Orthogonal Spatial Binary Coding Method for High-Speed 3D Measurement

Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a larg...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 33; s. 2703 - 2713
Hlavní autori: Wu, Haitao, Cao, Yiping, Dai, Yongbo, Wei, Zhimi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a large codewords orthogonal spatial binary coding method is proposed in this paper. By expanding spatial multiplexing from 1D to 2D orthogonal direction, it goes beyond the traditional 8 codewords to 27 codewords at three-level periodic division. In addition, a novel full-period connected domain segmentation technique based on local localization is proposed to avoid the time-consuming global iterative erosion and complex anomaly detection in traditional methods. For the decoding process, a purely spatial codewords recognition and a spatial-temporal hybrid codewords recognition methods are established to better suppress the percentage offset caused by static defocusing and dynamic motion, respectively. Obviating the need for intricate symbol recognition, the decoding process in our proposed method encompasses a straightforward analysis of statistical distribution. Building upon the development of special spatial binary coding, we have achieved a well-balance between low periodic division and large codewords for the first time. The experimental results verify the feasibility and validity of our proposed whole image processing method in both static and dynamic measurements.
AbstractList Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a large codewords orthogonal spatial binary coding method is proposed in this paper. By expanding spatial multiplexing from 1D to 2D orthogonal direction, it goes beyond the traditional 8 codewords to 27 codewords at three-level periodic division. In addition, a novel full-period connected domain segmentation technique based on local localization is proposed to avoid the time-consuming global iterative erosion and complex anomaly detection in traditional methods. For the decoding process, a purely spatial codewords recognition and a spatial-temporal hybrid codewords recognition methods are established to better suppress the percentage offset caused by static defocusing and dynamic motion, respectively. Obviating the need for intricate symbol recognition, the decoding process in our proposed method encompasses a straightforward analysis of statistical distribution. Building upon the development of special spatial binary coding, we have achieved a well-balance between low periodic division and large codewords for the first time. The experimental results verify the feasibility and validity of our proposed whole image processing method in both static and dynamic measurements.Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a large codewords orthogonal spatial binary coding method is proposed in this paper. By expanding spatial multiplexing from 1D to 2D orthogonal direction, it goes beyond the traditional 8 codewords to 27 codewords at three-level periodic division. In addition, a novel full-period connected domain segmentation technique based on local localization is proposed to avoid the time-consuming global iterative erosion and complex anomaly detection in traditional methods. For the decoding process, a purely spatial codewords recognition and a spatial-temporal hybrid codewords recognition methods are established to better suppress the percentage offset caused by static defocusing and dynamic motion, respectively. Obviating the need for intricate symbol recognition, the decoding process in our proposed method encompasses a straightforward analysis of statistical distribution. Building upon the development of special spatial binary coding, we have achieved a well-balance between low periodic division and large codewords for the first time. The experimental results verify the feasibility and validity of our proposed whole image processing method in both static and dynamic measurements.
Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional spatial binary coding, it often leads to an imbalance between the number of periodic divisions and codewords. To meet this challenge, a large codewords orthogonal spatial binary coding method is proposed in this paper. By expanding spatial multiplexing from 1D to 2D orthogonal direction, it goes beyond the traditional 8 codewords to 27 codewords at three-level periodic division. In addition, a novel full-period connected domain segmentation technique based on local localization is proposed to avoid the time-consuming global iterative erosion and complex anomaly detection in traditional methods. For the decoding process, a purely spatial codewords recognition and a spatial-temporal hybrid codewords recognition methods are established to better suppress the percentage offset caused by static defocusing and dynamic motion, respectively. Obviating the need for intricate symbol recognition, the decoding process in our proposed method encompasses a straightforward analysis of statistical distribution. Building upon the development of special spatial binary coding, we have achieved a well-balance between low periodic division and large codewords for the first time. The experimental results verify the feasibility and validity of our proposed whole image processing method in both static and dynamic measurements.
Author Wu, Haitao
Dai, Yongbo
Wei, Zhimi
Cao, Yiping
Author_xml – sequence: 1
  givenname: Haitao
  orcidid: 0000-0003-4111-9211
  surname: Wu
  fullname: Wu, Haitao
  email: ht_wu1996@outlook.com
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, China
– sequence: 2
  givenname: Yiping
  orcidid: 0000-0003-0388-609X
  surname: Cao
  fullname: Cao, Yiping
  email: ypcao@scu.edu.cn
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, China
– sequence: 3
  givenname: Yongbo
  orcidid: 0009-0006-2177-9609
  surname: Dai
  fullname: Dai, Yongbo
  email: hitdyb@126.com
  organization: AVIC Chengdu Caic Electronics Company Ltd., Chengdu, China
– sequence: 4
  givenname: Zhimi
  surname: Wei
  fullname: Wei, Zhimi
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38557628$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJaD7aew-lGHrpxZsZfVjysdmmTSAlgaRnIVuzGwWvtZXsQ__7Kt0NlBxymoH5vWHevBN2MMaRGPuAsECE9uz-6nbBgcuFEAa1Fm_YMbYSawDJD0oPStcaZXvETnJ-BECpsHnLjoRRSjfcHLOLmzQ9xHUc3VDdbd0USj0Po0t_qmX0YVxXP6kAvlrFVF2G9UN9tyXylfhWBi7PiTY0Tu_Y4coNmd7v6yn79f3ifnlZX9_8uFp-va57Ic1U984rKaHh3mnTaMOd0Ry9wq4TrVr5ru8VYE8oOAnjle5aDg6k0gi-AxKn7Mtu7zbF3zPlyW5C7mkY3EhxzlaAQBRa8qagn1-gj3FOxeY_SjRcGi0K9WlPzd2GvN2msCne7fODCtDsgD7FnBOtbB-m8qY4TsmFwSLYpyRsScI-JWH3SRQhvBA-735F8nEnCUT0H14u1a0WfwHLmJBG
CODEN IIPRE4
CitedBy_id crossref_primary_10_3390_photonics12090898
crossref_primary_10_1364_OL_558411
crossref_primary_10_1016_j_optlastec_2025_113916
crossref_primary_10_1109_TIP_2025_3602644
crossref_primary_10_1364_OE_560045
crossref_primary_10_1016_j_patcog_2024_110937
crossref_primary_10_1016_j_precisioneng_2025_06_006
crossref_primary_10_1109_TIM_2024_3500038
crossref_primary_10_1016_j_optcom_2024_131055
crossref_primary_10_1109_TIM_2025_3565071
crossref_primary_10_1016_j_optlaseng_2025_109289
crossref_primary_10_1016_j_optlastec_2024_111758
Cites_doi 10.1364/oe.410690
10.1109/TIP.2023.3244650
10.1109/TIP.2020.2977213
10.1109/TCSVT.2020.3002514
10.1109/TIP.2019.2910662
10.1364/AO.52.007797
10.1016/j.optlaseng.2019.04.009
10.1016/j.optlastec.2022.107955
10.1364/OL.446022
10.1016/j.optlaseng.2017.10.013
10.1016/j.optlastec.2018.06.049
10.1364/AO.391387
10.1016/j.optlaseng.2023.107741
10.1109/WACV.2018.00106
10.1109/TPAMI.2019.2954885
10.1016/j.optlaseng.2018.02.017
10.1016/j.imavis.2013.02.004
10.1109/TIM.2022.3160545
10.1109/ccv.1988.590025
10.1117/12.922568
10.1016/j.optlaseng.2016.04.022
10.1109/TIP.2007.914755
10.1109/TIP.2018.2858547
10.1088/1361-6501/abf805
10.1016/j.optlastec.2020.106833
10.1016/j.sna.2023.114156
10.1364/OE.25.020381
10.1364/OE.25.004700
10.1016/j.patcog.2023.109727
10.1016/j.optlaseng.2021.106745
10.1109/TIP.2023.3274479
10.1364/OE.470704
10.1016/j.optcom.2018.08.034
10.1364/OL.488980
10.1016/j.patcog.2010.03.004
10.1016/j.sigpro.2020.107959
10.1364/AO.56.005418
10.1364/OE.384155
10.1109/TIP.2016.2551370
10.1109/TIP.2011.2155072
10.1109/3DV57658.2022.00041
10.1364/PRJ.389076
10.1109/TIM.2023.3277941
10.1364/OE.461174
10.1063/1.5094125
10.1016/j.optlaseng.2019.105982
10.1364/AO.36.004463
10.1109/TIM.2021.3106119
10.1109/TIP.2023.3287735
10.1109/TII.2022.3185660
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2024.3381773
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2713
ExternalDocumentID 38557628
10_1109_TIP_2024_3381773
10487797
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62375188
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c348t-cad544062da786782a8721d51bb395fdbcc501ce132e38d57b920a045710db0e3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197781700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 06:15:05 EDT 2025
Mon Jun 30 05:01:45 EDT 2025
Wed Feb 19 02:08:02 EST 2025
Sat Nov 29 03:34:43 EST 2025
Tue Nov 18 21:18:39 EST 2025
Wed Aug 27 02:17:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-cad544062da786782a8721d51bb395fdbcc501ce132e38d57b920a045710db0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-2177-9609
0000-0003-4111-9211
0000-0003-0388-609X
PMID 38557628
PQID 3033624873
PQPubID 85429
PageCount 11
ParticipantIDs ieee_primary_10487797
crossref_citationtrail_10_1109_TIP_2024_3381773
pubmed_primary_38557628
proquest_miscellaneous_3031137426
proquest_journals_3033624873
crossref_primary_10_1109_TIP_2024_3381773
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
Wu (ref45) 2023; 48
ref17
ref16
Zhang (ref46) 2018; 106
Ma (ref49) 2018; 108
ref50
ref41
Zuo (ref22) 2016; 85
Wu (ref33) 2020; 8
Wang (ref35) 2020; 127
ref8
ref7
ref9
Sansoni (ref29) 1997; 36
ref4
ref3
ref6
ref5
ref40
Tan (ref32) 2022; 30
Wang (ref44) 2020; 59
He (ref34) 2019; 121
ref36
Wu (ref37) 2023; 351
Liao (ref43) 2022; 30
Deng (ref31) 2021; 182
Zhang (ref42) 2013; 52
Zhang (ref23) 2017; 25
Torsello (ref25) 2013; 31
Liu (ref1) 2023; 143
ref2
ref39
Lu (ref47) 2019; 430
ref38
Zheng (ref30) 2017; 25
Jiang (ref24) 2020; 28
Zuo (ref18) 2018; 102
Wei (ref20) 2021; 147
ref26
ref28
ref27
Liu (ref15) 2021; 138
Wu (ref19) 2022; 150
Wu (ref21) 2021; 46
Wu (ref48) 2023; 169
References_xml – ident: ref36
  doi: 10.1364/oe.410690
– ident: ref40
  doi: 10.1109/TIP.2023.3244650
– ident: ref39
  doi: 10.1109/TIP.2020.2977213
– ident: ref28
  doi: 10.1109/TCSVT.2020.3002514
– ident: ref5
  doi: 10.1109/TIP.2019.2910662
– volume: 52
  start-page: 7797
  issue: 32
  year: 2013
  ident: ref42
  article-title: Unambiguous 3D measurement from speckle-embedded fringe
  publication-title: Appl. Opt.
  doi: 10.1364/AO.52.007797
– volume: 121
  start-page: 358
  year: 2019
  ident: ref34
  article-title: Quaternary Gray-code phase unwrapping for binary fringe projection profilometry
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2019.04.009
– volume: 150
  year: 2022
  ident: ref19
  article-title: A general phase ambiguity suppression algorithm combining geometric constraints and temporal phase unwrapping
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2022.107955
– volume: 46
  start-page: 6091
  issue: 24
  year: 2021
  ident: ref21
  article-title: Ultrafast spatial phase unwrapping algorithm with accurately correcting transient phase error
  publication-title: Opt. Lett.
  doi: 10.1364/OL.446022
– volume: 102
  start-page: 70
  year: 2018
  ident: ref18
  article-title: Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2017.10.013
– volume: 108
  start-page: 46
  year: 2018
  ident: ref49
  article-title: Intrinsic feature revelation of phase-to-height mapping in phase measuring profilometry
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2018.06.049
– volume: 59
  start-page: 4279
  issue: 14
  year: 2020
  ident: ref44
  article-title: Spatial binary coding method for stripe-wise phase unwrapping
  publication-title: Appl. Opt.
  doi: 10.1364/AO.391387
– volume: 169
  year: 2023
  ident: ref48
  article-title: Accurate fringe order recognition with adaptive morphological operations for 3D measurement
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2023.107741
– ident: ref14
  doi: 10.1109/WACV.2018.00106
– ident: ref2
  doi: 10.1109/TPAMI.2019.2954885
– volume: 106
  start-page: 119
  year: 2018
  ident: ref46
  article-title: High-speed 3D shape measurement with structured light methods: A review
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.02.017
– volume: 31
  start-page: 341
  issue: 4
  year: 2013
  ident: ref25
  article-title: Stable and fast techniques for unambiguous compound phase coding
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2013.02.004
– ident: ref26
  doi: 10.1109/TIM.2022.3160545
– ident: ref11
  doi: 10.1109/ccv.1988.590025
– ident: ref27
  doi: 10.1117/12.922568
– volume: 85
  start-page: 84
  year: 2016
  ident: ref22
  article-title: Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.04.022
– ident: ref4
  doi: 10.1109/TIP.2007.914755
– ident: ref7
  doi: 10.1109/TIP.2018.2858547
– ident: ref17
  doi: 10.1088/1361-6501/abf805
– volume: 138
  year: 2021
  ident: ref15
  article-title: High dynamic range real-time 3D measurement based on Fourier transform profilometry
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106833
– volume: 351
  year: 2023
  ident: ref37
  article-title: Ultra-robust spatial point-to-point phase unwrapping algorithm for severe interference signal in 3D sensing
  publication-title: Sens. Actuators A, Phys.
  doi: 10.1016/j.sna.2023.114156
– volume: 25
  start-page: 20381
  issue: 17
  year: 2017
  ident: ref23
  article-title: Robust and efficient multi-frequency temporal phase unwrapping: Optimal fringe frequency and pattern sequence selection
  publication-title: Opt. Exp.
  doi: 10.1364/OE.25.020381
– volume: 25
  start-page: 4700
  issue: 5
  year: 2017
  ident: ref30
  article-title: Phase-shifting profilometry combined with Gray-code patterns projection: Unwrapping error removal by an adaptive median filter
  publication-title: Opt. Exp.
  doi: 10.1364/OE.25.004700
– volume: 143
  year: 2023
  ident: ref1
  article-title: Trigonometric projection statistics histograms for 3D local feature representation and shape description
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109727
– volume: 147
  year: 2021
  ident: ref20
  article-title: Fast adaptive phase unwrapping algorithm based on improved bucket sorting
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2021.106745
– ident: ref3
  doi: 10.1109/TIP.2023.3274479
– volume: 30
  start-page: 33022
  issue: 18
  year: 2022
  ident: ref43
  article-title: Digital image correlation assisted absolute phase unwrapping
  publication-title: Opt. Exp.
  doi: 10.1364/OE.470704
– volume: 430
  start-page: 246
  year: 2019
  ident: ref47
  article-title: Optimized dithering technique for three-dimensional shape measurement with projector defocusing
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2018.08.034
– volume: 48
  start-page: 2793
  issue: 11
  year: 2023
  ident: ref45
  article-title: Ultra-fast 3D imaging by a big codewords space division multiplexing binary coding
  publication-title: Opt. Lett.
  doi: 10.1364/OL.488980
– ident: ref13
  doi: 10.1016/j.patcog.2010.03.004
– volume: 182
  year: 2021
  ident: ref31
  article-title: Edge-preserved fringe-order correction strategy for code-based fringe projection profilometry
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107959
– ident: ref41
  doi: 10.1364/AO.56.005418
– volume: 28
  start-page: 2838
  issue: 3
  year: 2020
  ident: ref24
  article-title: Fringe harmonics elimination in multi-frequency phase-shifting fringe projection profilometry
  publication-title: Opt. Exp.
  doi: 10.1364/OE.384155
– ident: ref38
  doi: 10.1109/TIP.2016.2551370
– ident: ref16
  doi: 10.1109/TIP.2011.2155072
– ident: ref9
  doi: 10.1109/3DV57658.2022.00041
– volume: 8
  start-page: 819
  issue: 6
  year: 2020
  ident: ref33
  article-title: High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.389076
– ident: ref10
  doi: 10.1109/TIM.2023.3277941
– volume: 30
  start-page: 24245
  issue: 14
  year: 2022
  ident: ref32
  article-title: Deep learning-based method for non-uniform motion-induced error reduction in dynamic microscopic 3D shape measurement
  publication-title: Opt. Exp.
  doi: 10.1364/OE.461174
– ident: ref12
  doi: 10.1063/1.5094125
– volume: 127
  year: 2020
  ident: ref35
  article-title: Dynamic three-dimensional shape measurement with a complementary phase-coding method
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2019.105982
– volume: 36
  start-page: 4463
  issue: 19
  year: 1997
  ident: ref29
  article-title: Three-dimensional imaging based on Gray-code light projection: Characterization of the measuring algorithm and development of a measuring system for industrial applications
  publication-title: Appl. Opt.
  doi: 10.1364/AO.36.004463
– ident: ref6
  doi: 10.1109/TIM.2021.3106119
– ident: ref50
  doi: 10.1109/TIP.2023.3287735
– ident: ref8
  doi: 10.1109/TII.2022.3185660
SSID ssj0014516
Score 2.52289
Snippet Temporal phase unwrapping based on single auxiliary binary coded pattern has been proven to be effective for high-speed 3D measurement. However, in traditional...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2703
SubjectTerms Anomalies
Binary codes
connected domain segmentation
Decoding
Defocusing
Encoding
High speed
Image coding
Image processing
Multiplexing
Optical variables measurement
Periodic structures
Phase measurement
Recognition
Shape
spatial binary coding
spatial-temporal decoding
Temporal phase unwrapping
Three-dimensional displays
Title Orthogonal Spatial Binary Coding Method for High-Speed 3D Measurement
URI https://ieeexplore.ieee.org/document/10487797
https://www.ncbi.nlm.nih.gov/pubmed/38557628
https://www.proquest.com/docview/3033624873
https://www.proquest.com/docview/3031137426
Volume 33
WOSCitedRecordID wos001197781700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8VADA4qHvTgvjw3RvDiodp22pf26IqCG6jwbmW2qiCv8hZ_v8m0r7yLgrfCZNoyyZAvk0k-gCNZyrRMXDdAxRRmNiwDze3u0Dq0igIEW_ru-nf48JD1evlTU6zua2Gcc_7ymTvhR5_Lt5UZ81EZ7XCC15jjLMwidutirTZlwIyzPrWZYoCE-yc5yTA_fbl9okgwTk4k96ND5s6RWUpImznYp9yR51f5HWp6l3O9_M-fXYGlBluKs9oYVmHG9ddgucGZotnFwzVYnGpCuA5Xj4PRe_XGiFwwQTEZpDj3VbriomLPJu49y7QgeCv4Wkjw_EUuT8hLGmgPGDfg9frq5eImaMgVAiOTbBQYZdOEvHlsFWbksWKVUTBo00hrmael1cakYWQcRatOZjZFncehIgBIkMTq0MlNmOtXfbcNQkpUOnIy0k4nSNJ5F5nLRioTa5WYDpxO1rgwTedxJsD4LHwEEuYFKahgBRWNgjpw3M74qrtu_CG7wYs_JVevewf2Jnosmn05LMhhk8cmAZp22A7TjuI0ieq7auxlokgiQZcObNX6b18-MZudXz66Cwv8b_UZzR7MjQZjtw_z5nv0MRwckNn2sgNvtj-7CeQ1
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xkmgPUCBtQ0PZSr304MT22ln72EIQiJAiNZW4WfsyIFV2lEd_f2fWGysXkHqztLO2tTOj-WZndz6Ar7zkaZnYYSAkUZiZsAwUtbsTxgojMUEwpeuuPxaTSfbwkN_7y-ruLoy11h0-s316dLV8U-sVbZWhhyO8FrnYhl2izvLXtdqiAXHOuuJmKgKByH9dlQzzwfTmHnPBOOlz6kgniD2HZylibWJh3whIjmHlZbDpgs7V4X_-7js48OiSfW_M4Qi2bHUMhx5pMu_Hi2N4u9GG8ARGP-fLp_qRMDkjimI0SfbD3dNlFzXFNnbneKYZAlxGB0OCXzMMeoxf4kC7xdiB31ej6cV14OkVAs2TbBloaXAVw2FspMgwZsUyw3TQpJFSPE9Lo7ROw0hbzFctz0wqVB6HEiEgghKjQsvfw05VV_YjMM6FVJHlkbIqESidDwWx2XCpYyUT3YXBeo0L7XuPEwXGn8LlIGFeoIIKUlDhFdSFb-2MWdN34xXZDi3-hlyz7l3orfVYeM9cFBiyMWajAE770g6jT1GhRFa2XjmZKOICwUsXPjT6b1--NpvTFz56DvvX07txMb6Z3H6CN_SfzY5ND3aW85U9gz39d_m8mH92xvsPaMHmlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+Spatial+Binary+Coding+Method+for+High-Speed+3D+Measurement&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wu%2C+Haitao&rft.au=Cao%2C+Yiping&rft.au=Dai%2C+Yongbo&rft.au=Wei%2C+Zhimi&rft.date=2024&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=33&rft.spage=2703&rft.epage=2713&rft_id=info:doi/10.1109%2FTIP.2024.3381773&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2024_3381773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon