A self-organization mining based hybrid evolution learning for TSK-type fuzzy model design

In this paper, a self-organization mining based hybrid evolution (SOME) learning algorithm for designing a TSK-type fuzzy model (TFM) is proposed. In the proposed SOME, group-based symbiotic evolution (GSE) is adopted in which each group in the GSE represents a collection of only one fuzzy rule. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Jg. 36; H. 2; S. 454 - 471
Hauptverfasser: Lin, Sheng-Fuu, Chang, Jyun-Wei, Hsu, Yung-Chi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.03.2012
Springer Nature B.V
Schlagworte:
ISSN:0924-669X, 1573-7497
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a self-organization mining based hybrid evolution (SOME) learning algorithm for designing a TSK-type fuzzy model (TFM) is proposed. In the proposed SOME, group-based symbiotic evolution (GSE) is adopted in which each group in the GSE represents a collection of only one fuzzy rule. The proposed SOME consists of structure learning and parameter learning. In structure learning, the proposed SOME uses a two-step self-organization algorithm to decide the suitable number of rules in a TFM. In parameter learning, the proposed SOME uses the data mining based selection strategy and data mining based crossover strategy to decide groups and parental groups by the data mining algorithm that called frequent pattern growth. Illustrative examples were conducted to verify the performance and applicability of the proposed SOME method.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-010-0271-y