A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction
New metaheuristic algorithms have soared over the past ten years. A common practice in proposing a new algorithm is validating it on several benchmark functions and engineering problems. Although CEC benchmark problems are specifically designed to validate the performance of new meta-heuristics, eng...
Uložené v:
| Vydané v: | Engineering applications of artificial intelligence Ročník 118; s. 105521 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.02.2023
|
| Predmet: | |
| ISSN: | 0952-1976, 1873-6769, 1873-6769 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | New metaheuristic algorithms have soared over the past ten years. A common practice in proposing a new algorithm is validating it on several benchmark functions and engineering problems. Although CEC benchmark problems are specifically designed to validate the performance of new meta-heuristics, engineering design problems from pressure vessels to springs have been used in hundreds of papers to prove algorithm efficiency. To date, no benchmark practices have been established yet, i.e., researchers design their own benchmark to validate their algorithm. Thus, the high number of new algorithms combined with the high number of different benchmarking setups complicates the comparing and validating processes. In this paper, we study benchmark practices related to engineering applications. In particular, our exhaustive qualitative systematic review focuses on metaheuristics applied to the tension/compression spring design problem (TCSDP). The aim of this study is threefold: (i) evaluate where the field stands in regards of algorithm performance on the TCSDP, (ii) evaluate benchmarking practices, and (iii) facilitate future algorithm comparison. For these purposes, we first review all the existing metaheuristics applied to the TCSDP in their first publication. For each paper, we gather the data regarding the problem definition, the simulation setup, and the optimized design. We evaluated the data through several metrics to find the best-optimized design so far. Our findings and analysis concluded that the field of metaheuristics and its benchmarking practice have not reached maturity yet. Thus, we recommend some actions to address the issues and provide future research directions. |
|---|---|
| AbstractList | New metaheuristic algorithms have soared over the past ten years. A common practice in proposing a new algorithm is validating it on several benchmark functions and engineering problems. Although CEC benchmark problems are specifically designed to validate the performance of new meta-heuristics, engineering design problems from pressure vessels to springs have been used in hundreds of papers to prove algorithm efficiency. To date, no benchmark practices have been established yet, i.e., researchers design their own benchmark to validate their algorithm. Thus, the high number of new algorithms combined with the high number of different benchmarking setups complicates the comparing and validating processes. In this paper, we study benchmark practices related to engineering applications. In particular, our exhaustive qualitative systematic review focuses on metaheuristics applied to the tension/compression spring design problem (TCSDP). The aim of this study is threefold: (i) evaluate where the field stands in regards of algorithm performance on the TCSDP, (ii) evaluate benchmarking practices, and (iii) facilitate future algorithm comparison. For these purposes, we first review all the existing metaheuristics applied to the TCSDP in their first publication. For each paper, we gather the data regarding the problem definition, the simulation setup, and the optimized design. We evaluated the data through several metrics to find the best-optimized design so far. Our findings and analysis concluded that the field of metaheuristics and its benchmarking practice have not reached maturity yet. Thus, we recommend some actions to address the issues and provide future research directions. |
| ArticleNumber | 105521 |
| Author | Blondin, Maude Tzanetos, Alexandros |
| Author_xml | – sequence: 1 givenname: Alexandros orcidid: 0000-0002-1319-513X surname: Tzanetos fullname: Tzanetos, Alexandros email: alexandros.tzanetos@usherbrooke.ca organization: Management and Decision Engineering Laboratory (MDE Lab), Department of Financial and Management Engineering, School of Engineering, University of the Aegean, Greece – sequence: 2 givenname: Maude orcidid: 0000-0001-7844-8874 surname: Blondin fullname: Blondin, Maude email: maude.blondin2@usherbrooke.ca organization: Multiobjective Optimization REsearch Lab (MORE Lab), Department of Electrical Engineering and Computer Engineering, Université de Sherbrooke, Sherbrooke, Canada |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-63824$$DView record from Swedish Publication Index (Högskolan i Jönköping) |
| BookMark | eNqFUcFu1DAQtVCR2BZ-AflOs7WTrBMjDqwWKEiVuFRcLcee7HqV2MHjtOrv9EvxNtADl548fvPeG828c3LmgwdC3nO25oyLq-Ma_F5Pk3brkpVlBjebkr8iK942VSEaIc_IislNWXDZiDfkHPHIGKvaWqzI45b-nvXgkk7uDig-YIIx14ZGuHNwT0NPR0j6AHN0mHGkedTgwNIUaAKPLvgrE8YpAp5qilN0fk8toNt7OsXQDTB-pLs5RvCJoktz9g_-Mk_IuhG8ffrjJdXeZhBBR3Og1uX-qfGWvO71gPDu73tBbr99vd19L25-Xv_YbW8KU9VtKqxkVV8LgF6Wpuayg77rdGkNZ9KUVcP7TooNY6Jpa5s5lrWVznzT9EKCrC7Ih8UW72GaO5XXGHV8UEE79cX92qoQ9-pwVKJqyzqzxcI2MSBG6J_5nKlTLOqo_sWiTrGoJZYs_PSf0DwdP_gUtRteln9e5JAvkQOKCo0Db2A5l7LBvWTxB17mthg |
| CitedBy_id | crossref_primary_10_1007_s11227_024_06713_6 crossref_primary_10_1007_s00521_024_09603_3 crossref_primary_10_1016_j_euromechsol_2024_105385 crossref_primary_10_1093_jcde_qwae050 crossref_primary_10_1016_j_rineng_2025_106868 crossref_primary_10_3390_sym17081200 crossref_primary_10_1080_00207721_2024_2367079 crossref_primary_10_3390_sym15112077 crossref_primary_10_1080_0305215X_2025_2463976 crossref_primary_10_3390_biomimetics9100595 crossref_primary_10_3390_axioms13060361 crossref_primary_10_1038_s41598_024_78761_0 crossref_primary_10_3390_biomimetics10090612 crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_7717_peerj_cs_2722 crossref_primary_10_3390_make7010024 crossref_primary_10_1016_j_swevo_2024_101679 crossref_primary_10_1038_s41598_024_78589_8 crossref_primary_10_1038_s41598_024_56521_4 crossref_primary_10_3390_computation11120245 crossref_primary_10_3390_math12071084 crossref_primary_10_1007_s10462_024_10923_y crossref_primary_10_1007_s12065_023_00868_6 crossref_primary_10_3390_math11183861 crossref_primary_10_1038_s41598_024_58806_0 crossref_primary_10_12677_csa_2025_155139 crossref_primary_10_3390_computation11050091 crossref_primary_10_1371_journal_pone_0288071 crossref_primary_10_1016_j_biosystemseng_2024_07_018 crossref_primary_10_1007_s11227_025_07833_3 crossref_primary_10_1088_2631_8695_ad6d2e crossref_primary_10_1016_j_matpr_2023_03_258 crossref_primary_10_3390_automation6020013 crossref_primary_10_3390_a17090417 crossref_primary_10_3390_math12101459 crossref_primary_10_3390_app15094921 crossref_primary_10_3390_computers12110225 crossref_primary_10_1016_j_jestch_2025_101982 crossref_primary_10_3390_math12223464 |
| Cites_doi | 10.1007/s10489-020-01727-y 10.1007/s00521-019-04229-2 10.3390/e23070874 10.1007/s00500-018-3381-9 10.1016/j.engappai.2020.103731 10.1016/j.advengsoft.2013.12.007 10.3390/sym9100203 10.1007/s00500-015-1716-3 10.1287/moor.6.1.19 10.1007/s42979-019-0050-8 10.1016/j.knosys.2015.07.006 10.1016/j.advengsoft.2017.07.002 10.1016/j.engappai.2020.103541 10.1016/j.swevo.2020.100665 10.1016/j.ins.2012.11.013 10.1007/s11047-020-09837-9 10.1016/j.asoc.2010.05.011 10.1108/EC-05-2017-0174 10.1007/s11721-019-00165-y 10.1016/j.advengsoft.2015.11.004 10.1186/1748-7188-5-32 10.1007/s10710-012-9177-2 10.1007/s00366-016-0457-y 10.1016/j.ins.2012.12.053 10.1155/2015/904364 10.1016/j.dib.2020.105792 10.1007/s10462-020-09893-8 10.1080/18756891.2015.1046324 10.1016/j.engappai.2019.103249 10.1016/j.asoc.2012.11.026 10.1016/j.knosys.2014.07.025 10.1016/j.future.2019.07.015 10.1016/j.advengsoft.2005.04.005 10.4236/am.2012.330215 10.1016/j.engappai.2016.04.004 10.1007/BF02430363 10.1016/j.eswa.2016.04.018 10.1007/s11081-017-9366-1 10.1016/j.cie.2019.106040 10.1007/s10462-017-9605-z 10.1016/j.advengsoft.2017.05.014 10.1016/j.asoc.2015.07.045 10.1016/j.advengsoft.2016.01.008 10.1016/j.ins.2014.01.026 10.1016/j.eswa.2020.113377 10.1016/j.advengsoft.2017.03.014 10.1016/j.ins.2019.03.049 10.1007/s00707-009-0270-4 10.1007/s40996-016-0042-z 10.1016/j.swevo.2021.100973 10.1111/coin.12053 10.1007/s00500-018-3102-4 10.1016/j.ins.2020.06.037 10.1108/EC-03-2020-0137 10.1109/ACCESS.2019.2918406 10.1016/j.swevo.2011.02.002 10.1007/s42107-020-00250-2 10.1111/itor.12001 10.1007/s10732-008-9080-4 10.1111/itor.12461 10.1016/j.swevo.2015.07.003 10.1016/j.compstruc.2012.09.003 10.1016/j.cad.2010.12.015 10.1080/0305215X.2019.1565282 10.1007/s00521-019-04641-8 10.1016/j.engappai.2019.103300 10.14419/ijsw.v7i1.29497 10.1016/j.compstruc.2014.04.005 10.1016/j.swevo.2020.100693 10.1016/j.ins.2013.02.041 10.1007/s00500-016-2471-9 10.1016/j.istruc.2020.07.058 10.1016/j.asoc.2017.06.033 10.1007/s00500-019-04410-8 10.1109/TEVC.2012.2232931 10.1016/j.biosystems.2018.09.007 10.1109/TEVC.2016.2591064 10.1007/s10489-015-0706-6 10.1007/s00500-017-2810-5 10.1007/s00521-019-04452-x 10.1016/j.asoc.2017.11.043 10.1016/j.asoc.2019.03.012 10.1016/j.ins.2020.02.013 10.1016/j.engappai.2019.03.021 10.1109/TEVC.2019.2921598 10.1007/s12652-019-01598-3 10.1023/A:1011319115230 10.1016/j.knosys.2018.06.001 10.1016/j.future.2019.02.028 10.1016/j.compstruc.2016.01.008 10.1016/j.swevo.2019.04.008 10.1016/j.compstruc.2012.07.010 10.1016/j.knosys.2018.11.024 10.1016/j.compstruc.2016.03.001 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION ADTPV AOWAS D8X |
| DOI | 10.1016/j.engappai.2022.105521 |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Högskolan i Jönköping |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | oai_DiVA_org_hj_63824 10_1016_j_engappai_2022_105521 S0952197622005115 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTPV AOWAS D8X |
| ID | FETCH-LOGICAL-c348t-d903f46eef92c419befbba2dc109c2371fb965006784df92d083a46ec7f69e93 |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000894964700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 1873-6769 |
| IngestDate | Tue Nov 04 16:02:09 EST 2025 Sat Nov 29 07:05:44 EST 2025 Tue Nov 18 20:41:43 EST 2025 Fri Feb 23 02:37:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Benchmarking Metaheuristics Engineering optimization problem Qualitative systematic review |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-d903f46eef92c419befbba2dc109c2371fb965006784df92d083a46ec7f69e93 |
| ORCID | 0000-0002-1319-513X 0000-0001-7844-8874 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_hj_63824 crossref_primary_10_1016_j_engappai_2022_105521 crossref_citationtrail_10_1016_j_engappai_2022_105521 elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105521 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Barr, Golden, Kelly, Resende, Stewart (b9) 1995; 1 Ismael, Al-Asady, Al-Asadi (b54) 2020; 21 Qais, Hasanien, Alghuwainem (b88) 2020; 50 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b75) 2017; 114 García, Molina, Lozano, Herrera (b42) 2009; 15 Biswas, Das, Suganthan, Coello (b12) 2014 Azizyan, Miarnaeimi, Rashki, Shabakhty (b8) 2019; 11 Kumar, Wu, Ali, Mallipeddi, Suganthan, Das (b66) 2020; 56 Phan, Ellis, Barca, Dorin (b82) 2020; 32 Yang, Deb, Zhao, Fong, He (b118) 2018; 22 Dokeroglu, Sevinc, Kucukyilmaz, Cosar (b31) 2019; 137 Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello, Herrera (b24) 2019; 48 Tzanetos, Fister Jr., Dounias (b106) 2020; 31 Lones (b71) 2020; 1 Sörensen (b97) 2015; 22 Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b21) 2017 Askarzadeh (b7) 2016; 169 Chakraborty, Kar (b20) 2017 Wei, Huang, Wang, Han, Li (b111) 2019; 7 Boussaïd, Lepagnot, Siarry (b15) 2013; 237 Villalón, Stützle, Dorigo (b108) 2020 Qu, Liang, Wang, Chen, Suganthan (b89) 2016; 26 Worasucheep (b115) 2008 LaTorre, Molina, Osaba, Poyatos, Del Ser, Herrera (b67) 2021; 67 . Faramarzi, Heidarinejad, Stephens, Mirjalili (b36) 2019 Mezura-Montes, Coello, Landa-Becerra (b73) 2003 Yapici, Cetinkaya (b120) 2019; 78 Massoudi, Sarjamei, Esfandi Sarafraz (b72) 2020; 21 Spotts (b99) 1953 Arora, Singh (b6) 2019; 23 Blum, Juan, Ramalhinho, Stutzle (b14) 2018; 25 Braik, Sheta, Al-Hiary (b16) 2020 Farasat, Menhaj, Mansouri, Moghadam (b37) 2010; 10 Salimi (b94) 2015; 75 Sulaiman, Salhi (b101) 2015; 2015 Xiong, Molina, Ortiz, Herrera (b116) 2015; 8 Almufti (b4) 2019; 7 Yang, Chen, Yu, Gu, Li, Zhang, Zhang (b117) 2016; 21 Camacho-Villalón, Dorigo, Stützle (b17) 2019; 13 Mirjalili, Mirjalili, Lewis (b77) 2014; 69 Mohammadi, Khodaygan (b80) 2020; 11 Ahmadianfar, Bozorg-Haddad, Chu (b3) 2020; 540 Feng, Lau, Yu (b38) 2013; 233 Subramanian, Sekar, Subramanian (b100) 2013; 8 Wang, Qin, Wan, Song (b110) 2021; 23 Canayaz, Karci (b18) 2016; 44 Arora (b5) 2011 Eskandar, Sadollah, Bahreininejad, Hamdi (b34) 2012; 110–111 Kaveh, Bakhshpoori (b58) 2016; 167 Rahmanzadeh, Pishvaee (b90) 2020; 24 Yang, He (b119) 2019 Weyland (b113) 2015; 2 Kaveh, Zolghadr (b65) 2016; 6 Hussain, Salleh, Cheng, Shi (b53) 2019; 52 Zhang, Wang, Yang, Lewis, Chiclana, Yang (b123) 2019; 23 Civicioglu (b22) 2013; 229 Hu, Wu, Weir (b51) 2012; 17 Dhiman, Kaur (b26) 2019; 82 Gandomi (b41) 2014; 53 Huang, Li, Yao (b52) 2019; 24 Zaldívar, Morales, Rodríguez, Valdivia-G, Cuevas, Pérez-Cisneros (b122) 2018; 174 Zhao, Wang, Zhang (b124) 2020; 32 Shigley (b95) 1972 Weise, Zapf, Chiong, Nebro (b112) 2009 Dhiman, Kumar (b28) 2018; 159 Tzanetos, Dounias (b104) 2020; Vol. 18 Dhiman, Kumar (b27) 2017; 114 Rardin, Uzsoy (b92) 2001; 7 Punnathanam, Kotecha (b87) 2016; 54 Tzanetos, Dounias (b105) 2021; 54 Kaveh, Talatahari (b64) 2010; 213 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b47) 2019; 97 Jamil, Yang (b55) 2013; 4 Solis, Wets (b96) 1981; 6 Kaur, Awasthi, Sangal, Dhiman (b57) 2020; 90 Varaee, Ghasemi (b107) 2017; 33 Mirjalili, Lewis (b76) 2016; 95 Piotrowski, Napiorkowski, Rowinski (b84) 2014; 267 Faramarzi, Heidarinejad, Mirjalili, Gandomi (b35) 2020; 152 Feng, Ma, Yu (b39) 2016; 32 Rao, Savsani, Vakharia (b91) 2011; 43 Kaveh, Dadras (b59) 2017; 110 Tang, Dong, Jiang, Li, Huang (b102) 2015; 36 Zou (b127) 2019; 36 Eftimov, Korošec (b32) 2019; 489 Moez, Kaveh, Taghizadieh (b78) 2016; 40 Belegundu (b11) 1983 Carrasco, García, Rueda, Das, Herrera (b19) 2020; 54 Ahmadi-Javid (b2) 2011 de Armas, Lalla-Ruiz, Tilahun, Voß (b23) 2022; 21 Haug, Arora (b45) 1979 Dhiman, Kumar (b29) 2019; 165 Fister, Strnad, Yang (b40) 2015 Wahl (b109) 1963 Połap, Woz’ niak (b85) 2017; 9 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b44) 2019; 101 White, Mcdermott, Castelli, Manzoni, Goldman, Kronberger, Jaśkowski, O’Reilly, Luke (b114) 2013; 14 Ab. Rashid (b1) 2021; 38 Journal of Heuristics, ., 2015. Policies on heuristic search, J. Heurist. URL Tzanetos, Dounias (b103) 2017; 26 Li, Tang, Omidvar, Yang, Qin, China (b69) 2013; 7 Moghdani, Salimifard (b79) 2018; 64 Derrac, García, Molina, Herrera (b25) 2011; 1 Pornsing, Sodhi, Lamond (b86) 2016; 20 Yilmaz, Sen (b121) 2020; 32 Kar (b56) 2016; 59 Sörensen, Sevaux, Glover (b98) 2018 Hosseini (b49) 2007 Mirjalili (b74) 2015; 89 Li, Zhao, Weng, Han (b70) 2016; 92 Pijarski, Kacejko (b83) 2019; 51 Hayyolalam, Pourhaji Kazem (b46) 2020; 87 Nematollahi, Rahiminejad, Vahidi (b81) 2017; 59 Beiranvand, Hare, Lucet (b10) 2017; 18 Kaveh, Mahdavi (b63) 2014; 139 Erol, Eksin (b33) 2006; 37 García-Martínez, Gutiérrez, Molina, Lozano, Herrera (b43) 2017; 21 Kaveh, Khayatazad (b61) 2012; 112–113 Kaveh, Kooshkebaghi (b62) 2019; 26 Zheng, Liu, Zhou, Liang, Wang (b126) 2010; 5 Houssein, Saad, Hashim, Shaban, Hassaballah (b50) 2020; 94 Zhao, Zhang, Wang (b125) 2020; 87 Kaveh, Khanzadi, Rastegar Moghaddam (b60) 2020; 27 Blondin (b13) 2021 Dieterich, Hartke (b30) 2012; 3 Le-Duc, Nguyen, Nguyen-Xuan (b68) 2020; 520 Sadollah, Bahreininejad, Eskandar, Hamdi (b93) 2013; 13 Azizyan (10.1016/j.engappai.2022.105521_b8) 2019; 11 Hayyolalam (10.1016/j.engappai.2022.105521_b46) 2020; 87 Heidari (10.1016/j.engappai.2022.105521_b47) 2019; 97 Jamil (10.1016/j.engappai.2022.105521_b55) 2013; 4 Mirjalili (10.1016/j.engappai.2022.105521_b74) 2015; 89 Tzanetos (10.1016/j.engappai.2022.105521_b104) 2020; Vol. 18 Yang (10.1016/j.engappai.2022.105521_b117) 2016; 21 Blum (10.1016/j.engappai.2022.105521_b14) 2018; 25 Pornsing (10.1016/j.engappai.2022.105521_b86) 2016; 20 Kaveh (10.1016/j.engappai.2022.105521_b63) 2014; 139 Dhiman (10.1016/j.engappai.2022.105521_b29) 2019; 165 Subramanian (10.1016/j.engappai.2022.105521_b100) 2013; 8 Tzanetos (10.1016/j.engappai.2022.105521_b105) 2021; 54 Zhang (10.1016/j.engappai.2022.105521_b123) 2019; 23 Pijarski (10.1016/j.engappai.2022.105521_b83) 2019; 51 Canayaz (10.1016/j.engappai.2022.105521_b18) 2016; 44 Arora (10.1016/j.engappai.2022.105521_b5) 2011 Ismael (10.1016/j.engappai.2022.105521_b54) 2020; 21 Derrac (10.1016/j.engappai.2022.105521_b25) 2011; 1 Punnathanam (10.1016/j.engappai.2022.105521_b87) 2016; 54 Del Ser (10.1016/j.engappai.2022.105521_b24) 2019; 48 Eftimov (10.1016/j.engappai.2022.105521_b32) 2019; 489 Weyland (10.1016/j.engappai.2022.105521_b113) 2015; 2 Faramarzi (10.1016/j.engappai.2022.105521_b35) 2020; 152 Rardin (10.1016/j.engappai.2022.105521_b92) 2001; 7 Erol (10.1016/j.engappai.2022.105521_b33) 2006; 37 Zhao (10.1016/j.engappai.2022.105521_b125) 2020; 87 Kumar (10.1016/j.engappai.2022.105521_b66) 2020; 56 Połap (10.1016/j.engappai.2022.105521_b85) 2017; 9 Sörensen (10.1016/j.engappai.2022.105521_b98) 2018 Tzanetos (10.1016/j.engappai.2022.105521_b106) 2020; 31 LaTorre (10.1016/j.engappai.2022.105521_b67) 2021; 67 Yang (10.1016/j.engappai.2022.105521_b119) 2019 Kaveh (10.1016/j.engappai.2022.105521_b61) 2012; 112–113 Mirjalili (10.1016/j.engappai.2022.105521_b76) 2016; 95 Rahmanzadeh (10.1016/j.engappai.2022.105521_b90) 2020; 24 Biswas (10.1016/j.engappai.2022.105521_b12) 2014 Xiong (10.1016/j.engappai.2022.105521_b116) 2015; 8 Mohammadi (10.1016/j.engappai.2022.105521_b80) 2020; 11 Farasat (10.1016/j.engappai.2022.105521_b37) 2010; 10 Mezura-Montes (10.1016/j.engappai.2022.105521_b73) 2003 Dhiman (10.1016/j.engappai.2022.105521_b26) 2019; 82 Barr (10.1016/j.engappai.2022.105521_b9) 1995; 1 Huang (10.1016/j.engappai.2022.105521_b52) 2019; 24 Wang (10.1016/j.engappai.2022.105521_b110) 2021; 23 Feng (10.1016/j.engappai.2022.105521_b39) 2016; 32 Hosseini (10.1016/j.engappai.2022.105521_b49) 2007 Ahmadianfar (10.1016/j.engappai.2022.105521_b3) 2020; 540 Belegundu (10.1016/j.engappai.2022.105521_b11) 1983 Mirjalili (10.1016/j.engappai.2022.105521_b77) 2014; 69 Weise (10.1016/j.engappai.2022.105521_b112) 2009 Dieterich (10.1016/j.engappai.2022.105521_b30) 2012; 3 Hashim (10.1016/j.engappai.2022.105521_b44) 2019; 101 Sörensen (10.1016/j.engappai.2022.105521_b97) 2015; 22 de Armas (10.1016/j.engappai.2022.105521_b23) 2022; 21 Kaveh (10.1016/j.engappai.2022.105521_b65) 2016; 6 Arora (10.1016/j.engappai.2022.105521_b6) 2019; 23 Zheng (10.1016/j.engappai.2022.105521_b126) 2010; 5 García (10.1016/j.engappai.2022.105521_b42) 2009; 15 Zhao (10.1016/j.engappai.2022.105521_b124) 2020; 32 Feng (10.1016/j.engappai.2022.105521_b38) 2013; 233 Piotrowski (10.1016/j.engappai.2022.105521_b84) 2014; 267 Mirjalili (10.1016/j.engappai.2022.105521_b75) 2017; 114 Kaveh (10.1016/j.engappai.2022.105521_b64) 2010; 213 Eskandar (10.1016/j.engappai.2022.105521_b34) 2012; 110–111 Cheng (10.1016/j.engappai.2022.105521_b21) 2017 Ab. Rashid (10.1016/j.engappai.2022.105521_b1) 2021; 38 Yapici (10.1016/j.engappai.2022.105521_b120) 2019; 78 Carrasco (10.1016/j.engappai.2022.105521_b19) 2020; 54 Yilmaz (10.1016/j.engappai.2022.105521_b121) 2020; 32 Faramarzi (10.1016/j.engappai.2022.105521_b36) 2019 Kaveh (10.1016/j.engappai.2022.105521_b59) 2017; 110 Kaveh (10.1016/j.engappai.2022.105521_b58) 2016; 167 Hu (10.1016/j.engappai.2022.105521_b51) 2012; 17 Li (10.1016/j.engappai.2022.105521_b69) 2013; 7 Spotts (10.1016/j.engappai.2022.105521_b99) 1953 Kaur (10.1016/j.engappai.2022.105521_b57) 2020; 90 Askarzadeh (10.1016/j.engappai.2022.105521_b7) 2016; 169 Beiranvand (10.1016/j.engappai.2022.105521_b10) 2017; 18 Qais (10.1016/j.engappai.2022.105521_b88) 2020; 50 Wei (10.1016/j.engappai.2022.105521_b111) 2019; 7 Kar (10.1016/j.engappai.2022.105521_b56) 2016; 59 Varaee (10.1016/j.engappai.2022.105521_b107) 2017; 33 Braik (10.1016/j.engappai.2022.105521_b16) 2020 Fister (10.1016/j.engappai.2022.105521_b40) 2015 Moghdani (10.1016/j.engappai.2022.105521_b79) 2018; 64 Nematollahi (10.1016/j.engappai.2022.105521_b81) 2017; 59 Solis (10.1016/j.engappai.2022.105521_b96) 1981; 6 Lones (10.1016/j.engappai.2022.105521_b71) 2020; 1 García-Martínez (10.1016/j.engappai.2022.105521_b43) 2017; 21 10.1016/j.engappai.2022.105521_b48 Phan (10.1016/j.engappai.2022.105521_b82) 2020; 32 Tzanetos (10.1016/j.engappai.2022.105521_b103) 2017; 26 Wahl (10.1016/j.engappai.2022.105521_b109) 1963 Hussain (10.1016/j.engappai.2022.105521_b53) 2019; 52 Villalón (10.1016/j.engappai.2022.105521_b108) 2020 Worasucheep (10.1016/j.engappai.2022.105521_b115) 2008 Sulaiman (10.1016/j.engappai.2022.105521_b101) 2015; 2015 Ahmadi-Javid (10.1016/j.engappai.2022.105521_b2) 2011 Salimi (10.1016/j.engappai.2022.105521_b94) 2015; 75 Shigley (10.1016/j.engappai.2022.105521_b95) 1972 Haug (10.1016/j.engappai.2022.105521_b45) 1979 Camacho-Villalón (10.1016/j.engappai.2022.105521_b17) 2019; 13 Chakraborty (10.1016/j.engappai.2022.105521_b20) 2017 Gandomi (10.1016/j.engappai.2022.105521_b41) 2014; 53 Li (10.1016/j.engappai.2022.105521_b70) 2016; 92 Le-Duc (10.1016/j.engappai.2022.105521_b68) 2020; 520 White (10.1016/j.engappai.2022.105521_b114) 2013; 14 Dhiman (10.1016/j.engappai.2022.105521_b28) 2018; 159 Houssein (10.1016/j.engappai.2022.105521_b50) 2020; 94 Zaldívar (10.1016/j.engappai.2022.105521_b122) 2018; 174 Sadollah (10.1016/j.engappai.2022.105521_b93) 2013; 13 Moez (10.1016/j.engappai.2022.105521_b78) 2016; 40 Zou (10.1016/j.engappai.2022.105521_b127) 2019; 36 Boussaïd (10.1016/j.engappai.2022.105521_b15) 2013; 237 Kaveh (10.1016/j.engappai.2022.105521_b60) 2020; 27 Qu (10.1016/j.engappai.2022.105521_b89) 2016; 26 Dokeroglu (10.1016/j.engappai.2022.105521_b31) 2019; 137 Kaveh (10.1016/j.engappai.2022.105521_b62) 2019; 26 Civicioglu (10.1016/j.engappai.2022.105521_b22) 2013; 229 Massoudi (10.1016/j.engappai.2022.105521_b72) 2020; 21 Yang (10.1016/j.engappai.2022.105521_b118) 2018; 22 Dhiman (10.1016/j.engappai.2022.105521_b27) 2017; 114 Almufti (10.1016/j.engappai.2022.105521_b4) 2019; 7 Tang (10.1016/j.engappai.2022.105521_b102) 2015; 36 Blondin (10.1016/j.engappai.2022.105521_b13) 2021 Rao (10.1016/j.engappai.2022.105521_b91) 2011; 43 |
| References_xml | – volume: 520 start-page: 250 year: 2020 end-page: 270 ident: b68 article-title: Balancing composite motion optimization publication-title: Inform. Sci. – start-page: 475 year: 2017 end-page: 494 ident: b20 article-title: Swarm intelligence: A review of algorithms publication-title: Nature-Inspired Computing and Optimization – year: 1983 ident: b11 article-title: A Study of Mathematical Programming Methods for Structural Optimization – year: 1979 ident: b45 article-title: Applied Optimal Design: Mechanical and Structural Systems – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b77 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b47 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – start-page: 1 year: 2009 end-page: 50 ident: b112 article-title: Why is optimization difficult? publication-title: Nature-Inspired Algorithms for Optimisation – volume: 489 start-page: 255 year: 2019 end-page: 273 ident: b32 article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space publication-title: Inform. Sci. – volume: 67 year: 2021 ident: b67 article-title: A prescription of methodological guidelines for comparing bio-inspired optimization algorithms publication-title: Swarm Evol. Comput. – volume: 56 year: 2020 ident: b66 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Swarm Evol. Comput. – volume: 87 year: 2020 ident: b125 article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications publication-title: Eng. Appl. Artif. Intell. – year: 2021 ident: b13 article-title: Controller Tuning Optimization Methods for Multi-Constraints and Nonlinear Systems: A Metaheuristic Approach – volume: 4 start-page: 150 year: 2013 end-page: 194 ident: b55 article-title: A literature survey of benchmark functions for global optimisation problems publication-title: Int. J. Math. Model. Numer. Optim. – volume: 48 start-page: 220 year: 2019 end-page: 250 ident: b24 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm Evol. Comput. – year: 2019 ident: b36 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl.-Based Syst. – volume: 13 start-page: 173 year: 2019 end-page: 192 ident: b17 article-title: The intelligent water drops algorithm: why it cannot be considered a novel algorithm publication-title: Swarm Intell. – volume: 32 start-page: 567 year: 2020 end-page: 588 ident: b82 article-title: A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms publication-title: Neural Comput. Appl. – volume: 26 start-page: 2731 year: 2019 end-page: 2747 ident: b62 article-title: Artificial Coronary Circulation System; a new bio-inspired metaheuristic algorithm publication-title: Sci. Iranica – volume: 112–113 start-page: 283 year: 2012 end-page: 294 ident: b61 article-title: A new meta-heuristic method: Ray Optimization publication-title: Comput. Struct. – volume: 40 start-page: 311 year: 2016 end-page: 326 ident: b78 article-title: Natural Forest Regeneration Algorithm: A New Meta-Heuristic publication-title: Iranian J. Sci. Technol., Trans. Civ. Eng. – volume: 92 start-page: 65 year: 2016 end-page: 88 ident: b70 article-title: A novel nature-inspired algorithm for optimization: Virus colony search publication-title: Adv. Eng. Softw. – volume: 8 start-page: 163 year: 2013 end-page: 170 ident: b100 article-title: A new engineering optimization method: African wild dog algorithm publication-title: Int. J. Soft Comput. – start-page: 424 year: 2008 end-page: 429 ident: b115 article-title: A particle swarm optimization with stagnation detection and dispersion publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) – volume: 26 year: 2017 ident: b103 article-title: Nature Inspired Optimization Algorithms Related to Physical Phenomena and Laws of Science: A Survey publication-title: Int. J. Artif. Intell. Tools – volume: 21 start-page: 265 year: 2022 end-page: 287 ident: b23 article-title: Similarity in metaheuristics: a gentle step towards a comparison methodology publication-title: Nat. Comput. – year: 2011 ident: b5 publication-title: Introduction to Optimum Design – volume: 3 start-page: 1552 year: 2012 end-page: 1564 ident: b30 article-title: Empirical review of standard benchmark functions using evolutionary global optimization publication-title: Appl. Math. – volume: 33 start-page: 71 year: 2017 end-page: 93 ident: b107 article-title: Engineering optimization based on ideal gas molecular movement algorithm publication-title: Eng. Comput. – volume: 24 start-page: 8443 year: 2020 end-page: 8465 ident: b90 article-title: Electron radar search algorithm: a novel developed meta-heuristic algorithm publication-title: Soft Comput. – volume: 20 start-page: 3579 year: 2016 end-page: 3593 ident: b86 article-title: Novel self-adaptive particle swarm optimization methods publication-title: Soft Comput. – start-page: 121 year: 2020 end-page: 133 ident: b108 article-title: Grey wolf, firefly and bat algorithms: Three widespread algorithms that do not contain any novelty publication-title: International Conference on Swarm Intelligence – volume: 44 start-page: 362 year: 2016 end-page: 376 ident: b18 article-title: Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems publication-title: Appl. Intell. – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b44 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. – volume: 110–111 start-page: 151 year: 2012 end-page: 166 ident: b34 article-title: Water cycle algorithm — a novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. – year: 1963 ident: b109 publication-title: Mechanical Springs – volume: 21 start-page: 191 year: 2016 end-page: 205 ident: b117 article-title: Adaptive multimodal continuous ant colony optimization publication-title: IEEE Trans. Evol. Comput. – volume: 75 start-page: 1 year: 2015 end-page: 18 ident: b94 article-title: Stochastic Fractal Search: A powerful metaheuristic algorithm publication-title: Knowl.-Based Syst. – start-page: 3 year: 2015 end-page: 50 ident: b40 article-title: Adaptation and hybridization in nature-inspired algorithms publication-title: Adaptation and Hybridization in Computational Intelligence – volume: 110 start-page: 69 year: 2017 end-page: 84 ident: b59 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. – volume: 22 start-page: 5923 year: 2018 end-page: 5933 ident: b118 article-title: Swarm intelligence: past, present and future publication-title: Soft Comput. – volume: 54 start-page: 1841 year: 2021 end-page: 1862 ident: b105 article-title: Nature inspired optimization algorithms or simply variations of metaheuristics? publication-title: Artif. Intell. Rev. – volume: 167 start-page: 69 year: 2016 end-page: 85 ident: b58 article-title: Water Evaporation Optimization: A novel physically inspired optimization algorithm publication-title: Comput. Struct. – volume: 23 start-page: 874 year: 2021 ident: b110 article-title: A comparative study of common nature-inspired algorithms for continuous function optimization publication-title: Entropy – volume: 87 year: 2020 ident: b46 article-title: Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – reference: Journal of Heuristics, ., 2015. Policies on heuristic search, J. Heurist. URL – volume: 11 start-page: 177 year: 2019 end-page: 205 ident: b8 article-title: Flying Squirrel Optimizer (FSO): A novel SI-based optimization algorithm for engineering problems publication-title: Iranian J. Optim. – start-page: 3226 year: 2007 end-page: 3231 ident: b49 article-title: Problem solving by intelligent water drops publication-title: 2007 IEEE Congress on Evolutionary Computation – volume: 32 start-page: 284 year: 2016 end-page: 322 ident: b39 article-title: Crystal energy optimization algorithm publication-title: Comput. Intell. – volume: 59 start-page: 596 year: 2017 end-page: 621 ident: b81 article-title: A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization publication-title: Appl. Soft Comput. – start-page: 59 year: 2019 end-page: 73 ident: b119 article-title: Mathematical analysis of algorithms: Part I publication-title: Mathematical Foundations of Nature-Inspired Algorithms – volume: 1 start-page: 49 year: 2020 ident: b71 article-title: Mitigating metaphors: A comprehensible guide to recent nature-inspired algorithms publication-title: SN Comput. Sci. – volume: 139 start-page: 18 year: 2014 end-page: 27 ident: b63 article-title: Colliding bodies optimization: A novel meta-heuristic method publication-title: Comput. Struct. – year: 1953 ident: b99 publication-title: Design of Machine Elements – volume: 24 start-page: 201 year: 2019 end-page: 216 ident: b52 article-title: A survey of automatic parameter tuning methods for metaheuristics publication-title: IEEE Trans. Evol. Comput. – volume: 54 year: 2020 ident: b19 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. – volume: 174 start-page: 1 year: 2018 end-page: 21 ident: b122 article-title: A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior publication-title: Biosystems – volume: 237 start-page: 82 year: 2013 end-page: 117 ident: b15 article-title: A survey on optimization metaheuristics publication-title: Inform. Sci. – volume: 1 start-page: 9 year: 1995 end-page: 32 ident: b9 article-title: Designing and reporting on computational experiments with heuristic methods publication-title: J. Heuristics – volume: 38 start-page: 313 year: 2021 end-page: 343 ident: b1 article-title: Tiki-taka algorithm: a novel metaheuristic inspired by football playing style publication-title: Eng. Comput. – volume: 26 start-page: 23 year: 2016 end-page: 34 ident: b89 article-title: Novel benchmark functions for continuous multimodal optimization with comparative results publication-title: Swarm Evol. Comput. – volume: 6 start-page: 469 year: 2016 end-page: 492 ident: b65 article-title: A novel meta-heuristic algorithm: tug of war optimization publication-title: IUST – volume: 5 start-page: 1 year: 2010 end-page: 11 ident: b126 article-title: Gravitation field algorithm and its application in gene cluster publication-title: Algorithms Molecular Biol. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b75 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 2 start-page: 97 year: 2015 end-page: 105 ident: b113 article-title: A critical analysis of the harmony search algorithm—How not to solve sudoku publication-title: Oper. Res. Perspect. – start-page: 3192 year: 2014 end-page: 3199 ident: b12 article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions publication-title: 2014 IEEE Congress on Evolutionary Computation – volume: 54 start-page: 62 year: 2016 end-page: 79 ident: b87 article-title: Yin-Yang-pair Optimization: A novel lightweight optimization algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 14 start-page: 3 year: 2013 end-page: 29 ident: b114 article-title: Better GP benchmarks: community survey results and proposals publication-title: Genet. Program. Evol. Mach. – volume: 23 start-page: 7333 year: 2019 end-page: 7358 ident: b123 article-title: Biology migration algorithm: a new nature-inspired heuristic methodology for global optimization publication-title: Soft Comput. – volume: 50 start-page: 3926 year: 2020 end-page: 3941 ident: b88 article-title: Transient search optimization: a new meta-heuristic optimization algorithm publication-title: Appl. Intell. – volume: 2015 year: 2015 ident: b101 article-title: A Seed-Based Plant Propagation Algorithm: The Feeding Station Model publication-title: Sci. World J. – volume: 53 start-page: 1168 year: 2014 end-page: 1183 ident: b41 article-title: Interior search algorithm (ISA): A novel approach for global optimization publication-title: Disturb. Estimation Mitig. – volume: 31 year: 2020 ident: b106 article-title: A comprehensive database of nature-inspired algorithms publication-title: Data Brief – volume: 25 start-page: 425 year: 2018 end-page: 426 ident: b14 article-title: Special issue on “Metaheuristics” publication-title: Int. Trans. Oper. Res. – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: b7 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Comput. Struct. – volume: 27 start-page: 1722 year: 2020 end-page: 1739 ident: b60 article-title: Billiards-inspired optimization algorithm; a new meta-heuristic method publication-title: Structures – volume: 18 start-page: 815 year: 2017 end-page: 848 ident: b10 article-title: Best practices for comparing optimization algorithms publication-title: Opt. Eng. – volume: 52 start-page: 2191 year: 2019 end-page: 2233 ident: b53 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. – volume: 233 start-page: 87 year: 2013 end-page: 108 ident: b38 article-title: A novel bio-inspired approach based on the behavior of mosquitoes publication-title: Inform. Sci. – volume: 7 start-page: 8 year: 2013 ident: b69 article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization publication-title: Gene – volume: 23 start-page: 715 year: 2019 end-page: 734 ident: b6 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput. – volume: 213 start-page: 267 year: 2010 end-page: 289 ident: b64 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech. – volume: 267 start-page: 191 year: 2014 end-page: 200 ident: b84 article-title: How novel is the “novel” black hole optimization approach? publication-title: Inform. Sci. – volume: 82 start-page: 148 year: 2019 end-page: 174 ident: b26 article-title: STOA: A bio-inspired based optimization algorithm for industrial engineering problems publication-title: Eng. Appl. Artif. Intell. – start-page: 149 year: 2003 end-page: 156 ident: b73 article-title: Engineering optimization using simple evolutionary algorithm publication-title: Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b91 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. – volume: 6 start-page: 19 year: 1981 end-page: 30 ident: b96 article-title: Minimization by random search techniques publication-title: Math. Oper. Res. – volume: 64 start-page: 161 year: 2018 end-page: 185 ident: b79 article-title: Volleyball Premier League Algorithm publication-title: Appl. Soft Comput. – volume: 32 start-page: 9383 year: 2020 end-page: 9425 ident: b124 article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm publication-title: Neural Comput. Appl. – volume: 9 year: 2017 ident: b85 article-title: Polar Bear Optimization Algorithm: Meta-Heuristic with Fast Population Movement and Dynamic Birth and Death Mechanism publication-title: Symmetry – volume: 21 year: 2020 ident: b54 article-title: A critical comparative review of nature-inspired optimization algorithms (NIOAs) publication-title: Inte. J. Simul.–Syst. Sci. Technol. – volume: 78 start-page: 545 year: 2019 end-page: 568 ident: b120 article-title: A new meta-heuristic optimizer: Pathfinder algorithm publication-title: Appl. Soft Comput. – volume: 114 start-page: 48 year: 2017 end-page: 70 ident: b27 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. – year: 1972 ident: b95 publication-title: Mechanical Engineering Design – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b76 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 32 start-page: 11543 year: 2020 end-page: 11578 ident: b121 article-title: Electric fish optimization: a new heuristic algorithm inspired by electrolocation publication-title: Neural Comput. Appl. – volume: 7 start-page: 66084 year: 2019 end-page: 66109 ident: b111 article-title: Nuclear Reaction Optimization: A Novel and Powerful Physics-Based Algorithm for Global Optimization publication-title: IEEE Access – volume: 15 start-page: 617 year: 2009 end-page: 644 ident: b42 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization publication-title: J. Heuristics – volume: 11 start-page: 865 year: 2020 end-page: 878 ident: b80 article-title: An algorithm for numerical nonlinear optimization: Fertile Field Algorithm (FFA) publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 17 start-page: 705 year: 2012 end-page: 720 ident: b51 article-title: An adaptive particle swarm optimization with multiple adaptive methods publication-title: IEEE Trans. Evol. Comput. – volume: 51 start-page: 2049 year: 2019 end-page: 2068 ident: b83 article-title: A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG) publication-title: Eng. Optim. – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: b29 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. – volume: 137 year: 2019 ident: b31 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput. Ind. Eng. – volume: 59 start-page: 20 year: 2016 end-page: 32 ident: b56 article-title: Bio inspired computing–a review of algorithms and scope of applications publication-title: Expert Syst. Appl. – volume: 7 start-page: 261 year: 2001 end-page: 304 ident: b92 article-title: Experimental evaluation of heuristic optimization algorithms: A tutorial publication-title: J. Heuristics – volume: 90 year: 2020 ident: b57 article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. – year: 2020 ident: b16 article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm publication-title: Neural Comput. Appl. – volume: 36 start-page: 664 year: 2019 end-page: 690 ident: b127 article-title: The whirlpool algorithm based on physical phenomenon for solving optimization problems publication-title: Eng. Comput. – volume: 7 start-page: 1 year: 2019 end-page: 12 ident: b4 article-title: Historical survey on metaheuristics algorithms publication-title: Int. J. Sci. World – volume: 21 start-page: 925 year: 2020 end-page: 946 ident: b72 article-title: Smell Bees Optimization algorithm for continuous engineering problem publication-title: Asian J. Civ. Eng. – volume: 540 start-page: 131 year: 2020 end-page: 159 ident: b3 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b74 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 10 start-page: 1284 year: 2010 end-page: 1292 ident: b37 article-title: ARO: A new model-free optimization algorithm inspired from asexual reproduction publication-title: Appl. Soft Comput. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b25 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: b33 article-title: A new optimization method: big bang–big crunch publication-title: Adv. Eng. Softw. – volume: 94 year: 2020 ident: b50 article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 8 start-page: 606 year: 2015 end-page: 636 ident: b116 article-title: A walk into metaheuristics for engineering optimization: Principles, methods and recent trends publication-title: Int. J. Comput. Intell. Syst. – start-page: 791 year: 2018 end-page: 808 ident: b98 article-title: A history of metaheuristics publication-title: Handbook of heuristics – volume: 36 start-page: 670 year: 2015 end-page: 698 ident: b102 article-title: ITGO: Invasive tumor growth optimization algorithm publication-title: Appl. Soft Comput. – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: b93 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. – volume: 22 start-page: 3 year: 2015 end-page: 18 ident: b97 article-title: Metaheuristics—the metaphor exposed publication-title: Int. Trans. Oper. Res. – start-page: 2586 year: 2011 end-page: 2592 ident: b2 article-title: Anarchic society optimization: a human-inspired method publication-title: 2011 IEEE Congress of Evolutionary Computation – reference: . – volume: 159 start-page: 20 year: 2018 end-page: 50 ident: b28 article-title: Emperor penguin optimizer: A bio-inspired algorithm for engineering problems publication-title: Knowl.-Based Syst. – volume: 152 year: 2020 ident: b35 article-title: Marine Predators Algorithm: A Nature-inspired Metaheuristic publication-title: Expert Syst. Appl. – volume: 21 start-page: 5573 year: 2017 end-page: 5583 ident: b43 article-title: Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness publication-title: Soft Comput. – year: 2017 ident: b21 article-title: Benchmark functions for the CEC’2017 competition on many-objective optimization – volume: Vol. 18 start-page: 337 year: 2020 end-page: 378 ident: b104 article-title: A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies publication-title: Machine Learning Paradigms: Advances in Deep Learning-Based Technological Applications – volume: 229 start-page: 58 year: 2013 end-page: 76 ident: b22 article-title: Artificial cooperative search algorithm for numerical optimization problems publication-title: Inform. Sci. – volume: 50 start-page: 3926 issue: 11 year: 2020 ident: 10.1016/j.engappai.2022.105521_b88 article-title: Transient search optimization: a new meta-heuristic optimization algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-020-01727-y – year: 2020 ident: 10.1016/j.engappai.2022.105521_b16 article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm publication-title: Neural Comput. Appl. – volume: 32 start-page: 567 issue: 2 year: 2020 ident: 10.1016/j.engappai.2022.105521_b82 article-title: A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04229-2 – volume: 23 start-page: 874 issue: 7 year: 2021 ident: 10.1016/j.engappai.2022.105521_b110 article-title: A comparative study of common nature-inspired algorithms for continuous function optimization publication-title: Entropy doi: 10.3390/e23070874 – volume: 23 start-page: 7333 issue: 16 year: 2019 ident: 10.1016/j.engappai.2022.105521_b123 article-title: Biology migration algorithm: a new nature-inspired heuristic methodology for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3381-9 – volume: 94 year: 2020 ident: 10.1016/j.engappai.2022.105521_b50 article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103731 – start-page: 149 year: 2003 ident: 10.1016/j.engappai.2022.105521_b73 article-title: Engineering optimization using simple evolutionary algorithm – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.engappai.2022.105521_b77 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 9 issue: 10 year: 2017 ident: 10.1016/j.engappai.2022.105521_b85 article-title: Polar Bear Optimization Algorithm: Meta-Heuristic with Fast Population Movement and Dynamic Birth and Death Mechanism publication-title: Symmetry doi: 10.3390/sym9100203 – volume: 20 start-page: 3579 issue: 9 year: 2016 ident: 10.1016/j.engappai.2022.105521_b86 article-title: Novel self-adaptive particle swarm optimization methods publication-title: Soft Comput. doi: 10.1007/s00500-015-1716-3 – volume: 6 start-page: 19 issue: 1 year: 1981 ident: 10.1016/j.engappai.2022.105521_b96 article-title: Minimization by random search techniques publication-title: Math. Oper. Res. doi: 10.1287/moor.6.1.19 – volume: 1 start-page: 49 issue: 1 year: 2020 ident: 10.1016/j.engappai.2022.105521_b71 article-title: Mitigating metaphors: A comprehensible guide to recent nature-inspired algorithms publication-title: SN Comput. Sci. doi: 10.1007/s42979-019-0050-8 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.engappai.2022.105521_b74 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.engappai.2022.105521_b75 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – year: 1979 ident: 10.1016/j.engappai.2022.105521_b45 – volume: 90 year: 2020 ident: 10.1016/j.engappai.2022.105521_b57 article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – start-page: 59 year: 2019 ident: 10.1016/j.engappai.2022.105521_b119 article-title: Mathematical analysis of algorithms: Part I – volume: 54 year: 2020 ident: 10.1016/j.engappai.2022.105521_b19 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100665 – volume: 229 start-page: 58 year: 2013 ident: 10.1016/j.engappai.2022.105521_b22 article-title: Artificial cooperative search algorithm for numerical optimization problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.11.013 – volume: 21 start-page: 265 issue: 2 year: 2022 ident: 10.1016/j.engappai.2022.105521_b23 article-title: Similarity in metaheuristics: a gentle step towards a comparison methodology publication-title: Nat. Comput. doi: 10.1007/s11047-020-09837-9 – volume: 10 start-page: 1284 issue: 4 year: 2010 ident: 10.1016/j.engappai.2022.105521_b37 article-title: ARO: A new model-free optimization algorithm inspired from asexual reproduction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.05.011 – volume: 36 start-page: 664 issue: 2 year: 2019 ident: 10.1016/j.engappai.2022.105521_b127 article-title: The whirlpool algorithm based on physical phenomenon for solving optimization problems publication-title: Eng. Comput. doi: 10.1108/EC-05-2017-0174 – start-page: 475 year: 2017 ident: 10.1016/j.engappai.2022.105521_b20 article-title: Swarm intelligence: A review of algorithms – year: 1972 ident: 10.1016/j.engappai.2022.105521_b95 – volume: 13 start-page: 173 issue: 3–4 year: 2019 ident: 10.1016/j.engappai.2022.105521_b17 article-title: The intelligent water drops algorithm: why it cannot be considered a novel algorithm publication-title: Swarm Intell. doi: 10.1007/s11721-019-00165-y – volume: 92 start-page: 65 year: 2016 ident: 10.1016/j.engappai.2022.105521_b70 article-title: A novel nature-inspired algorithm for optimization: Virus colony search publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.11.004 – volume: 5 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.engappai.2022.105521_b126 article-title: Gravitation field algorithm and its application in gene cluster publication-title: Algorithms Molecular Biol. doi: 10.1186/1748-7188-5-32 – volume: 14 start-page: 3 issue: 1 year: 2013 ident: 10.1016/j.engappai.2022.105521_b114 article-title: Better GP benchmarks: community survey results and proposals publication-title: Genet. Program. Evol. Mach. doi: 10.1007/s10710-012-9177-2 – volume: 33 start-page: 71 issue: 1 year: 2017 ident: 10.1016/j.engappai.2022.105521_b107 article-title: Engineering optimization based on ideal gas molecular movement algorithm publication-title: Eng. Comput. doi: 10.1007/s00366-016-0457-y – volume: 233 start-page: 87 year: 2013 ident: 10.1016/j.engappai.2022.105521_b38 article-title: A novel bio-inspired approach based on the behavior of mosquitoes publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.12.053 – ident: 10.1016/j.engappai.2022.105521_b48 – volume: 2015 year: 2015 ident: 10.1016/j.engappai.2022.105521_b101 article-title: A Seed-Based Plant Propagation Algorithm: The Feeding Station Model publication-title: Sci. World J. doi: 10.1155/2015/904364 – volume: 31 year: 2020 ident: 10.1016/j.engappai.2022.105521_b106 article-title: A comprehensive database of nature-inspired algorithms publication-title: Data Brief doi: 10.1016/j.dib.2020.105792 – volume: 54 start-page: 1841 issue: 3 year: 2021 ident: 10.1016/j.engappai.2022.105521_b105 article-title: Nature inspired optimization algorithms or simply variations of metaheuristics? publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09893-8 – volume: 53 start-page: 1168 issue: 4 year: 2014 ident: 10.1016/j.engappai.2022.105521_b41 article-title: Interior search algorithm (ISA): A novel approach for global optimization publication-title: Disturb. Estimation Mitig. – volume: 8 start-page: 606 issue: 4 year: 2015 ident: 10.1016/j.engappai.2022.105521_b116 article-title: A walk into metaheuristics for engineering optimization: Principles, methods and recent trends publication-title: Int. J. Comput. Intell. Syst. doi: 10.1080/18756891.2015.1046324 – volume: 87 year: 2020 ident: 10.1016/j.engappai.2022.105521_b46 article-title: Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103249 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.engappai.2022.105521_b93 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.026 – volume: 75 start-page: 1 year: 2015 ident: 10.1016/j.engappai.2022.105521_b94 article-title: Stochastic Fractal Search: A powerful metaheuristic algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.07.025 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.engappai.2022.105521_b44 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 10.1016/j.engappai.2022.105521_b33 article-title: A new optimization method: big bang–big crunch publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 – volume: 3 start-page: 1552 year: 2012 ident: 10.1016/j.engappai.2022.105521_b30 article-title: Empirical review of standard benchmark functions using evolutionary global optimization publication-title: Appl. Math. doi: 10.4236/am.2012.330215 – volume: 54 start-page: 62 year: 2016 ident: 10.1016/j.engappai.2022.105521_b87 article-title: Yin-Yang-pair Optimization: A novel lightweight optimization algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.04.004 – volume: 1 start-page: 9 issue: 1 year: 1995 ident: 10.1016/j.engappai.2022.105521_b9 article-title: Designing and reporting on computational experiments with heuristic methods publication-title: J. Heuristics doi: 10.1007/BF02430363 – volume: 59 start-page: 20 year: 2016 ident: 10.1016/j.engappai.2022.105521_b56 article-title: Bio inspired computing–a review of algorithms and scope of applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.018 – year: 1983 ident: 10.1016/j.engappai.2022.105521_b11 – volume: 18 start-page: 815 issue: 4 year: 2017 ident: 10.1016/j.engappai.2022.105521_b10 article-title: Best practices for comparing optimization algorithms publication-title: Opt. Eng. doi: 10.1007/s11081-017-9366-1 – volume: 137 year: 2019 ident: 10.1016/j.engappai.2022.105521_b31 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106040 – volume: 52 start-page: 2191 issue: 4 year: 2019 ident: 10.1016/j.engappai.2022.105521_b53 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – volume: 114 start-page: 48 year: 2017 ident: 10.1016/j.engappai.2022.105521_b27 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.05.014 – volume: 36 start-page: 670 year: 2015 ident: 10.1016/j.engappai.2022.105521_b102 article-title: ITGO: Invasive tumor growth optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.045 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.engappai.2022.105521_b76 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 267 start-page: 191 year: 2014 ident: 10.1016/j.engappai.2022.105521_b84 article-title: How novel is the “novel” black hole optimization approach? publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.01.026 – volume: 152 year: 2020 ident: 10.1016/j.engappai.2022.105521_b35 article-title: Marine Predators Algorithm: A Nature-inspired Metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 110 start-page: 69 year: 2017 ident: 10.1016/j.engappai.2022.105521_b59 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.03.014 – volume: 489 start-page: 255 year: 2019 ident: 10.1016/j.engappai.2022.105521_b32 article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.03.049 – volume: 213 start-page: 267 issue: 3 year: 2010 ident: 10.1016/j.engappai.2022.105521_b64 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech. doi: 10.1007/s00707-009-0270-4 – volume: 40 start-page: 311 issue: 4 year: 2016 ident: 10.1016/j.engappai.2022.105521_b78 article-title: Natural Forest Regeneration Algorithm: A New Meta-Heuristic publication-title: Iranian J. Sci. Technol., Trans. Civ. Eng. doi: 10.1007/s40996-016-0042-z – volume: 8 start-page: 163 issue: 3 year: 2013 ident: 10.1016/j.engappai.2022.105521_b100 article-title: A new engineering optimization method: African wild dog algorithm publication-title: Int. J. Soft Comput. – year: 1963 ident: 10.1016/j.engappai.2022.105521_b109 – volume: 67 year: 2021 ident: 10.1016/j.engappai.2022.105521_b67 article-title: A prescription of methodological guidelines for comparing bio-inspired optimization algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100973 – volume: 32 start-page: 284 issue: 2 year: 2016 ident: 10.1016/j.engappai.2022.105521_b39 article-title: Crystal energy optimization algorithm publication-title: Comput. Intell. doi: 10.1111/coin.12053 – volume: 23 start-page: 715 issue: 3 year: 2019 ident: 10.1016/j.engappai.2022.105521_b6 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – volume: 540 start-page: 131 year: 2020 ident: 10.1016/j.engappai.2022.105521_b3 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.06.037 – year: 2011 ident: 10.1016/j.engappai.2022.105521_b5 – volume: 38 start-page: 313 issue: 1 year: 2021 ident: 10.1016/j.engappai.2022.105521_b1 article-title: Tiki-taka algorithm: a novel metaheuristic inspired by football playing style publication-title: Eng. Comput. doi: 10.1108/EC-03-2020-0137 – start-page: 121 year: 2020 ident: 10.1016/j.engappai.2022.105521_b108 article-title: Grey wolf, firefly and bat algorithms: Three widespread algorithms that do not contain any novelty – volume: 7 start-page: 66084 year: 2019 ident: 10.1016/j.engappai.2022.105521_b111 article-title: Nuclear Reaction Optimization: A Novel and Powerful Physics-Based Algorithm for Global Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918406 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.engappai.2022.105521_b25 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 21 start-page: 925 issue: 6 year: 2020 ident: 10.1016/j.engappai.2022.105521_b72 article-title: Smell Bees Optimization algorithm for continuous engineering problem publication-title: Asian J. Civ. Eng. doi: 10.1007/s42107-020-00250-2 – volume: 22 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.engappai.2022.105521_b97 article-title: Metaheuristics—the metaphor exposed publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12001 – volume: 15 start-page: 617 issue: 6 year: 2009 ident: 10.1016/j.engappai.2022.105521_b42 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization publication-title: J. Heuristics doi: 10.1007/s10732-008-9080-4 – volume: 25 start-page: 425 issue: 1 year: 2018 ident: 10.1016/j.engappai.2022.105521_b14 article-title: Special issue on “Metaheuristics” publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12461 – volume: 26 start-page: 23 year: 2016 ident: 10.1016/j.engappai.2022.105521_b89 article-title: Novel benchmark functions for continuous multimodal optimization with comparative results publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.07.003 – volume: 21 issue: 3 year: 2020 ident: 10.1016/j.engappai.2022.105521_b54 article-title: A critical comparative review of nature-inspired optimization algorithms (NIOAs) publication-title: Inte. J. Simul.–Syst. Sci. Technol. – volume: 112–113 start-page: 283 year: 2012 ident: 10.1016/j.engappai.2022.105521_b61 article-title: A new meta-heuristic method: Ray Optimization publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.09.003 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.engappai.2022.105521_b91 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – year: 2019 ident: 10.1016/j.engappai.2022.105521_b36 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl.-Based Syst. – volume: 26 issue: 06 year: 2017 ident: 10.1016/j.engappai.2022.105521_b103 article-title: Nature Inspired Optimization Algorithms Related to Physical Phenomena and Laws of Science: A Survey publication-title: Int. J. Artif. Intell. Tools – start-page: 424 year: 2008 ident: 10.1016/j.engappai.2022.105521_b115 article-title: A particle swarm optimization with stagnation detection and dispersion – volume: 51 start-page: 2049 issue: 12 year: 2019 ident: 10.1016/j.engappai.2022.105521_b83 article-title: A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG) publication-title: Eng. Optim. doi: 10.1080/0305215X.2019.1565282 – volume: 32 start-page: 11543 issue: 15 year: 2020 ident: 10.1016/j.engappai.2022.105521_b121 article-title: Electric fish optimization: a new heuristic algorithm inspired by electrolocation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04641-8 – volume: 6 start-page: 469 issue: 4 year: 2016 ident: 10.1016/j.engappai.2022.105521_b65 article-title: A novel meta-heuristic algorithm: tug of war optimization publication-title: IUST – year: 2021 ident: 10.1016/j.engappai.2022.105521_b13 – volume: 87 year: 2020 ident: 10.1016/j.engappai.2022.105521_b125 article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103300 – volume: 7 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.engappai.2022.105521_b4 article-title: Historical survey on metaheuristics algorithms publication-title: Int. J. Sci. World doi: 10.14419/ijsw.v7i1.29497 – volume: 26 start-page: 2731 issue: 5 year: 2019 ident: 10.1016/j.engappai.2022.105521_b62 article-title: Artificial Coronary Circulation System; a new bio-inspired metaheuristic algorithm publication-title: Sci. Iranica – volume: 139 start-page: 18 year: 2014 ident: 10.1016/j.engappai.2022.105521_b63 article-title: Colliding bodies optimization: A novel meta-heuristic method publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.04.005 – volume: 56 year: 2020 ident: 10.1016/j.engappai.2022.105521_b66 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100693 – volume: 237 start-page: 82 year: 2013 ident: 10.1016/j.engappai.2022.105521_b15 article-title: A survey on optimization metaheuristics publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.02.041 – volume: 21 start-page: 5573 issue: 19 year: 2017 ident: 10.1016/j.engappai.2022.105521_b43 article-title: Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness publication-title: Soft Comput. doi: 10.1007/s00500-016-2471-9 – year: 2017 ident: 10.1016/j.engappai.2022.105521_b21 – volume: 4 start-page: 150 issue: 2 year: 2013 ident: 10.1016/j.engappai.2022.105521_b55 article-title: A literature survey of benchmark functions for global optimisation problems publication-title: Int. J. Math. Model. Numer. Optim. – volume: 27 start-page: 1722 year: 2020 ident: 10.1016/j.engappai.2022.105521_b60 article-title: Billiards-inspired optimization algorithm; a new meta-heuristic method publication-title: Structures doi: 10.1016/j.istruc.2020.07.058 – volume: 59 start-page: 596 year: 2017 ident: 10.1016/j.engappai.2022.105521_b81 article-title: A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.033 – volume: 24 start-page: 8443 issue: 11 year: 2020 ident: 10.1016/j.engappai.2022.105521_b90 article-title: Electron radar search algorithm: a novel developed meta-heuristic algorithm publication-title: Soft Comput. doi: 10.1007/s00500-019-04410-8 – volume: 17 start-page: 705 issue: 5 year: 2012 ident: 10.1016/j.engappai.2022.105521_b51 article-title: An adaptive particle swarm optimization with multiple adaptive methods publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2232931 – volume: 174 start-page: 1 year: 2018 ident: 10.1016/j.engappai.2022.105521_b122 article-title: A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior publication-title: Biosystems doi: 10.1016/j.biosystems.2018.09.007 – volume: 21 start-page: 191 issue: 2 year: 2016 ident: 10.1016/j.engappai.2022.105521_b117 article-title: Adaptive multimodal continuous ant colony optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2591064 – volume: 44 start-page: 362 issue: 2 year: 2016 ident: 10.1016/j.engappai.2022.105521_b18 article-title: Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-015-0706-6 – volume: 7 start-page: 8 issue: 33 year: 2013 ident: 10.1016/j.engappai.2022.105521_b69 article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization publication-title: Gene – start-page: 1 year: 2009 ident: 10.1016/j.engappai.2022.105521_b112 article-title: Why is optimization difficult? – volume: 22 start-page: 5923 issue: 18 year: 2018 ident: 10.1016/j.engappai.2022.105521_b118 article-title: Swarm intelligence: past, present and future publication-title: Soft Comput. doi: 10.1007/s00500-017-2810-5 – volume: 32 start-page: 9383 issue: 13 year: 2020 ident: 10.1016/j.engappai.2022.105521_b124 article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04452-x – start-page: 3192 year: 2014 ident: 10.1016/j.engappai.2022.105521_b12 article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions – volume: 64 start-page: 161 year: 2018 ident: 10.1016/j.engappai.2022.105521_b79 article-title: Volleyball Premier League Algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – year: 1953 ident: 10.1016/j.engappai.2022.105521_b99 – start-page: 3 year: 2015 ident: 10.1016/j.engappai.2022.105521_b40 article-title: Adaptation and hybridization in nature-inspired algorithms – start-page: 791 year: 2018 ident: 10.1016/j.engappai.2022.105521_b98 article-title: A history of metaheuristics – volume: 11 start-page: 177 issue: 2 year: 2019 ident: 10.1016/j.engappai.2022.105521_b8 article-title: Flying Squirrel Optimizer (FSO): A novel SI-based optimization algorithm for engineering problems publication-title: Iranian J. Optim. – volume: 78 start-page: 545 year: 2019 ident: 10.1016/j.engappai.2022.105521_b120 article-title: A new meta-heuristic optimizer: Pathfinder algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.012 – volume: 520 start-page: 250 year: 2020 ident: 10.1016/j.engappai.2022.105521_b68 article-title: Balancing composite motion optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.02.013 – volume: 2 start-page: 97 year: 2015 ident: 10.1016/j.engappai.2022.105521_b113 article-title: A critical analysis of the harmony search algorithm—How not to solve sudoku publication-title: Oper. Res. Perspect. – volume: 82 start-page: 148 year: 2019 ident: 10.1016/j.engappai.2022.105521_b26 article-title: STOA: A bio-inspired based optimization algorithm for industrial engineering problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.03.021 – volume: 24 start-page: 201 issue: 2 year: 2019 ident: 10.1016/j.engappai.2022.105521_b52 article-title: A survey of automatic parameter tuning methods for metaheuristics publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2921598 – volume: 11 start-page: 865 issue: 2 year: 2020 ident: 10.1016/j.engappai.2022.105521_b80 article-title: An algorithm for numerical nonlinear optimization: Fertile Field Algorithm (FFA) publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-019-01598-3 – volume: 7 start-page: 261 issue: 3 year: 2001 ident: 10.1016/j.engappai.2022.105521_b92 article-title: Experimental evaluation of heuristic optimization algorithms: A tutorial publication-title: J. Heuristics doi: 10.1023/A:1011319115230 – volume: 159 start-page: 20 year: 2018 ident: 10.1016/j.engappai.2022.105521_b28 article-title: Emperor penguin optimizer: A bio-inspired algorithm for engineering problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.06.001 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.engappai.2022.105521_b47 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – start-page: 3226 year: 2007 ident: 10.1016/j.engappai.2022.105521_b49 article-title: Problem solving by intelligent water drops – volume: 167 start-page: 69 year: 2016 ident: 10.1016/j.engappai.2022.105521_b58 article-title: Water Evaporation Optimization: A novel physically inspired optimization algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.01.008 – volume: 48 start-page: 220 year: 2019 ident: 10.1016/j.engappai.2022.105521_b24 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.04.008 – start-page: 2586 year: 2011 ident: 10.1016/j.engappai.2022.105521_b2 article-title: Anarchic society optimization: a human-inspired method – volume: 110–111 start-page: 151 year: 2012 ident: 10.1016/j.engappai.2022.105521_b34 article-title: Water cycle algorithm — a novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: Vol. 18 start-page: 337 year: 2020 ident: 10.1016/j.engappai.2022.105521_b104 article-title: A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.engappai.2022.105521_b29 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.024 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.engappai.2022.105521_b7 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.03.001 |
| SSID | ssj0003846 |
| Score | 2.5242422 |
| Snippet | New metaheuristic algorithms have soared over the past ten years. A common practice in proposing a new algorithm is validating it on several benchmark... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 105521 |
| SubjectTerms | Benchmarking Compression springs Current situation Design problems Engineering optimization problem Engineering optimization problems Heuristic algorithms Metaheuristic Metaheuristics Optimization Optimized designs Qualitative systematic review Spring designs Systematic Review Tension-compression |
| Title | A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction |
| URI | https://dx.doi.org/10.1016/j.engappai.2022.105521 https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-63824 |
| Volume | 118 |
| WOSCitedRecordID | wos000894964700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELWqLgcufCOWL_mwt252GydtYm4RLAIOKyQq1Ftkx_a2VTdZtemy4ufwJ_h7jDN2mi2gBSEuUWXFddv3mhmPZ94QchCLVAse8wCMeRLERpsglVIG0sQjYys1tZBNs4nk9DSdTvnHXu-7r4W5XCZlmV5d8Yv_CjWMAdi2dPYv4G7fFAbgNYAOV4Adrn8EfOYKJVHRe1ep-QseqNdipjetSLPzRK0bavPZG2_Q5ppjjmw5wMPbgWqyPQauB42NJXh1p_W8Rslwi5jdY5-fa9etae3zQ52s0GyAVtTzwZ8KbHURB91D9SZPYdUkNDXtRToKom3Q4asodY3pgq5eB0x_G2dYVrZwB-uSNkp3wxws8pnRPvbm62-2yU4YxGRByBMnpo2P8DSJApu4e-0Zjw_5n-wFhi4WR7o8g-8m5kewNLO9j0dYt72jxf3JLmjXYzYYF1pxgz2WjHjaJ3vZ-5Pph9YJiFKsEfMfsFOc_uvVfusXdQVsG6dnco_ccbsVmiHL7pOeLh-Qu27nQp1dWMOQbw7ixx6Sbxnt8JBueUiRh7Qy9DoPqeMhrSvqeHjcYSFFFlJkIXUsfEUdB2nLwUO6w8BDCpSgnn-05d8jMnl7Mnn9LnANQYIiitM6UHwYmXisteGsiEMutZFSMFWEQ16wKAmN5LDjsA5YrOAeBfsLAfcXiRlzzaPHpF9WpX5CqLA4ahYaMLKxUkqYoS6UAO-YF0aO5T4ZeTTywonl254ty9xnRS5yj2JuUcwRxX1y3M67QLmYG2dwD3bunF78GXLg6I1zD5Ad7VpWLP7N_HOWV6uzfLbIwbqy-Ok_LPGM3N7-G5-Tfr3a6BfkVnFZz9erl471PwCjcPB0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+qualitative+systematic+review+of+metaheuristics+applied+to+tension%2Fcompression+spring+design+problem%3A+Current+situation%2C+recommendations%2C+and+research+direction&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Tzanetos%2C+Alexandros&rft.au=Blondin%2C+Maude&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=118&rft_id=info:doi/10.1016%2Fj.engappai.2022.105521&rft.externalDocID=S0952197622005115 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |