.engappai.2022.105521_b14) 2018; 25
Pornsing (10.1016/j.engappai.2022.105521_b86) 2016; 20
Kaveh (10.1016/j.engappai.2022.105521_b63) 2014; 139
Dhiman (10.1016/j.engappai.2022.105521_b29) 2019; 165
Subramanian (10.1016/j.engappai.2022.105521_b100) 2013; 8
Tzanetos (10.1016/j.engappai.2022.105521_b105) 2021; 54
Zhang (10.1016/j.engappai.2022.105521_b123) 2019; 23
Pijarski (10.1016/j.engappai.2022.105521_b83) 2019; 51
Canayaz (10.1016/j.engappai.2022.105521_b18) 2016; 44
Arora (10.1016/j.engappai.2022.105521_b5) 2011
Ismael (10.1016/j.engappai.2022.105521_b54) 2020; 21
Derrac (10.1016/j.engappai.2022.105521_b25) 2011; 1
Punnathanam (10.1016/j.engappai.2022.105521_b87) 2016; 54
Del Ser (10.1016/j.engappai.2022.105521_b24) 2019; 48
Eftimov (10.1016/j.engappai.2022.105521_b32) 2019; 489
Weyland (10.1016/j.engappai.2022.105521_b113) 2015; 2
Faramarzi (10.1016/j.engappai.2022.105521_b35) 2020; 152
Rardin (10.1016/j.engappai.2022.105521_b92) 2001; 7
Erol (10.1016/j.engappai.2022.105521_b33) 2006; 37
Zhao (10.1016/j.engappai.2022.105521_b125) 2020; 87
Kumar (10.1016/j.engappai.2022.105521_b66) 2020; 56
Połap (10.1016/j.engappai.2022.105521_b85) 2017; 9
Sörensen (10.1016/j.engappai.2022.105521_b98) 2018
Tzanetos (10.1016/j.engappai.2022.105521_b106) 2020; 31
LaTorre (10.1016/j.engappai.2022.105521_b67) 2021; 67
Yang (10.1016/j.engappai.2022.105521_b119) 2019
Kaveh (10.1016/j.engappai.2022.105521_b61) 2012; 112–113
Mirjalili (10.1016/j.engappai.2022.105521_b76) 2016; 95
Rahmanzadeh (10.1016/j.engappai.2022.105521_b90) 2020; 24
Biswas (10.1016/j.engappai.2022.105521_b12) 2014
Xiong (10.1016/j.engappai.2022.105521_b116) 2015; 8
Mohammadi (10.1016/j.engappai.2022.105521_b80) 2020; 11
Farasat (10.1016/j.engappai.2022.105521_b37) 2010; 10
Mezura-Montes (10.1016/j.engappai.2022.105521_b73) 2003
Dhiman (10.1016/j.engappai.2022.105521_b26) 2019; 82
Barr (10.1016/j.engappai.2022.105521_b9) 1995; 1
Huang (10.1016/j.engappai.2022.105521_b52) 2019; 24
Wang (10.1016/j.engappai.2022.105521_b110) 2021; 23
Feng (10.1016/j.engappai.2022.105521_b39) 2016; 32
Hosseini (10.1016/j.engappai.2022.105521_b49) 2007
Ahmadianfar (10.1016/j.engappai.2022.105521_b3) 2020; 540
Belegundu (10.1016/j.engappai.2022.105521_b11) 1983
Mirjalili (10.1016/j.engappai.2022.105521_b77) 2014; 69
Weise (10.1016/j.engappai.2022.105521_b112) 2009
Dieterich (10.1016/j.engappai.2022.105521_b30) 2012; 3
Hashim (10.1016/j.engappai.2022.105521_b44) 2019; 101
Sörensen (10.1016/j.engappai.2022.105521_b97) 2015; 22
de Armas (10.1016/j.engappai.2022.105521_b23) 2022; 21
Kaveh (10.1016/j.engappai.2022.105521_b65) 2016; 6
Arora (10.1016/j.engappai.2022.105521_b6) 2019; 23
Zheng (10.1016/j.engappai.2022.105521_b126) 2010; 5
García (10.1016/j.engappai.2022.105521_b42) 2009; 15
Zhao (10.1016/j.engappai.2022.105521_b124) 2020; 32
Feng (10.1016/j.engappai.2022.105521_b38) 2013; 233
Piotrowski (10.1016/j.engappai.2022.105521_b84) 2014; 267
Mirjalili (10.1016/j.engappai.2022.105521_b75) 2017; 114
Kaveh (10.1016/j.engappai.2022.105521_b64) 2010; 213
Eskandar (10.1016/j.engappai.2022.105521_b34) 2012; 110–111
Cheng (10.1016/j.engappai.2022.105521_b21) 2017
Ab. Rashid (10.1016/j.engappai.2022.105521_b1) 2021; 38
Yapici (10.1016/j.engappai.2022.105521_b120) 2019; 78
Carrasco (10.1016/j.engappai.2022.105521_b19) 2020; 54
Yilmaz (10.1016/j.engappai.2022.105521_b121) 2020; 32
Faramarzi (10.1016/j.engappai.2022.105521_b36) 2019
Kaveh (10.1016/j.engappai.2022.105521_b59) 2017; 110
Kaveh (10.1016/j.engappai.2022.105521_b58) 2016; 167
Hu (10.1016/j.engappai.2022.105521_b51) 2012; 17
Li (10.1016/j.engappai.2022.105521_b69) 2013; 7
Spotts (10.1016/j.engappai.2022.105521_b99) 1953
Kaur (10.1016/j.engappai.2022.105521_b57) 2020; 90
Askarzadeh (10.1016/j.engappai.2022.105521_b7) 2016; 169
Beiranvand (10.1016/j.engappai.2022.105521_b10) 2017; 18
Qais (10.1016/j.engappai.2022.105521_b88) 2020; 50
Wei (10.1016/j.engappai.2022.105521_b111) 2019; 7
Kar (10.1016/j.engappai.2022.105521_b56) 2016; 59
Varaee (10.1016/j.engappai.2022.105521_b107) 2017; 33
Braik (10.1016/j.engappai.2022.105521_b16) 2020
Fister (10.1016/j.engappai.2022.105521_b40) 2015
Moghdani (10.1016/j.engappai.2022.105521_b79) 2018; 64
Nematollahi (10.1016/j.engappai.2022.105521_b81) 2017; 59
Solis (10.1016/j.engappai.2022.105521_b96) 1981; 6
Lones (10.1016/j.engappai.2022.105521_b71) 2020; 1
García-Martínez (10.1016/j.engappai.2022.105521_b43) 2017; 21
10.1016/j.engappai.2022.105521_b48
Phan (10.1016/j.engappai.2022.105521_b82) 2020; 32
Tzanetos (10.1016/j.engappai.2022.105521_b103) 2017; 26
Wahl (10.1016/j.engappai.2022.105521_b109) 1963
Hussain (10.1016/j.engappai.2022.105521_b53) 2019; 52
Villalón (10.1016/j.engappai.2022.105521_b108) 2020
Worasucheep (10.1016/j.engappai.2022.105521_b115) 2008
Sulaiman (10.1016/j.engappai.2022.105521_b101) 2015; 2015
Ahmadi-Javid (10.1016/j.engappai.2022.105521_b2) 2011
Salimi (10.1016/j.engappai.2022.105521_b94) 2015; 75
Shigley (10.1016/j.engappai.2022.105521_b95) 1972
Haug (10.1016/j.engappai.2022.105521_b45) 1979
Camacho-Villalón (10.1016/j.engappai.2022.105521_b17) 2019; 13
Chakraborty (10.1016/j.engappai.2022.105521_b20) 2017
Gandomi (10.1016/j.engappai.2022.105521_b41) 2014; 53
Li (10.1016/j.engappai.2022.105521_b70) 2016; 92
Le-Duc (10.1016/j.engappai.2022.105521_b68) 2020; 520
White (10.1016/j.engappai.2022.105521_b114) 2013; 14
Dhiman (10.1016/j.engappai.2022.105521_b28) 2018; 159
Houssein (10.1016/j.engappai.2022.105521_b50) 2020; 94
Zaldívar (10.1016/j.engappai.2022.105521_b122) 2018; 174
Sadollah (10.1016/j.engappai.2022.105521_b93) 2013; 13
Moez (10.1016/j.engappai.2022.105521_b78) 2016; 40
Zou (10.1016/j.engappai.2022.105521_b127) 2019; 36
Boussaïd (10.1016/j.engappai.2022.105521_b15) 2013; 237
Kaveh (10.1016/j.engappai.2022.105521_b60) 2020; 27
Qu (10.1016/j.engappai.2022.105521_b89) 2016; 26
Dokeroglu (10.1016/j.engappai.2022.105521_b31) 2019; 137
Kaveh (10.1016/j.engappai.2022.105521_b62) 2019; 26
Civicioglu (10.1016/j.engappai.2022.105521_b22) 2013; 229
Massoudi (10.1016/j.engappai.2022.105521_b72) 2020; 21
Yang (10.1016/j.engappai.2022.105521_b118) 2018; 22
Dhiman (10.1016/j.engappai.2022.105521_b27) 2017; 114
Almufti (10.1016/j.engappai.2022.105521_b4) 2019; 7
Tang (10.1016/j.engappai.2022.105521_b102) 2015; 36
Blondin (10.1016/j.engappai.2022.105521_b13) 2021
Rao (10.1016/j.engappai.2022.105521_b91) 2011; 43
References_xml – volume: 520
  start-page: 250
  year: 2020
  end-page: 270
  ident: b68
  article-title: Balancing composite motion optimization
  publication-title: Inform. Sci.
– start-page: 475
  year: 2017
  end-page: 494
  ident: b20
  article-title: Swarm intelligence: A review of algorithms
  publication-title: Nature-Inspired Computing and Optimization
– year: 1983
  ident: b11
  article-title: A Study of Mathematical Programming Methods for Structural Optimization
– year: 1979
  ident: b45
  article-title: Applied Optimal Design: Mechanical and Structural Systems
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b77
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b47
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– start-page: 1
  year: 2009
  end-page: 50
  ident: b112
  article-title: Why is optimization difficult?
  publication-title: Nature-Inspired Algorithms for Optimisation
– volume: 489
  start-page: 255
  year: 2019
  end-page: 273
  ident: b32
  article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
  publication-title: Inform. Sci.
– volume: 67
  year: 2021
  ident: b67
  article-title: A prescription of methodological guidelines for comparing bio-inspired optimization algorithms
  publication-title: Swarm Evol. Comput.
– volume: 56
  year: 2020
  ident: b66
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm Evol. Comput.
– volume: 87
  year: 2020
  ident: b125
  article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
– year: 2021
  ident: b13
  article-title: Controller Tuning Optimization Methods for Multi-Constraints and Nonlinear Systems: A Metaheuristic Approach
– volume: 4
  start-page: 150
  year: 2013
  end-page: 194
  ident: b55
  article-title: A literature survey of benchmark functions for global optimisation problems
  publication-title: Int. J. Math. Model. Numer. Optim.
– volume: 48
  start-page: 220
  year: 2019
  end-page: 250
  ident: b24
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm Evol. Comput.
– year: 2019
  ident: b36
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 173
  year: 2019
  end-page: 192
  ident: b17
  article-title: The intelligent water drops algorithm: why it cannot be considered a novel algorithm
  publication-title: Swarm Intell.
– volume: 32
  start-page: 567
  year: 2020
  end-page: 588
  ident: b82
  article-title: A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms
  publication-title: Neural Comput. Appl.
– volume: 26
  start-page: 2731
  year: 2019
  end-page: 2747
  ident: b62
  article-title: Artificial Coronary Circulation System; a new bio-inspired metaheuristic algorithm
  publication-title: Sci. Iranica
– volume: 112–113
  start-page: 283
  year: 2012
  end-page: 294
  ident: b61
  article-title: A new meta-heuristic method: Ray Optimization
  publication-title: Comput. Struct.
– volume: 40
  start-page: 311
  year: 2016
  end-page: 326
  ident: b78
  article-title: Natural Forest Regeneration Algorithm: A New Meta-Heuristic
  publication-title: Iranian J. Sci. Technol., Trans. Civ. Eng.
– volume: 92
  start-page: 65
  year: 2016
  end-page: 88
  ident: b70
  article-title: A novel nature-inspired algorithm for optimization: Virus colony search
  publication-title: Adv. Eng. Softw.
– volume: 8
  start-page: 163
  year: 2013
  end-page: 170
  ident: b100
  article-title: A new engineering optimization method: African wild dog algorithm
  publication-title: Int. J. Soft Comput.
– start-page: 424
  year: 2008
  end-page: 429
  ident: b115
  article-title: A particle swarm optimization with stagnation detection and dispersion
  publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
– volume: 26
  year: 2017
  ident: b103
  article-title: Nature Inspired Optimization Algorithms Related to Physical Phenomena and Laws of Science: A Survey
  publication-title: Int. J. Artif. Intell. Tools
– volume: 21
  start-page: 265
  year: 2022
  end-page: 287
  ident: b23
  article-title: Similarity in metaheuristics: a gentle step towards a comparison methodology
  publication-title: Nat. Comput.
– year: 2011
  ident: b5
  publication-title: Introduction to Optimum Design
– volume: 3
  start-page: 1552
  year: 2012
  end-page: 1564
  ident: b30
  article-title: Empirical review of standard benchmark functions using evolutionary global optimization
  publication-title: Appl. Math.
– volume: 33
  start-page: 71
  year: 2017
  end-page: 93
  ident: b107
  article-title: Engineering optimization based on ideal gas molecular movement algorithm
  publication-title: Eng. Comput.
– volume: 24
  start-page: 8443
  year: 2020
  end-page: 8465
  ident: b90
  article-title: Electron radar search algorithm: a novel developed meta-heuristic algorithm
  publication-title: Soft Comput.
– volume: 20
  start-page: 3579
  year: 2016
  end-page: 3593
  ident: b86
  article-title: Novel self-adaptive particle swarm optimization methods
  publication-title: Soft Comput.
– start-page: 121
  year: 2020
  end-page: 133
  ident: b108
  article-title: Grey wolf, firefly and bat algorithms: Three widespread algorithms that do not contain any novelty
  publication-title: International Conference on Swarm Intelligence
– volume: 44
  start-page: 362
  year: 2016
  end-page: 376
  ident: b18
  article-title: Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems
  publication-title: Appl. Intell.
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b44
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: b34
  article-title: Water cycle algorithm — a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– year: 1963
  ident: b109
  publication-title: Mechanical Springs
– volume: 21
  start-page: 191
  year: 2016
  end-page: 205
  ident: b117
  article-title: Adaptive multimodal continuous ant colony optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 75
  start-page: 1
  year: 2015
  end-page: 18
  ident: b94
  article-title: Stochastic Fractal Search: A powerful metaheuristic algorithm
  publication-title: Knowl.-Based Syst.
– start-page: 3
  year: 2015
  end-page: 50
  ident: b40
  article-title: Adaptation and hybridization in nature-inspired algorithms
  publication-title: Adaptation and Hybridization in Computational Intelligence
– volume: 110
  start-page: 69
  year: 2017
  end-page: 84
  ident: b59
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
– volume: 22
  start-page: 5923
  year: 2018
  end-page: 5933
  ident: b118
  article-title: Swarm intelligence: past, present and future
  publication-title: Soft Comput.
– volume: 54
  start-page: 1841
  year: 2021
  end-page: 1862
  ident: b105
  article-title: Nature inspired optimization algorithms or simply variations of metaheuristics?
  publication-title: Artif. Intell. Rev.
– volume: 167
  start-page: 69
  year: 2016
  end-page: 85
  ident: b58
  article-title: Water Evaporation Optimization: A novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
– volume: 23
  start-page: 874
  year: 2021
  ident: b110
  article-title: A comparative study of common nature-inspired algorithms for continuous function optimization
  publication-title: Entropy
– volume: 87
  year: 2020
  ident: b46
  article-title: Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– reference: Journal of Heuristics, ., 2015. Policies on heuristic search, J. Heurist. URL
– volume: 11
  start-page: 177
  year: 2019
  end-page: 205
  ident: b8
  article-title: Flying Squirrel Optimizer (FSO): A novel SI-based optimization algorithm for engineering problems
  publication-title: Iranian J. Optim.
– start-page: 3226
  year: 2007
  end-page: 3231
  ident: b49
  article-title: Problem solving by intelligent water drops
  publication-title: 2007 IEEE Congress on Evolutionary Computation
– volume: 32
  start-page: 284
  year: 2016
  end-page: 322
  ident: b39
  article-title: Crystal energy optimization algorithm
  publication-title: Comput. Intell.
– volume: 59
  start-page: 596
  year: 2017
  end-page: 621
  ident: b81
  article-title: A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization
  publication-title: Appl. Soft Comput.
– start-page: 59
  year: 2019
  end-page: 73
  ident: b119
  article-title: Mathematical analysis of algorithms: Part I
  publication-title: Mathematical Foundations of Nature-Inspired Algorithms
– volume: 1
  start-page: 49
  year: 2020
  ident: b71
  article-title: Mitigating metaphors: A comprehensible guide to recent nature-inspired algorithms
  publication-title: SN Comput. Sci.
– volume: 139
  start-page: 18
  year: 2014
  end-page: 27
  ident: b63
  article-title: Colliding bodies optimization: A novel meta-heuristic method
  publication-title: Comput. Struct.
– year: 1953
  ident: b99
  publication-title: Design of Machine Elements
– volume: 24
  start-page: 201
  year: 2019
  end-page: 216
  ident: b52
  article-title: A survey of automatic parameter tuning methods for metaheuristics
  publication-title: IEEE Trans. Evol. Comput.
– volume: 54
  year: 2020
  ident: b19
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
– volume: 174
  start-page: 1
  year: 2018
  end-page: 21
  ident: b122
  article-title: A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior
  publication-title: Biosystems
– volume: 237
  start-page: 82
  year: 2013
  end-page: 117
  ident: b15
  article-title: A survey on optimization metaheuristics
  publication-title: Inform. Sci.
– volume: 1
  start-page: 9
  year: 1995
  end-page: 32
  ident: b9
  article-title: Designing and reporting on computational experiments with heuristic methods
  publication-title: J. Heuristics
– volume: 38
  start-page: 313
  year: 2021
  end-page: 343
  ident: b1
  article-title: Tiki-taka algorithm: a novel metaheuristic inspired by football playing style
  publication-title: Eng. Comput.
– volume: 26
  start-page: 23
  year: 2016
  end-page: 34
  ident: b89
  article-title: Novel benchmark functions for continuous multimodal optimization with comparative results
  publication-title: Swarm Evol. Comput.
– volume: 6
  start-page: 469
  year: 2016
  end-page: 492
  ident: b65
  article-title: A novel meta-heuristic algorithm: tug of war optimization
  publication-title: IUST
– volume: 5
  start-page: 1
  year: 2010
  end-page: 11
  ident: b126
  article-title: Gravitation field algorithm and its application in gene cluster
  publication-title: Algorithms Molecular Biol.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b75
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 2
  start-page: 97
  year: 2015
  end-page: 105
  ident: b113
  article-title: A critical analysis of the harmony search algorithm—How not to solve sudoku
  publication-title: Oper. Res. Perspect.
– start-page: 3192
  year: 2014
  end-page: 3199
  ident: b12
  article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions
  publication-title: 2014 IEEE Congress on Evolutionary Computation
– volume: 54
  start-page: 62
  year: 2016
  end-page: 79
  ident: b87
  article-title: Yin-Yang-pair Optimization: A novel lightweight optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 14
  start-page: 3
  year: 2013
  end-page: 29
  ident: b114
  article-title: Better GP benchmarks: community survey results and proposals
  publication-title: Genet. Program. Evol. Mach.
– volume: 23
  start-page: 7333
  year: 2019
  end-page: 7358
  ident: b123
  article-title: Biology migration algorithm: a new nature-inspired heuristic methodology for global optimization
  publication-title: Soft Comput.
– volume: 50
  start-page: 3926
  year: 2020
  end-page: 3941
  ident: b88
  article-title: Transient search optimization: a new meta-heuristic optimization algorithm
  publication-title: Appl. Intell.
– volume: 2015
  year: 2015
  ident: b101
  article-title: A Seed-Based Plant Propagation Algorithm: The Feeding Station Model
  publication-title: Sci. World J.
– volume: 53
  start-page: 1168
  year: 2014
  end-page: 1183
  ident: b41
  article-title: Interior search algorithm (ISA): A novel approach for global optimization
  publication-title: Disturb. Estimation Mitig.
– volume: 31
  year: 2020
  ident: b106
  article-title: A comprehensive database of nature-inspired algorithms
  publication-title: Data Brief
– volume: 25
  start-page: 425
  year: 2018
  end-page: 426
  ident: b14
  article-title: Special issue on “Metaheuristics”
  publication-title: Int. Trans. Oper. Res.
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: b7
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Comput. Struct.
– volume: 27
  start-page: 1722
  year: 2020
  end-page: 1739
  ident: b60
  article-title: Billiards-inspired optimization algorithm; a new meta-heuristic method
  publication-title: Structures
– volume: 18
  start-page: 815
  year: 2017
  end-page: 848
  ident: b10
  article-title: Best practices for comparing optimization algorithms
  publication-title: Opt. Eng.
– volume: 52
  start-page: 2191
  year: 2019
  end-page: 2233
  ident: b53
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
– volume: 233
  start-page: 87
  year: 2013
  end-page: 108
  ident: b38
  article-title: A novel bio-inspired approach based on the behavior of mosquitoes
  publication-title: Inform. Sci.
– volume: 7
  start-page: 8
  year: 2013
  ident: b69
  article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization
  publication-title: Gene
– volume: 23
  start-page: 715
  year: 2019
  end-page: 734
  ident: b6
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Comput.
– volume: 213
  start-page: 267
  year: 2010
  end-page: 289
  ident: b64
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
– volume: 267
  start-page: 191
  year: 2014
  end-page: 200
  ident: b84
  article-title: How novel is the “novel” black hole optimization approach?
  publication-title: Inform. Sci.
– volume: 82
  start-page: 148
  year: 2019
  end-page: 174
  ident: b26
  article-title: STOA: A bio-inspired based optimization algorithm for industrial engineering problems
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 149
  year: 2003
  end-page: 156
  ident: b73
  article-title: Engineering optimization using simple evolutionary algorithm
  publication-title: Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b91
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
– volume: 6
  start-page: 19
  year: 1981
  end-page: 30
  ident: b96
  article-title: Minimization by random search techniques
  publication-title: Math. Oper. Res.
– volume: 64
  start-page: 161
  year: 2018
  end-page: 185
  ident: b79
  article-title: Volleyball Premier League Algorithm
  publication-title: Appl. Soft Comput.
– volume: 32
  start-page: 9383
  year: 2020
  end-page: 9425
  ident: b124
  article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm
  publication-title: Neural Comput. Appl.
– volume: 9
  year: 2017
  ident: b85
  article-title: Polar Bear Optimization Algorithm: Meta-Heuristic with Fast Population Movement and Dynamic Birth and Death Mechanism
  publication-title: Symmetry
– volume: 21
  year: 2020
  ident: b54
  article-title: A critical comparative review of nature-inspired optimization algorithms (NIOAs)
  publication-title: Inte. J. Simul.–Syst. Sci. Technol.
– volume: 78
  start-page: 545
  year: 2019
  end-page: 568
  ident: b120
  article-title: A new meta-heuristic optimizer: Pathfinder algorithm
  publication-title: Appl. Soft Comput.
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  ident: b27
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
– year: 1972
  ident: b95
  publication-title: Mechanical Engineering Design
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b76
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 32
  start-page: 11543
  year: 2020
  end-page: 11578
  ident: b121
  article-title: Electric fish optimization: a new heuristic algorithm inspired by electrolocation
  publication-title: Neural Comput. Appl.
– volume: 7
  start-page: 66084
  year: 2019
  end-page: 66109
  ident: b111
  article-title: Nuclear Reaction Optimization: A Novel and Powerful Physics-Based Algorithm for Global Optimization
  publication-title: IEEE Access
– volume: 15
  start-page: 617
  year: 2009
  end-page: 644
  ident: b42
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization
  publication-title: J. Heuristics
– volume: 11
  start-page: 865
  year: 2020
  end-page: 878
  ident: b80
  article-title: An algorithm for numerical nonlinear optimization: Fertile Field Algorithm (FFA)
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 17
  start-page: 705
  year: 2012
  end-page: 720
  ident: b51
  article-title: An adaptive particle swarm optimization with multiple adaptive methods
  publication-title: IEEE Trans. Evol. Comput.
– volume: 51
  start-page: 2049
  year: 2019
  end-page: 2068
  ident: b83
  article-title: A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG)
  publication-title: Eng. Optim.
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: b29
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
– volume: 137
  year: 2019
  ident: b31
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput. Ind. Eng.
– volume: 59
  start-page: 20
  year: 2016
  end-page: 32
  ident: b56
  article-title: Bio inspired computing–a review of algorithms and scope of applications
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 261
  year: 2001
  end-page: 304
  ident: b92
  article-title: Experimental evaluation of heuristic optimization algorithms: A tutorial
  publication-title: J. Heuristics
– volume: 90
  year: 2020
  ident: b57
  article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– year: 2020
  ident: b16
  article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm
  publication-title: Neural Comput. Appl.
– volume: 36
  start-page: 664
  year: 2019
  end-page: 690
  ident: b127
  article-title: The whirlpool algorithm based on physical phenomenon for solving optimization problems
  publication-title: Eng. Comput.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 12
  ident: b4
  article-title: Historical survey on metaheuristics algorithms
  publication-title: Int. J. Sci. World
– volume: 21
  start-page: 925
  year: 2020
  end-page: 946
  ident: b72
  article-title: Smell Bees Optimization algorithm for continuous engineering problem
  publication-title: Asian J. Civ. Eng.
– volume: 540
  start-page: 131
  year: 2020
  end-page: 159
  ident: b3
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b74
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 10
  start-page: 1284
  year: 2010
  end-page: 1292
  ident: b37
  article-title: ARO: A new model-free optimization algorithm inspired from asexual reproduction
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b25
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: b33
  article-title: A new optimization method: big bang–big crunch
  publication-title: Adv. Eng. Softw.
– volume: 94
  year: 2020
  ident: b50
  article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 606
  year: 2015
  end-page: 636
  ident: b116
  article-title: A walk into metaheuristics for engineering optimization: Principles, methods and recent trends
  publication-title: Int. J. Comput. Intell. Syst.
– start-page: 791
  year: 2018
  end-page: 808
  ident: b98
  article-title: A history of metaheuristics
  publication-title: Handbook of heuristics
– volume: 36
  start-page: 670
  year: 2015
  end-page: 698
  ident: b102
  article-title: ITGO: Invasive tumor growth optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: b93
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 3
  year: 2015
  end-page: 18
  ident: b97
  article-title: Metaheuristics—the metaphor exposed
  publication-title: Int. Trans. Oper. Res.
– start-page: 2586
  year: 2011
  end-page: 2592
  ident: b2
  article-title: Anarchic society optimization: a human-inspired method
  publication-title: 2011 IEEE Congress of Evolutionary Computation
– reference: .
– volume: 159
  start-page: 20
  year: 2018
  end-page: 50
  ident: b28
  article-title: Emperor penguin optimizer: A bio-inspired algorithm for engineering problems
  publication-title: Knowl.-Based Syst.
– volume: 152
  year: 2020
  ident: b35
  article-title: Marine Predators Algorithm: A Nature-inspired Metaheuristic
  publication-title: Expert Syst. Appl.
– volume: 21
  start-page: 5573
  year: 2017
  end-page: 5583
  ident: b43
  article-title: Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness
  publication-title: Soft Comput.
– year: 2017
  ident: b21
  article-title: Benchmark functions for the CEC’2017 competition on many-objective optimization
– volume: Vol. 18
  start-page: 337
  year: 2020
  end-page: 378
  ident: b104
  article-title: A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies
  publication-title: Machine Learning Paradigms: Advances in Deep Learning-Based Technological Applications
– volume: 229
  start-page: 58
  year: 2013
  end-page: 76
  ident: b22
  article-title: Artificial cooperative search algorithm for numerical optimization problems
  publication-title: Inform. Sci.
– volume: 50
  start-page: 3926
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b88
  article-title: Transient search optimization: a new meta-heuristic optimization algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01727-y
– year: 2020
  ident: 10.1016/j.engappai.2022.105521_b16
  article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm
  publication-title: Neural Comput. Appl.
– volume: 32
  start-page: 567
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b82
  article-title: A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04229-2
– volume: 23
  start-page: 874
  issue: 7
  year: 2021
  ident: 10.1016/j.engappai.2022.105521_b110
  article-title: A comparative study of common nature-inspired algorithms for continuous function optimization
  publication-title: Entropy
  doi: 10.3390/e23070874
– volume: 23
  start-page: 7333
  issue: 16
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b123
  article-title: Biology migration algorithm: a new nature-inspired heuristic methodology for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3381-9
– volume: 94
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b50
  article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103731
– start-page: 149
  year: 2003
  ident: 10.1016/j.engappai.2022.105521_b73
  article-title: Engineering optimization using simple evolutionary algorithm
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.engappai.2022.105521_b77
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 9
  issue: 10
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b85
  article-title: Polar Bear Optimization Algorithm: Meta-Heuristic with Fast Population Movement and Dynamic Birth and Death Mechanism
  publication-title: Symmetry
  doi: 10.3390/sym9100203
– volume: 20
  start-page: 3579
  issue: 9
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b86
  article-title: Novel self-adaptive particle swarm optimization methods
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1716-3
– volume: 6
  start-page: 19
  issue: 1
  year: 1981
  ident: 10.1016/j.engappai.2022.105521_b96
  article-title: Minimization by random search techniques
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.6.1.19
– volume: 1
  start-page: 49
  issue: 1
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b71
  article-title: Mitigating metaphors: A comprehensible guide to recent nature-inspired algorithms
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-019-0050-8
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.engappai.2022.105521_b74
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b75
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– year: 1979
  ident: 10.1016/j.engappai.2022.105521_b45
– volume: 90
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b57
  article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– start-page: 59
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b119
  article-title: Mathematical analysis of algorithms: Part I
– volume: 54
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b19
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100665
– volume: 229
  start-page: 58
  year: 2013
  ident: 10.1016/j.engappai.2022.105521_b22
  article-title: Artificial cooperative search algorithm for numerical optimization problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.11.013
– volume: 21
  start-page: 265
  issue: 2
  year: 2022
  ident: 10.1016/j.engappai.2022.105521_b23
  article-title: Similarity in metaheuristics: a gentle step towards a comparison methodology
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-020-09837-9
– volume: 10
  start-page: 1284
  issue: 4
  year: 2010
  ident: 10.1016/j.engappai.2022.105521_b37
  article-title: ARO: A new model-free optimization algorithm inspired from asexual reproduction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.05.011
– volume: 36
  start-page: 664
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b127
  article-title: The whirlpool algorithm based on physical phenomenon for solving optimization problems
  publication-title: Eng. Comput.
  doi: 10.1108/EC-05-2017-0174
– start-page: 475
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b20
  article-title: Swarm intelligence: A review of algorithms
– year: 1972
  ident: 10.1016/j.engappai.2022.105521_b95
– volume: 13
  start-page: 173
  issue: 3–4
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b17
  article-title: The intelligent water drops algorithm: why it cannot be considered a novel algorithm
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-019-00165-y
– volume: 92
  start-page: 65
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b70
  article-title: A novel nature-inspired algorithm for optimization: Virus colony search
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.11.004
– volume: 5
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.engappai.2022.105521_b126
  article-title: Gravitation field algorithm and its application in gene cluster
  publication-title: Algorithms Molecular Biol.
  doi: 10.1186/1748-7188-5-32
– volume: 14
  start-page: 3
  issue: 1
  year: 2013
  ident: 10.1016/j.engappai.2022.105521_b114
  article-title: Better GP benchmarks: community survey results and proposals
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1007/s10710-012-9177-2
– volume: 33
  start-page: 71
  issue: 1
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b107
  article-title: Engineering optimization based on ideal gas molecular movement algorithm
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0457-y
– volume: 233
  start-page: 87
  year: 2013
  ident: 10.1016/j.engappai.2022.105521_b38
  article-title: A novel bio-inspired approach based on the behavior of mosquitoes
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.12.053
– ident: 10.1016/j.engappai.2022.105521_b48
– volume: 2015
  year: 2015
  ident: 10.1016/j.engappai.2022.105521_b101
  article-title: A Seed-Based Plant Propagation Algorithm: The Feeding Station Model
  publication-title: Sci. World J.
  doi: 10.1155/2015/904364
– volume: 31
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b106
  article-title: A comprehensive database of nature-inspired algorithms
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105792
– volume: 54
  start-page: 1841
  issue: 3
  year: 2021
  ident: 10.1016/j.engappai.2022.105521_b105
  article-title: Nature inspired optimization algorithms or simply variations of metaheuristics?
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09893-8
– volume: 53
  start-page: 1168
  issue: 4
  year: 2014
  ident: 10.1016/j.engappai.2022.105521_b41
  article-title: Interior search algorithm (ISA): A novel approach for global optimization
  publication-title: Disturb. Estimation Mitig.
– volume: 8
  start-page: 606
  issue: 4
  year: 2015
  ident: 10.1016/j.engappai.2022.105521_b116
  article-title: A walk into metaheuristics for engineering optimization: Principles, methods and recent trends
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1080/18756891.2015.1046324
– volume: 87
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b46
  article-title: Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103249
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2022.105521_b93
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 75
  start-page: 1
  year: 2015
  ident: 10.1016/j.engappai.2022.105521_b94
  article-title: Stochastic Fractal Search: A powerful metaheuristic algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.07.025
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b44
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 10.1016/j.engappai.2022.105521_b33
  article-title: A new optimization method: big bang–big crunch
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 3
  start-page: 1552
  year: 2012
  ident: 10.1016/j.engappai.2022.105521_b30
  article-title: Empirical review of standard benchmark functions using evolutionary global optimization
  publication-title: Appl. Math.
  doi: 10.4236/am.2012.330215
– volume: 54
  start-page: 62
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b87
  article-title: Yin-Yang-pair Optimization: A novel lightweight optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.04.004
– volume: 1
  start-page: 9
  issue: 1
  year: 1995
  ident: 10.1016/j.engappai.2022.105521_b9
  article-title: Designing and reporting on computational experiments with heuristic methods
  publication-title: J. Heuristics
  doi: 10.1007/BF02430363
– volume: 59
  start-page: 20
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b56
  article-title: Bio inspired computing–a review of algorithms and scope of applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.018
– year: 1983
  ident: 10.1016/j.engappai.2022.105521_b11
– volume: 18
  start-page: 815
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b10
  article-title: Best practices for comparing optimization algorithms
  publication-title: Opt. Eng.
  doi: 10.1007/s11081-017-9366-1
– volume: 137
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b31
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106040
– volume: 52
  start-page: 2191
  issue: 4
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b53
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9605-z
– volume: 114
  start-page: 48
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b27
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 36
  start-page: 670
  year: 2015
  ident: 10.1016/j.engappai.2022.105521_b102
  article-title: ITGO: Invasive tumor growth optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.045
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b76
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 267
  start-page: 191
  year: 2014
  ident: 10.1016/j.engappai.2022.105521_b84
  article-title: How novel is the “novel” black hole optimization approach?
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.01.026
– volume: 152
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b35
  article-title: Marine Predators Algorithm: A Nature-inspired Metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 110
  start-page: 69
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b59
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 489
  start-page: 255
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b32
  article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.03.049
– volume: 213
  start-page: 267
  issue: 3
  year: 2010
  ident: 10.1016/j.engappai.2022.105521_b64
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
  doi: 10.1007/s00707-009-0270-4
– volume: 40
  start-page: 311
  issue: 4
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b78
  article-title: Natural Forest Regeneration Algorithm: A New Meta-Heuristic
  publication-title: Iranian J. Sci. Technol., Trans. Civ. Eng.
  doi: 10.1007/s40996-016-0042-z
– volume: 8
  start-page: 163
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2022.105521_b100
  article-title: A new engineering optimization method: African wild dog algorithm
  publication-title: Int. J. Soft Comput.
– year: 1963
  ident: 10.1016/j.engappai.2022.105521_b109
– volume: 67
  year: 2021
  ident: 10.1016/j.engappai.2022.105521_b67
  article-title: A prescription of methodological guidelines for comparing bio-inspired optimization algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100973
– volume: 32
  start-page: 284
  issue: 2
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b39
  article-title: Crystal energy optimization algorithm
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12053
– volume: 23
  start-page: 715
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b6
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3102-4
– volume: 540
  start-page: 131
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b3
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.06.037
– year: 2011
  ident: 10.1016/j.engappai.2022.105521_b5
– volume: 38
  start-page: 313
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2022.105521_b1
  article-title: Tiki-taka algorithm: a novel metaheuristic inspired by football playing style
  publication-title: Eng. Comput.
  doi: 10.1108/EC-03-2020-0137
– start-page: 121
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b108
  article-title: Grey wolf, firefly and bat algorithms: Three widespread algorithms that do not contain any novelty
– volume: 7
  start-page: 66084
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b111
  article-title: Nuclear Reaction Optimization: A Novel and Powerful Physics-Based Algorithm for Global Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918406
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.engappai.2022.105521_b25
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 21
  start-page: 925
  issue: 6
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b72
  article-title: Smell Bees Optimization algorithm for continuous engineering problem
  publication-title: Asian J. Civ. Eng.
  doi: 10.1007/s42107-020-00250-2
– volume: 22
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.engappai.2022.105521_b97
  article-title: Metaheuristics—the metaphor exposed
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12001
– volume: 15
  start-page: 617
  issue: 6
  year: 2009
  ident: 10.1016/j.engappai.2022.105521_b42
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization
  publication-title: J. Heuristics
  doi: 10.1007/s10732-008-9080-4
– volume: 25
  start-page: 425
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105521_b14
  article-title: Special issue on “Metaheuristics”
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12461
– volume: 26
  start-page: 23
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b89
  article-title: Novel benchmark functions for continuous multimodal optimization with comparative results
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.07.003
– volume: 21
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b54
  article-title: A critical comparative review of nature-inspired optimization algorithms (NIOAs)
  publication-title: Inte. J. Simul.–Syst. Sci. Technol.
– volume: 112–113
  start-page: 283
  year: 2012
  ident: 10.1016/j.engappai.2022.105521_b61
  article-title: A new meta-heuristic method: Ray Optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.09.003
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.engappai.2022.105521_b91
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– year: 2019
  ident: 10.1016/j.engappai.2022.105521_b36
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 26
  issue: 06
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b103
  article-title: Nature Inspired Optimization Algorithms Related to Physical Phenomena and Laws of Science: A Survey
  publication-title: Int. J. Artif. Intell. Tools
– start-page: 424
  year: 2008
  ident: 10.1016/j.engappai.2022.105521_b115
  article-title: A particle swarm optimization with stagnation detection and dispersion
– volume: 51
  start-page: 2049
  issue: 12
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b83
  article-title: A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG)
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2019.1565282
– volume: 32
  start-page: 11543
  issue: 15
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b121
  article-title: Electric fish optimization: a new heuristic algorithm inspired by electrolocation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04641-8
– volume: 6
  start-page: 469
  issue: 4
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b65
  article-title: A novel meta-heuristic algorithm: tug of war optimization
  publication-title: IUST
– year: 2021
  ident: 10.1016/j.engappai.2022.105521_b13
– volume: 87
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b125
  article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103300
– volume: 7
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b4
  article-title: Historical survey on metaheuristics algorithms
  publication-title: Int. J. Sci. World
  doi: 10.14419/ijsw.v7i1.29497
– volume: 26
  start-page: 2731
  issue: 5
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b62
  article-title: Artificial Coronary Circulation System; a new bio-inspired metaheuristic algorithm
  publication-title: Sci. Iranica
– volume: 139
  start-page: 18
  year: 2014
  ident: 10.1016/j.engappai.2022.105521_b63
  article-title: Colliding bodies optimization: A novel meta-heuristic method
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.04.005
– volume: 56
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b66
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100693
– volume: 237
  start-page: 82
  year: 2013
  ident: 10.1016/j.engappai.2022.105521_b15
  article-title: A survey on optimization metaheuristics
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.02.041
– volume: 21
  start-page: 5573
  issue: 19
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b43
  article-title: Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2471-9
– year: 2017
  ident: 10.1016/j.engappai.2022.105521_b21
– volume: 4
  start-page: 150
  issue: 2
  year: 2013
  ident: 10.1016/j.engappai.2022.105521_b55
  article-title: A literature survey of benchmark functions for global optimisation problems
  publication-title: Int. J. Math. Model. Numer. Optim.
– volume: 27
  start-page: 1722
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b60
  article-title: Billiards-inspired optimization algorithm; a new meta-heuristic method
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.07.058
– volume: 59
  start-page: 596
  year: 2017
  ident: 10.1016/j.engappai.2022.105521_b81
  article-title: A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.033
– volume: 24
  start-page: 8443
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b90
  article-title: Electron radar search algorithm: a novel developed meta-heuristic algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04410-8
– volume: 17
  start-page: 705
  issue: 5
  year: 2012
  ident: 10.1016/j.engappai.2022.105521_b51
  article-title: An adaptive particle swarm optimization with multiple adaptive methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2232931
– volume: 174
  start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105521_b122
  article-title: A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2018.09.007
– volume: 21
  start-page: 191
  issue: 2
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b117
  article-title: Adaptive multimodal continuous ant colony optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2591064
– volume: 44
  start-page: 362
  issue: 2
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b18
  article-title: Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-015-0706-6
– volume: 7
  start-page: 8
  issue: 33
  year: 2013
  ident: 10.1016/j.engappai.2022.105521_b69
  article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization
  publication-title: Gene
– start-page: 1
  year: 2009
  ident: 10.1016/j.engappai.2022.105521_b112
  article-title: Why is optimization difficult?
– volume: 22
  start-page: 5923
  issue: 18
  year: 2018
  ident: 10.1016/j.engappai.2022.105521_b118
  article-title: Swarm intelligence: past, present and future
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2810-5
– volume: 32
  start-page: 9383
  issue: 13
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b124
  article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04452-x
– start-page: 3192
  year: 2014
  ident: 10.1016/j.engappai.2022.105521_b12
  article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions
– volume: 64
  start-page: 161
  year: 2018
  ident: 10.1016/j.engappai.2022.105521_b79
  article-title: Volleyball Premier League Algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.043
– year: 1953
  ident: 10.1016/j.engappai.2022.105521_b99
– start-page: 3
  year: 2015
  ident: 10.1016/j.engappai.2022.105521_b40
  article-title: Adaptation and hybridization in nature-inspired algorithms
– start-page: 791
  year: 2018
  ident: 10.1016/j.engappai.2022.105521_b98
  article-title: A history of metaheuristics
– volume: 11
  start-page: 177
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b8
  article-title: Flying Squirrel Optimizer (FSO): A novel SI-based optimization algorithm for engineering problems
  publication-title: Iranian J. Optim.
– volume: 78
  start-page: 545
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b120
  article-title: A new meta-heuristic optimizer: Pathfinder algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.012
– volume: 520
  start-page: 250
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b68
  article-title: Balancing composite motion optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.02.013
– volume: 2
  start-page: 97
  year: 2015
  ident: 10.1016/j.engappai.2022.105521_b113
  article-title: A critical analysis of the harmony search algorithm—How not to solve sudoku
  publication-title: Oper. Res. Perspect.
– volume: 82
  start-page: 148
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b26
  article-title: STOA: A bio-inspired based optimization algorithm for industrial engineering problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.03.021
– volume: 24
  start-page: 201
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b52
  article-title: A survey of automatic parameter tuning methods for metaheuristics
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2921598
– volume: 11
  start-page: 865
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b80
  article-title: An algorithm for numerical nonlinear optimization: Fertile Field Algorithm (FFA)
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-019-01598-3
– volume: 7
  start-page: 261
  issue: 3
  year: 2001
  ident: 10.1016/j.engappai.2022.105521_b92
  article-title: Experimental evaluation of heuristic optimization algorithms: A tutorial
  publication-title: J. Heuristics
  doi: 10.1023/A:1011319115230
– volume: 159
  start-page: 20
  year: 2018
  ident: 10.1016/j.engappai.2022.105521_b28
  article-title: Emperor penguin optimizer: A bio-inspired algorithm for engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.06.001
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b47
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– start-page: 3226
  year: 2007
  ident: 10.1016/j.engappai.2022.105521_b49
  article-title: Problem solving by intelligent water drops
– volume: 167
  start-page: 69
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b58
  article-title: Water Evaporation Optimization: A novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.01.008
– volume: 48
  start-page: 220
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b24
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.04.008
– start-page: 2586
  year: 2011
  ident: 10.1016/j.engappai.2022.105521_b2
  article-title: Anarchic society optimization: a human-inspired method
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.engappai.2022.105521_b34
  article-title: Water cycle algorithm — a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: Vol. 18
  start-page: 337
  year: 2020
  ident: 10.1016/j.engappai.2022.105521_b104
  article-title: A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.engappai.2022.105521_b29
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.engappai.2022.105521_b7
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.03.001
SSID ssj0003846
Score 2.5242422
Snippet New metaheuristic algorithms have soared over the past ten years. A common practice in proposing a new algorithm is validating it on several benchmark...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 105521
SubjectTerms Benchmarking
Compression springs
Current situation
Design problems
Engineering optimization problem
Engineering optimization problems
Heuristic algorithms
Metaheuristic
Metaheuristics
Optimization
Optimized designs
Qualitative systematic review
Spring designs
Systematic Review
Tension-compression
Title A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction
URI https://dx.doi.org/10.1016/j.engappai.2022.105521
https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-63824
Volume 118
WOSCitedRecordID wos000894964700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELWqLgcufCOWL_mwt252GydtYm4RLAIOKyQq1Ftkx_a2VTdZtemy4ufwJ_h7jDN2mi2gBSEuUWXFddv3mhmPZ94QchCLVAse8wCMeRLERpsglVIG0sQjYys1tZBNs4nk9DSdTvnHXu-7r4W5XCZlmV5d8Yv_CjWMAdi2dPYv4G7fFAbgNYAOV4Adrn8EfOYKJVHRe1ep-QseqNdipjetSLPzRK0bavPZG2_Q5ppjjmw5wMPbgWqyPQauB42NJXh1p_W8Rslwi5jdY5-fa9etae3zQ52s0GyAVtTzwZ8KbHURB91D9SZPYdUkNDXtRToKom3Q4asodY3pgq5eB0x_G2dYVrZwB-uSNkp3wxws8pnRPvbm62-2yU4YxGRByBMnpo2P8DSJApu4e-0Zjw_5n-wFhi4WR7o8g-8m5kewNLO9j0dYt72jxf3JLmjXYzYYF1pxgz2WjHjaJ3vZ-5Pph9YJiFKsEfMfsFOc_uvVfusXdQVsG6dnco_ccbsVmiHL7pOeLh-Qu27nQp1dWMOQbw7ixx6Sbxnt8JBueUiRh7Qy9DoPqeMhrSvqeHjcYSFFFlJkIXUsfEUdB2nLwUO6w8BDCpSgnn-05d8jMnl7Mnn9LnANQYIiitM6UHwYmXisteGsiEMutZFSMFWEQ16wKAmN5LDjsA5YrOAeBfsLAfcXiRlzzaPHpF9WpX5CqLA4ahYaMLKxUkqYoS6UAO-YF0aO5T4ZeTTywonl254ty9xnRS5yj2JuUcwRxX1y3M67QLmYG2dwD3bunF78GXLg6I1zD5Ad7VpWLP7N_HOWV6uzfLbIwbqy-Ok_LPGM3N7-G5-Tfr3a6BfkVnFZz9erl471PwCjcPB0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+qualitative+systematic+review+of+metaheuristics+applied+to+tension%2Fcompression+spring+design+problem%3A+Current+situation%2C+recommendations%2C+and+research+direction&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Tzanetos%2C+Alexandros&rft.au=Blondin%2C+Maude&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=118&rft_id=info:doi/10.1016%2Fj.engappai.2022.105521&rft.externalDocID=S0952197622005115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon