Orthogonal Spatial Binary Coding Method for High-Speed 3D Measurement
Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a larg...
Uložené v:
| Vydané v: | IEEE transactions on image processing Ročník 33; s. 2703 - 2713 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a large codewords orthogonal spatial binary coding method is proposed in this paper. By expanding spatial multiplexing from 1D to 2D orthogonal direction, it goes beyond the traditional 8 codewords to 27 codewords at three-level periodic division. In addition, a novel full-period connected domain segmentation technique based on local localization is proposed to avoid the time-consuming global iterative erosion and complex anomaly detection in traditional methods. For the decoding process, a purely spatial codewords recognition and a spatial-temporal hybrid codewords recognition methods are established to better suppress the percentage offset caused by static defocusing and dynamic motion, respectively. Obviating the need for intricate symbol recognition, the decoding process in our proposed method encompasses a straightforward analysis of statistical distribution. Building upon the development of special spatial binary coding, we have achieved a well-balance between low periodic division and large codewords for the first time. The experimental results verify the feasibility and validity of our proposed whole image processing method in both static and dynamic measurements. |
|---|---|
| AbstractList | Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a large codewords orthogonal spatial binary coding method is proposed in this paper. By expanding spatial multiplexing from 1D to 2D orthogonal direction, it goes beyond the traditional 8 codewords to 27 codewords at three-level periodic division. In addition, a novel full-period connected domain segmentation technique based on local localization is proposed to avoid the time-consuming global iterative erosion and complex anomaly detection in traditional methods. For the decoding process, a purely spatial codewords recognition and a spatial-temporal hybrid codewords recognition methods are established to better suppress the percentage offset caused by static defocusing and dynamic motion, respectively. Obviating the need for intricate symbol recognition, the decoding process in our proposed method encompasses a straightforward analysis of statistical distribution. Building upon the development of special spatial binary coding, we have achieved a well-balance between low periodic division and large codewords for the first time. The experimental results verify the feasibility and validity of our proposed whole image processing method in both static and dynamic measurements.Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a large codewords orthogonal spatial binary coding method is proposed in this paper. By expanding spatial multiplexing from 1D to 2D orthogonal direction, it goes beyond the traditional 8 codewords to 27 codewords at three-level periodic division. In addition, a novel full-period connected domain segmentation technique based on local localization is proposed to avoid the time-consuming global iterative erosion and complex anomaly detection in traditional methods. For the decoding process, a purely spatial codewords recognition and a spatial-temporal hybrid codewords recognition methods are established to better suppress the percentage offset caused by static defocusing and dynamic motion, respectively. Obviating the need for intricate symbol recognition, the decoding process in our proposed method encompasses a straightforward analysis of statistical distribution. Building upon the development of special spatial binary coding, we have achieved a well-balance between low periodic division and large codewords for the first time. The experimental results verify the feasibility and validity of our proposed whole image processing method in both static and dynamic measurements. Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a large codewords orthogonal spatial binary coding method is proposed in this paper. By expanding spatial multiplexing from 1D to 2D orthogonal direction, it goes beyond the traditional 8 codewords to 27 codewords at three-level periodic division. In addition, a novel full-period connected domain segmentation technique based on local localization is proposed to avoid the time-consuming global iterative erosion and complex anomaly detection in traditional methods. For the decoding process, a purely spatial codewords recognition and a spatial-temporal hybrid codewords recognition methods are established to better suppress the percentage offset caused by static defocusing and dynamic motion, respectively. Obviating the need for intricate symbol recognition, the decoding process in our proposed method encompasses a straightforward analysis of statistical distribution. Building upon the development of special spatial binary coding, we have achieved a well-balance between low periodic division and large codewords for the first time. The experimental results verify the feasibility and validity of our proposed whole image processing method in both static and dynamic measurements. |
| Author | Wu, Haitao Dai, Yongbo Wei, Zhimi Cao, Yiping |
| Author_xml | – sequence: 1 givenname: Haitao orcidid: 0000-0003-4111-9211 surname: Wu fullname: Wu, Haitao email: ht_wu1996@outlook.com organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, China – sequence: 2 givenname: Yiping orcidid: 0000-0003-0388-609X surname: Cao fullname: Cao, Yiping email: ypcao@scu.edu.cn organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, China – sequence: 3 givenname: Yongbo orcidid: 0009-0006-2177-9609 surname: Dai fullname: Dai, Yongbo email: hitdyb@126.com organization: AVIC Chengdu Caic Electronics Company Ltd., Chengdu, China – sequence: 4 givenname: Zhimi surname: Wei fullname: Wei, Zhimi organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38557628$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1r3DAQxUVJaD7aew-lGHrpxZsZfVjysdmmTSAlgaRnIVuzGwWvtZXsQ__7Kt0NlBxymoH5vWHevBN2MMaRGPuAsECE9uz-6nbBgcuFEAa1Fm_YMbYSawDJD0oPStcaZXvETnJ-BECpsHnLjoRRSjfcHLOLmzQ9xHUc3VDdbd0USj0Po0t_qmX0YVxXP6kAvlrFVF2G9UN9tyXylfhWBi7PiTY0Tu_Y4coNmd7v6yn79f3ifnlZX9_8uFp-va57Ic1U984rKaHh3mnTaMOd0Ry9wq4TrVr5ru8VYE8oOAnjle5aDg6k0gi-AxKn7Mtu7zbF3zPlyW5C7mkY3EhxzlaAQBRa8qagn1-gj3FOxeY_SjRcGi0K9WlPzd2GvN2msCne7fODCtDsgD7FnBOtbB-m8qY4TsmFwSLYpyRsScI-JWH3SRQhvBA-735F8nEnCUT0H14u1a0WfwHLmJBG |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_3390_photonics12090898 crossref_primary_10_1364_OL_558411 crossref_primary_10_1016_j_optlastec_2025_113916 crossref_primary_10_1109_TIP_2025_3602644 crossref_primary_10_1364_OE_560045 crossref_primary_10_1016_j_patcog_2024_110937 crossref_primary_10_1016_j_precisioneng_2025_06_006 crossref_primary_10_1109_TIM_2024_3500038 crossref_primary_10_1016_j_optcom_2024_131055 crossref_primary_10_1109_TIM_2025_3565071 crossref_primary_10_1016_j_optlaseng_2025_109289 crossref_primary_10_1016_j_optlastec_2024_111758 |
| Cites_doi | 10.1364/oe.410690 10.1109/TIP.2023.3244650 10.1109/TIP.2020.2977213 10.1109/TCSVT.2020.3002514 10.1109/TIP.2019.2910662 10.1364/AO.52.007797 10.1016/j.optlaseng.2019.04.009 10.1016/j.optlastec.2022.107955 10.1364/OL.446022 10.1016/j.optlaseng.2017.10.013 10.1016/j.optlastec.2018.06.049 10.1364/AO.391387 10.1016/j.optlaseng.2023.107741 10.1109/WACV.2018.00106 10.1109/TPAMI.2019.2954885 10.1016/j.optlaseng.2018.02.017 10.1016/j.imavis.2013.02.004 10.1109/TIM.2022.3160545 10.1109/ccv.1988.590025 10.1117/12.922568 10.1016/j.optlaseng.2016.04.022 10.1109/TIP.2007.914755 10.1109/TIP.2018.2858547 10.1088/1361-6501/abf805 10.1016/j.optlastec.2020.106833 10.1016/j.sna.2023.114156 10.1364/OE.25.020381 10.1364/OE.25.004700 10.1016/j.patcog.2023.109727 10.1016/j.optlaseng.2021.106745 10.1109/TIP.2023.3274479 10.1364/OE.470704 10.1016/j.optcom.2018.08.034 10.1364/OL.488980 10.1016/j.patcog.2010.03.004 10.1016/j.sigpro.2020.107959 10.1364/AO.56.005418 10.1364/OE.384155 10.1109/TIP.2016.2551370 10.1109/TIP.2011.2155072 10.1109/3DV57658.2022.00041 10.1364/PRJ.389076 10.1109/TIM.2023.3277941 10.1364/OE.461174 10.1063/1.5094125 10.1016/j.optlaseng.2019.105982 10.1364/AO.36.004463 10.1109/TIM.2021.3106119 10.1109/TIP.2023.3287735 10.1109/TII.2022.3185660 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2024.3381773 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 2713 |
| ExternalDocumentID | 38557628 10_1109_TIP_2024_3381773 10487797 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62375188 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM PKN RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c348t-cad544062da786782a8721d51bb395fdbcc501ce132e38d57b920a045710db0e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197781700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Thu Oct 02 06:15:05 EDT 2025 Mon Jun 30 05:01:45 EDT 2025 Wed Feb 19 02:08:02 EST 2025 Sat Nov 29 03:34:43 EST 2025 Tue Nov 18 21:18:39 EST 2025 Wed Aug 27 02:17:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-cad544062da786782a8721d51bb395fdbcc501ce132e38d57b920a045710db0e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0006-2177-9609 0000-0003-4111-9211 0000-0003-0388-609X |
| PMID | 38557628 |
| PQID | 3033624873 |
| PQPubID | 85429 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10487797 crossref_citationtrail_10_1109_TIP_2024_3381773 pubmed_primary_38557628 proquest_miscellaneous_3031137426 proquest_journals_3033624873 crossref_primary_10_1109_TIP_2024_3381773 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref11 ref10 Wu (ref45) 2023; 48 ref17 ref16 Zhang (ref46) 2018; 106 Ma (ref49) 2018; 108 ref50 ref41 Zuo (ref22) 2016; 85 Wu (ref33) 2020; 8 Wang (ref35) 2020; 127 ref8 ref7 ref9 Sansoni (ref29) 1997; 36 ref4 ref3 ref6 ref5 ref40 Tan (ref32) 2022; 30 Wang (ref44) 2020; 59 He (ref34) 2019; 121 ref36 Wu (ref37) 2023; 351 Liao (ref43) 2022; 30 Deng (ref31) 2021; 182 Zhang (ref42) 2013; 52 Zhang (ref23) 2017; 25 Torsello (ref25) 2013; 31 Liu (ref1) 2023; 143 ref2 ref39 Lu (ref47) 2019; 430 ref38 Zheng (ref30) 2017; 25 Jiang (ref24) 2020; 28 Zuo (ref18) 2018; 102 Wei (ref20) 2021; 147 ref26 ref28 ref27 Liu (ref15) 2021; 138 Wu (ref19) 2022; 150 Wu (ref21) 2021; 46 Wu (ref48) 2023; 169 |
| References_xml | – ident: ref36 doi: 10.1364/oe.410690 – ident: ref40 doi: 10.1109/TIP.2023.3244650 – ident: ref39 doi: 10.1109/TIP.2020.2977213 – ident: ref28 doi: 10.1109/TCSVT.2020.3002514 – ident: ref5 doi: 10.1109/TIP.2019.2910662 – volume: 52 start-page: 7797 issue: 32 year: 2013 ident: ref42 article-title: Unambiguous 3D measurement from speckle-embedded fringe publication-title: Appl. Opt. doi: 10.1364/AO.52.007797 – volume: 121 start-page: 358 year: 2019 ident: ref34 article-title: Quaternary Gray-code phase unwrapping for binary fringe projection profilometry publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2019.04.009 – volume: 150 year: 2022 ident: ref19 article-title: A general phase ambiguity suppression algorithm combining geometric constraints and temporal phase unwrapping publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2022.107955 – volume: 46 start-page: 6091 issue: 24 year: 2021 ident: ref21 article-title: Ultrafast spatial phase unwrapping algorithm with accurately correcting transient phase error publication-title: Opt. Lett. doi: 10.1364/OL.446022 – volume: 102 start-page: 70 year: 2018 ident: ref18 article-title: Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2017.10.013 – volume: 108 start-page: 46 year: 2018 ident: ref49 article-title: Intrinsic feature revelation of phase-to-height mapping in phase measuring profilometry publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2018.06.049 – volume: 59 start-page: 4279 issue: 14 year: 2020 ident: ref44 article-title: Spatial binary coding method for stripe-wise phase unwrapping publication-title: Appl. Opt. doi: 10.1364/AO.391387 – volume: 169 year: 2023 ident: ref48 article-title: Accurate fringe order recognition with adaptive morphological operations for 3D measurement publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2023.107741 – ident: ref14 doi: 10.1109/WACV.2018.00106 – ident: ref2 doi: 10.1109/TPAMI.2019.2954885 – volume: 106 start-page: 119 year: 2018 ident: ref46 article-title: High-speed 3D shape measurement with structured light methods: A review publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.02.017 – volume: 31 start-page: 341 issue: 4 year: 2013 ident: ref25 article-title: Stable and fast techniques for unambiguous compound phase coding publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2013.02.004 – ident: ref26 doi: 10.1109/TIM.2022.3160545 – ident: ref11 doi: 10.1109/ccv.1988.590025 – ident: ref27 doi: 10.1117/12.922568 – volume: 85 start-page: 84 year: 2016 ident: ref22 article-title: Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.04.022 – ident: ref4 doi: 10.1109/TIP.2007.914755 – ident: ref7 doi: 10.1109/TIP.2018.2858547 – ident: ref17 doi: 10.1088/1361-6501/abf805 – volume: 138 year: 2021 ident: ref15 article-title: High dynamic range real-time 3D measurement based on Fourier transform profilometry publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106833 – volume: 351 year: 2023 ident: ref37 article-title: Ultra-robust spatial point-to-point phase unwrapping algorithm for severe interference signal in 3D sensing publication-title: Sens. Actuators A, Phys. doi: 10.1016/j.sna.2023.114156 – volume: 25 start-page: 20381 issue: 17 year: 2017 ident: ref23 article-title: Robust and efficient multi-frequency temporal phase unwrapping: Optimal fringe frequency and pattern sequence selection publication-title: Opt. Exp. doi: 10.1364/OE.25.020381 – volume: 25 start-page: 4700 issue: 5 year: 2017 ident: ref30 article-title: Phase-shifting profilometry combined with Gray-code patterns projection: Unwrapping error removal by an adaptive median filter publication-title: Opt. Exp. doi: 10.1364/OE.25.004700 – volume: 143 year: 2023 ident: ref1 article-title: Trigonometric projection statistics histograms for 3D local feature representation and shape description publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109727 – volume: 147 year: 2021 ident: ref20 article-title: Fast adaptive phase unwrapping algorithm based on improved bucket sorting publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2021.106745 – ident: ref3 doi: 10.1109/TIP.2023.3274479 – volume: 30 start-page: 33022 issue: 18 year: 2022 ident: ref43 article-title: Digital image correlation assisted absolute phase unwrapping publication-title: Opt. Exp. doi: 10.1364/OE.470704 – volume: 430 start-page: 246 year: 2019 ident: ref47 article-title: Optimized dithering technique for three-dimensional shape measurement with projector defocusing publication-title: Opt. Commun. doi: 10.1016/j.optcom.2018.08.034 – volume: 48 start-page: 2793 issue: 11 year: 2023 ident: ref45 article-title: Ultra-fast 3D imaging by a big codewords space division multiplexing binary coding publication-title: Opt. Lett. doi: 10.1364/OL.488980 – ident: ref13 doi: 10.1016/j.patcog.2010.03.004 – volume: 182 year: 2021 ident: ref31 article-title: Edge-preserved fringe-order correction strategy for code-based fringe projection profilometry publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107959 – ident: ref41 doi: 10.1364/AO.56.005418 – volume: 28 start-page: 2838 issue: 3 year: 2020 ident: ref24 article-title: Fringe harmonics elimination in multi-frequency phase-shifting fringe projection profilometry publication-title: Opt. Exp. doi: 10.1364/OE.384155 – ident: ref38 doi: 10.1109/TIP.2016.2551370 – ident: ref16 doi: 10.1109/TIP.2011.2155072 – ident: ref9 doi: 10.1109/3DV57658.2022.00041 – volume: 8 start-page: 819 issue: 6 year: 2020 ident: ref33 article-title: High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light publication-title: Photon. Res. doi: 10.1364/PRJ.389076 – ident: ref10 doi: 10.1109/TIM.2023.3277941 – volume: 30 start-page: 24245 issue: 14 year: 2022 ident: ref32 article-title: Deep learning-based method for non-uniform motion-induced error reduction in dynamic microscopic 3D shape measurement publication-title: Opt. Exp. doi: 10.1364/OE.461174 – ident: ref12 doi: 10.1063/1.5094125 – volume: 127 year: 2020 ident: ref35 article-title: Dynamic three-dimensional shape measurement with a complementary phase-coding method publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2019.105982 – volume: 36 start-page: 4463 issue: 19 year: 1997 ident: ref29 article-title: Three-dimensional imaging based on Gray-code light projection: Characterization of the measuring algorithm and development of a measuring system for industrial applications publication-title: Appl. Opt. doi: 10.1364/AO.36.004463 – ident: ref6 doi: 10.1109/TIM.2021.3106119 – ident: ref50 doi: 10.1109/TIP.2023.3287735 – ident: ref8 doi: 10.1109/TII.2022.3185660 |
| SSID | ssj0014516 |
| Score | 2.52289 |
| Snippet | Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2703 |
| SubjectTerms | Anomalies Binary codes connected domain segmentation Decoding Defocusing Encoding High speed Image coding Image processing Multiplexing Optical variables measurement Periodic structures Phase measurement Recognition Shape spatial binary coding spatial-temporal decoding Temporal phase unwrapping Three-dimensional displays |
| Title | Orthogonal Spatial Binary Coding Method for High-Speed 3D Measurement |
| URI | https://ieeexplore.ieee.org/document/10487797 https://www.ncbi.nlm.nih.gov/pubmed/38557628 https://www.proquest.com/docview/3033624873 https://www.proquest.com/docview/3031137426 |
| Volume | 33 |
| WOSCitedRecordID | wos001197781700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8VADA4qHvTgvjw3RvDiodp22pf26IqCG6jwbmW2qiCv8hZ_v8m0r7yLgrfCZNoyyZAvk0k-gCNZyrRMXDdAxRRmNiwDze3u0Dq0igIEW_ru-nf48JD1evlTU6zua2Gcc_7ymTvhR5_Lt5UZ81EZ7XCC15jjLMwidutirTZlwIyzPrWZYoCE-yc5yTA_fbl9okgwTk4k96ND5s6RWUpImznYp9yR51f5HWp6l3O9_M-fXYGlBluKs9oYVmHG9ddgucGZotnFwzVYnGpCuA5Xj4PRe_XGiFwwQTEZpDj3VbriomLPJu49y7QgeCv4Wkjw_EUuT8hLGmgPGDfg9frq5eImaMgVAiOTbBQYZdOEvHlsFWbksWKVUTBo00hrmael1cakYWQcRatOZjZFncehIgBIkMTq0MlNmOtXfbcNQkpUOnIy0k4nSNJ5F5nLRioTa5WYDpxO1rgwTedxJsD4LHwEEuYFKahgBRWNgjpw3M74qrtu_CG7wYs_JVevewf2Jnosmn05LMhhk8cmAZp22A7TjuI0ieq7auxlokgiQZcObNX6b18-MZudXz66Cwv8b_UZzR7MjQZjtw_z5nv0MRwckNn2sgNvtj-7CeQ1 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xkmgPUCBtQ0PZSr304MT22ln72EIQiJAiNZW4WfsyIFV2lEd_f2fWGysXkHqztLO2tTOj-WZndz6Ar7zkaZnYYSAkUZiZsAwUtbsTxgojMUEwpeuuPxaTSfbwkN_7y-ruLoy11h0-s316dLV8U-sVbZWhhyO8FrnYhl2izvLXtdqiAXHOuuJmKgKByH9dlQzzwfTmHnPBOOlz6kgniD2HZylibWJh3whIjmHlZbDpgs7V4X_-7js48OiSfW_M4Qi2bHUMhx5pMu_Hi2N4u9GG8ARGP-fLp_qRMDkjimI0SfbD3dNlFzXFNnbneKYZAlxGB0OCXzMMeoxf4kC7xdiB31ej6cV14OkVAs2TbBloaXAVw2FspMgwZsUyw3TQpJFSPE9Lo7ROw0hbzFctz0wqVB6HEiEgghKjQsvfw05VV_YjMM6FVJHlkbIqESidDwWx2XCpYyUT3YXBeo0L7XuPEwXGn8LlIGFeoIIKUlDhFdSFb-2MWdN34xXZDi3-hlyz7l3orfVYeM9cFBiyMWajAE770g6jT1GhRFa2XjmZKOICwUsXPjT6b1--NpvTFz56DvvX07txMb6Z3H6CN_SfzY5ND3aW85U9gz39d_m8mH92xvsPaMHmlg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+Spatial+Binary+Coding+Method+for+High-Speed+3D+Measurement&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wu%2C+Haitao&rft.au=Cao%2C+Yiping&rft.au=Dai%2C+Yongbo&rft.au=Wei%2C+Zhimi&rft.date=2024&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=33&rft.spage=2703&rft.epage=2713&rft_id=info:doi/10.1109%2FTIP.2024.3381773&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2024_3381773 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |