A self-organization mining based hybrid evolution learning for TSK-type fuzzy model design

In this paper, a self-organization mining based hybrid evolution (SOME) learning algorithm for designing a TSK-type fuzzy model (TFM) is proposed. In the proposed SOME, group-based symbiotic evolution (GSE) is adopted in which each group in the GSE represents a collection of only one fuzzy rule. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied intelligence (Dordrecht, Netherlands) Ročník 36; číslo 2; s. 454 - 471
Hlavní autoři: Lin, Sheng-Fuu, Chang, Jyun-Wei, Hsu, Yung-Chi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.03.2012
Springer Nature B.V
Témata:
ISSN:0924-669X, 1573-7497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a self-organization mining based hybrid evolution (SOME) learning algorithm for designing a TSK-type fuzzy model (TFM) is proposed. In the proposed SOME, group-based symbiotic evolution (GSE) is adopted in which each group in the GSE represents a collection of only one fuzzy rule. The proposed SOME consists of structure learning and parameter learning. In structure learning, the proposed SOME uses a two-step self-organization algorithm to decide the suitable number of rules in a TFM. In parameter learning, the proposed SOME uses the data mining based selection strategy and data mining based crossover strategy to decide groups and parental groups by the data mining algorithm that called frequent pattern growth. Illustrative examples were conducted to verify the performance and applicability of the proposed SOME method.
AbstractList In this paper, a self-organization mining based hybrid evolution (SOME) learning algorithm for designing a TSK-type fuzzy model (TFM) is proposed. In the proposed SOME, group-based symbiotic evolution (GSE) is adopted in which each group in the GSE represents a collection of only one fuzzy rule. The proposed SOME consists of structure learning and parameter learning. In structure learning, the proposed SOME uses a two-step self-organization algorithm to decide the suitable number of rules in a TFM. In parameter learning, the proposed SOME uses the data mining based selection strategy and data mining based crossover strategy to decide groups and parental groups by the data mining algorithm that called frequent pattern growth. Illustrative examples were conducted to verify the performance and applicability of the proposed SOME method.
In this paper, a self-organization mining based hybrid evolution (SOME) learning algorithm for designing a TSK-type fuzzy model (TFM) is proposed. In the proposed SOME, group-based symbiotic evolution (GSE) is adopted in which each group in the GSE represents a collection of only one fuzzy rule. The proposed SOME consists of structure learning and parameter learning. In structure learning, the proposed SOME uses a two-step self-organization algorithm to decide the suitable number of rules in a TFM. In parameter learning, the proposed SOME uses the data mining based selection strategy and data mining based crossover strategy to decide groups and parental groups by the data mining algorithm that called frequent pattern growth. Illustrative examples were conducted to verify the performance and applicability of the proposed SOME method.[PUBLICATION ABSTRACT]
Author Lin, Sheng-Fuu
Chang, Jyun-Wei
Hsu, Yung-Chi
Author_xml – sequence: 1
  givenname: Sheng-Fuu
  surname: Lin
  fullname: Lin, Sheng-Fuu
  email: sflin@mail.nctu.edu.tw
  organization: Department of Electrical Engineering, National Chiao Tung University
– sequence: 2
  givenname: Jyun-Wei
  surname: Chang
  fullname: Chang, Jyun-Wei
  organization: Department of Electrical Engineering, National Chiao Tung University
– sequence: 3
  givenname: Yung-Chi
  surname: Hsu
  fullname: Hsu, Yung-Chi
  organization: Graduate Institute of Network Learning Technology, National Central University
BookMark eNp9kM1KAzEURoMo2FYfwN3gyk00N5lpkmUp_qHgQgXBRUgzmRqZJjWZEaZP47P4ZI6tIBR0dRf3O9-9nCHa9cFbhI6AnAIh_CwByYXEBAgmlAPudtAACs4wzyXfRQMiaY7HY_m0j4YpvRJCGCMwQM-TLNm6wiHOtXcr3bjgs4Xzzs-zmU62zF66WXRlZt9D3a63tdVxva9C_Px4uL_BTbe0WdWuVl22CKWts9ImN_cHaK_SdbKHP3OEHi_OH6ZX-Pbu8no6ucWG5aLBRsPMlDxnoiASqGGsIBpyIrmcsZJVgjKhKbU5wLjQUlSVYdLoQpa0kAI0G6GTTe8yhrfWpkYtXDK2rrW3oU0KCMgxEwxoHz3eir6GNvr-OyUplYxLUfQh2IRMDClFW6lldAsdu75JfdtWG9uqt62-bauuZ_gWY1yzttlE7ep_SbohU3_Fz238felv6AtDRZbQ
CitedBy_id crossref_primary_10_1007_s10489_011_0298_8
crossref_primary_10_1007_s10489_011_0327_7
Cites_doi 10.1080/03081070500132377
10.1016/0165-0114(95)00196-4
10.1109/ICEC.1994.350039
10.1142/4177
10.1109/91.649913
10.1109/TFUZZ.2006.889920
10.1109/91.705501
10.1109/91.995118
10.1109/3477.836377
10.1109/41.170970
10.1002/0471687545
10.1109/4235.873236
10.1002/acs.882
10.1016/j.mcm.2005.08.008
10.1109/3477.891151
10.1109/TSMC.1985.6313399
10.1145/37402.37406
10.1109/91.388168
10.1023/A:1021986309149
10.1109/TFUZZ.1993.390281
10.1007/s10489-006-6925-0
10.1162/evco.1993.1.2.127
10.1016/S1088-467X(99)00028-1
10.1007/s10489-007-0107-6
10.1145/335191.335372
10.1109/FUZZY.1993.327418
10.1109/TPWRS.2004.825924
10.1016/j.fss.2005.09.001
10.1109/91.580797
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2010
Springer Science+Business Media, LLC 2012
Copyright_xml – notice: Springer Science+Business Media, LLC 2010
– notice: Springer Science+Business Media, LLC 2012
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-010-0271-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 471
ExternalDocumentID 2592882701
10_1007_s10489_010_0271_y
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c348t-ca1bcd743850912c3350a140979b3d3f8238a22e41165a98ffc39ca59d25981a3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300657400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Fri Sep 05 06:16:20 EDT 2025
Wed Nov 05 14:40:08 EST 2025
Sat Nov 29 05:33:13 EST 2025
Tue Nov 18 22:36:42 EST 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Identification
Data mining
Genetic algorithm
Fuzzy model
FP-Growth
Group-based symbiotic evolution
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-ca1bcd743850912c3350a140979b3d3f8238a22e41165a98ffc39ca59d25981a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 922937985
PQPubID 326365
PageCount 18
ParticipantIDs proquest_miscellaneous_1019638312
proquest_journals_922937985
crossref_primary_10_1007_s10489_010_0271_y
crossref_citationtrail_10_1007_s10489_010_0271_y
springer_journals_10_1007_s10489_010_0271_y
PublicationCentury 2000
PublicationDate 20120300
2012-3-00
20120301
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 3
  year: 2012
  text: 20120300
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationSubtitle The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2012
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice HallChap 17
RussoMGenetic fuzzy learningIEEE Trans Evol Comput20004325927310.1109/4235.873236
FayyadUData mining and knowledge discovery in databases: implications for scientific databaseProceedings of international conference on scientific and statistical database management1997211
WuY-TAnYJGellerJWuY-TA data mining based genetic algorithmProceedings of the fourth IEEE workshop on software technologies for future embedded and ubiquitous systems, and the second international workshop on collaborative computing, integration, and assurance20065262
KozaJRGenetic programming: on the programming of computers by means of natural selection1992CambridgeMIT Press0850.68161
TakagiTSugenoMFuzzy identification of systems and its applications to modeling and controlIEEE Trans Syst Man Cybern19851511161320576.93021
ArabasJMichalewiczZMulawkaJGAVAPS-a genetic algorithm with varying population sizeProceedings of the IEEE world congress on computational intelligence1994737810.1109/ICEC.1994.350039
GoldbergDEGenetic algorithms in search, optimization, and machine learning1989ReadingAddison-Wesley0721.68056
RechenbergIZuradaJMMarksJMGoldbergCEvolution strategyComputational intelligence: imitating life1994New YorkIEEE Press
LinCJHsuYCReinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systemsIEEE Trans Fuzzy Syst200715472974510.1109/TFUZZ.2006.889920
CordonOHerreraFHoffmannFMagdlenaLGenetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases2001SingaporeWorld Scientific1042.68098
KayaMAlhajjRUtilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules miningAppl Intell200624171510.1007/s10489-006-6925-0
SugenoMYasukawaTA fuzzy-logic-based approach to qualitative modelingIEEE Trans Fuzzy Syst19931173110.1109/TFUZZ.1993.390281
JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice Hall
AlcaláRBenítezJMCasillasJCordónOPérezRFuzzy control of HVAC systems optimized by genetic algorithmsAppl Intell20031821551771040.6814110.1023/A:1021986309149
JuangCFA tsk-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithmsIEEE Trans Fuzzy Syst200210215517089376610.1109/91.995118
HongTPKuoCSChiSCA data mining algorithm for transaction data with quantitative valuesIntell Data Anal1999353633761059.6856810.1016/S1088-467X(99)00028-1
TaneseRDistributed genetic algorithmsProceedings of the 3rd international conference on genetic algorithms1989434439
KarrCLDesign of an adaptive fuzzy logic controller using a genetic algorithmProceedings of the 4th international conference on genetic algorithms1991450457
HomaifarAMccormickESimultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithmsIEEE Trans Fuzzy Syst19953212913910.1109/91.388168
BandyopadhyaySMurthyCAPalSKVGA-classifier: design and applicationsIEEE Trans Syst Man Cybern, Part B, Cybern200030689089510.1109/3477.891151
LinCHXuYJA hybrid evolutionary learning algorithm for tsk-type fuzzy model designMath Comput Model2006435–656358122141931145.9337110.1016/j.mcm.2005.08.008
JuangCFLinJYLinCTGenetic reinforcement learning through symbiotic evolution for fuzzy controller designIEEE Trans Syst Man Cybern, Part B, Cybern2000302290302174136310.1109/3477.836377
FogelLJZuradaJMMarksJMGoldbergCEvolutionary programming in perspective: The top-down viewComputational intelligence: imitating life1994New YorkIEEE Press
SmithREForrestSPerelsonASSearching for diverse, cooperative populations with genetic algorithmsEvol Comput19931212714910.1162/evco.1993.1.2.127
TanomaruJOmatuSProcess control by on-line trained neural controllersIEEE Trans Ind Electron199239651152110.1109/41.170970
EmamiMRTurksenIBGoldenbergAADevelopment of a systematic methodology of fuzzy logic modelingIEEE Trans Fuzzy Syst1998633463611142.6854210.1109/91.705501
LeeMATakagiHIntegrating design stages of fuzzy systems using genetic algorithmsProceedings of the IEEE international conference on fuzzy systems1993612617
LinYHCunninghamGACoggeshallSVUsing fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural networkIEEE Trans Fuzzy Syst19975461462110.1109/91.649913
LinCJXuYJThe design of tsk-type fuzzy controllers using a new hybrid learning approachInt J Adapt Control Signal Process200620112521991281085.9351610.1002/acs.882
KumarPChandnaVKThomasMSFuzzy-genetic algorithm for pre-processing data at the rtuIEEE Trans Power Syst200419271872310.1109/TPWRS.2004.825924
ReynoldsCWFlocks, herds and schools: a distributed behavioral modelComput Graph1987214253492453810.1145/37402.37406
AlcaláRAlcalá-FdezJGactoMJHerreraFImproving fuzzy logic controllers obtained by experts: a case study in HVAC systemsAppl Intell2009311153010.1007/s10489-007-0107-6
CarseBFogartyTCMunroAEvolving fuzzy rule based controllers using genetic algorithmsFuzzy Sets Syst199680327329310.1016/0165-0114(95)00196-4
MoriartyDEMiikkulainenREfficient reinforcement learning through symbiotic evolutionMach Learn1996221–31132
LinCJXuYJEfficient reinforcement learning through dynamic symbiotic evolution for tsk-type fuzzy controller designInt J Gen Syst200534555957821759631078.9304710.1080/03081070500132377
DelgadoMGomezSkarmetaAFMartinFA fuzzy clustering-based rapid prototyping for fuzzy rule-based modelingIEEE Trans Fuzzy Syst19975222323310.1109/91.580797
AgrawalRSrikantRFast algorithms for mining association rules in large databasesProceedings of the 20th international conference on very large data bases1994487499
HeppnerFGrenanderUKrasnerSA stochastic nonlinear model for coordinated bird flocksThe ubiquity of chaos1990WashingtonAAAS
LinCTLeeCSGNeural fuzzy systems: A neural-fuzzy synergism to intelligent systems1996Upper Saddle RiverPrentice Hall
LinCHXuYJA self-adaptive neural fuzzy network with group-based symbiotic evolution and its prediction applicationsFuzzy Sets Syst200615781036105622182451092.6864710.1016/j.fss.2005.09.001
LaroseDTDiscovering knowledge in data: an introduction to data mining2005HobokenWiley-Interscience1095.68643
HanJPeiJYinYMining frequent patterns without candidate generationSIGMOD Rec200029211210.1145/335191.335372
CF Juang (271_CR11) 2002; 10
M Russo (271_CR41) 2000; 4
J Arabas (271_CR29) 1994
MR Emami (271_CR38) 1998; 6
CJ Lin (271_CR21) 2007; 15
CH Lin (271_CR20) 2006; 157
YH Lin (271_CR40) 1997; 5
JR Koza (271_CR5) 1992
R Alcalá (271_CR14) 2003; 18
CF Juang (271_CR12) 2000; 30
J-SR Jang (271_CR35) 1997
O Cordon (271_CR32) 2001
CW Reynolds (271_CR43) 1987; 21
J Han (271_CR25) 2000; 29
R Alcalá (271_CR15) 2009; 31
J Tanomaru (271_CR37) 1992; 39
DE Goldberg (271_CR4) 1989
R Agrawal (271_CR24) 1994
Y-T Wu (271_CR27) 2006
S Bandyopadhyay (271_CR17) 2000; 30
CL Karr (271_CR8) 1991
CT Lin (271_CR1) 1996
F Heppner (271_CR42) 1990
MA Lee (271_CR10) 1993
P Kumar (271_CR13) 2004; 19
T Takagi (271_CR3) 1985; 15
LJ Fogel (271_CR6) 1994
DT Larose (271_CR22) 2005
TP Hong (271_CR26) 1999; 3
M Sugeno (271_CR36) 1993; 1
CJ Lin (271_CR33) 2006; 20
CJ Lin (271_CR19) 2005; 34
J-SR Jang (271_CR2) 1997
CH Lin (271_CR34) 2006; 43
M Kaya (271_CR16) 2006; 24
R Tanese (271_CR28) 1989
A Homaifar (271_CR9) 1995; 3
RE Smith (271_CR31) 1993; 1
M Delgado (271_CR39) 1997; 5
I Rechenberg (271_CR7) 1994
B Carse (271_CR18) 1996; 80
DE Moriarty (271_CR30) 1996; 22
U Fayyad (271_CR23) 1997
References_xml – reference: LinCJXuYJThe design of tsk-type fuzzy controllers using a new hybrid learning approachInt J Adapt Control Signal Process200620112521991281085.9351610.1002/acs.882
– reference: AgrawalRSrikantRFast algorithms for mining association rules in large databasesProceedings of the 20th international conference on very large data bases1994487499
– reference: ArabasJMichalewiczZMulawkaJGAVAPS-a genetic algorithm with varying population sizeProceedings of the IEEE world congress on computational intelligence1994737810.1109/ICEC.1994.350039
– reference: GoldbergDEGenetic algorithms in search, optimization, and machine learning1989ReadingAddison-Wesley0721.68056
– reference: FogelLJZuradaJMMarksJMGoldbergCEvolutionary programming in perspective: The top-down viewComputational intelligence: imitating life1994New YorkIEEE Press
– reference: SmithREForrestSPerelsonASSearching for diverse, cooperative populations with genetic algorithmsEvol Comput19931212714910.1162/evco.1993.1.2.127
– reference: LinYHCunninghamGACoggeshallSVUsing fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural networkIEEE Trans Fuzzy Syst19975461462110.1109/91.649913
– reference: LinCJHsuYCReinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systemsIEEE Trans Fuzzy Syst200715472974510.1109/TFUZZ.2006.889920
– reference: ReynoldsCWFlocks, herds and schools: a distributed behavioral modelComput Graph1987214253492453810.1145/37402.37406
– reference: KarrCLDesign of an adaptive fuzzy logic controller using a genetic algorithmProceedings of the 4th international conference on genetic algorithms1991450457
– reference: JuangCFLinJYLinCTGenetic reinforcement learning through symbiotic evolution for fuzzy controller designIEEE Trans Syst Man Cybern, Part B, Cybern2000302290302174136310.1109/3477.836377
– reference: JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice HallChap 17
– reference: MoriartyDEMiikkulainenREfficient reinforcement learning through symbiotic evolutionMach Learn1996221–31132
– reference: LaroseDTDiscovering knowledge in data: an introduction to data mining2005HobokenWiley-Interscience1095.68643
– reference: HeppnerFGrenanderUKrasnerSA stochastic nonlinear model for coordinated bird flocksThe ubiquity of chaos1990WashingtonAAAS
– reference: KayaMAlhajjRUtilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules miningAppl Intell200624171510.1007/s10489-006-6925-0
– reference: SugenoMYasukawaTA fuzzy-logic-based approach to qualitative modelingIEEE Trans Fuzzy Syst19931173110.1109/TFUZZ.1993.390281
– reference: LinCHXuYJA hybrid evolutionary learning algorithm for tsk-type fuzzy model designMath Comput Model2006435–656358122141931145.9337110.1016/j.mcm.2005.08.008
– reference: AlcaláRAlcalá-FdezJGactoMJHerreraFImproving fuzzy logic controllers obtained by experts: a case study in HVAC systemsAppl Intell2009311153010.1007/s10489-007-0107-6
– reference: CordonOHerreraFHoffmannFMagdlenaLGenetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases2001SingaporeWorld Scientific1042.68098
– reference: JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice Hall
– reference: TaneseRDistributed genetic algorithmsProceedings of the 3rd international conference on genetic algorithms1989434439
– reference: HanJPeiJYinYMining frequent patterns without candidate generationSIGMOD Rec200029211210.1145/335191.335372
– reference: HomaifarAMccormickESimultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithmsIEEE Trans Fuzzy Syst19953212913910.1109/91.388168
– reference: EmamiMRTurksenIBGoldenbergAADevelopment of a systematic methodology of fuzzy logic modelingIEEE Trans Fuzzy Syst1998633463611142.6854210.1109/91.705501
– reference: RussoMGenetic fuzzy learningIEEE Trans Evol Comput20004325927310.1109/4235.873236
– reference: DelgadoMGomezSkarmetaAFMartinFA fuzzy clustering-based rapid prototyping for fuzzy rule-based modelingIEEE Trans Fuzzy Syst19975222323310.1109/91.580797
– reference: JuangCFA tsk-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithmsIEEE Trans Fuzzy Syst200210215517089376610.1109/91.995118
– reference: RechenbergIZuradaJMMarksJMGoldbergCEvolution strategyComputational intelligence: imitating life1994New YorkIEEE Press
– reference: CarseBFogartyTCMunroAEvolving fuzzy rule based controllers using genetic algorithmsFuzzy Sets Syst199680327329310.1016/0165-0114(95)00196-4
– reference: WuY-TAnYJGellerJWuY-TA data mining based genetic algorithmProceedings of the fourth IEEE workshop on software technologies for future embedded and ubiquitous systems, and the second international workshop on collaborative computing, integration, and assurance20065262
– reference: BandyopadhyaySMurthyCAPalSKVGA-classifier: design and applicationsIEEE Trans Syst Man Cybern, Part B, Cybern200030689089510.1109/3477.891151
– reference: TakagiTSugenoMFuzzy identification of systems and its applications to modeling and controlIEEE Trans Syst Man Cybern19851511161320576.93021
– reference: AlcaláRBenítezJMCasillasJCordónOPérezRFuzzy control of HVAC systems optimized by genetic algorithmsAppl Intell20031821551771040.6814110.1023/A:1021986309149
– reference: LeeMATakagiHIntegrating design stages of fuzzy systems using genetic algorithmsProceedings of the IEEE international conference on fuzzy systems1993612617
– reference: LinCJXuYJEfficient reinforcement learning through dynamic symbiotic evolution for tsk-type fuzzy controller designInt J Gen Syst200534555957821759631078.9304710.1080/03081070500132377
– reference: HongTPKuoCSChiSCA data mining algorithm for transaction data with quantitative valuesIntell Data Anal1999353633761059.6856810.1016/S1088-467X(99)00028-1
– reference: LinCTLeeCSGNeural fuzzy systems: A neural-fuzzy synergism to intelligent systems1996Upper Saddle RiverPrentice Hall
– reference: KozaJRGenetic programming: on the programming of computers by means of natural selection1992CambridgeMIT Press0850.68161
– reference: FayyadUData mining and knowledge discovery in databases: implications for scientific databaseProceedings of international conference on scientific and statistical database management1997211
– reference: TanomaruJOmatuSProcess control by on-line trained neural controllersIEEE Trans Ind Electron199239651152110.1109/41.170970
– reference: KumarPChandnaVKThomasMSFuzzy-genetic algorithm for pre-processing data at the rtuIEEE Trans Power Syst200419271872310.1109/TPWRS.2004.825924
– reference: LinCHXuYJA self-adaptive neural fuzzy network with group-based symbiotic evolution and its prediction applicationsFuzzy Sets Syst200615781036105622182451092.6864710.1016/j.fss.2005.09.001
– volume: 34
  start-page: 559
  issue: 5
  year: 2005
  ident: 271_CR19
  publication-title: Int J Gen Syst
  doi: 10.1080/03081070500132377
– volume-title: The ubiquity of chaos
  year: 1990
  ident: 271_CR42
– volume: 80
  start-page: 273
  issue: 3
  year: 1996
  ident: 271_CR18
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/0165-0114(95)00196-4
– start-page: 73
  volume-title: Proceedings of the IEEE world congress on computational intelligence
  year: 1994
  ident: 271_CR29
  doi: 10.1109/ICEC.1994.350039
– volume-title: Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases
  year: 2001
  ident: 271_CR32
  doi: 10.1142/4177
– volume-title: Computational intelligence: imitating life
  year: 1994
  ident: 271_CR6
– start-page: 487
  volume-title: Proceedings of the 20th international conference on very large data bases
  year: 1994
  ident: 271_CR24
– volume: 5
  start-page: 614
  issue: 4
  year: 1997
  ident: 271_CR40
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.649913
– volume: 15
  start-page: 729
  issue: 4
  year: 2007
  ident: 271_CR21
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2006.889920
– start-page: 2
  volume-title: Proceedings of international conference on scientific and statistical database management
  year: 1997
  ident: 271_CR23
– volume: 6
  start-page: 346
  issue: 3
  year: 1998
  ident: 271_CR38
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.705501
– volume: 10
  start-page: 155
  issue: 2
  year: 2002
  ident: 271_CR11
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.995118
– volume: 30
  start-page: 290
  issue: 2
  year: 2000
  ident: 271_CR12
  publication-title: IEEE Trans Syst Man Cybern, Part B, Cybern
  doi: 10.1109/3477.836377
– volume: 39
  start-page: 511
  issue: 6
  year: 1992
  ident: 271_CR37
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/41.170970
– volume-title: Discovering knowledge in data: an introduction to data mining
  year: 2005
  ident: 271_CR22
  doi: 10.1002/0471687545
– volume: 4
  start-page: 259
  issue: 3
  year: 2000
  ident: 271_CR41
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.873236
– volume: 20
  start-page: 1
  issue: 1
  year: 2006
  ident: 271_CR33
  publication-title: Int J Adapt Control Signal Process
  doi: 10.1002/acs.882
– volume: 43
  start-page: 563
  issue: 5–6
  year: 2006
  ident: 271_CR34
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2005.08.008
– volume-title: Computational intelligence: imitating life
  year: 1994
  ident: 271_CR7
– volume: 30
  start-page: 890
  issue: 6
  year: 2000
  ident: 271_CR17
  publication-title: IEEE Trans Syst Man Cybern, Part B, Cybern
  doi: 10.1109/3477.891151
– volume: 22
  start-page: 11
  issue: 1–3
  year: 1996
  ident: 271_CR30
  publication-title: Mach Learn
– volume: 15
  start-page: 116
  issue: 1
  year: 1985
  ident: 271_CR3
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313399
– volume-title: Neural fuzzy systems: A neural-fuzzy synergism to intelligent systems
  year: 1996
  ident: 271_CR1
– volume: 21
  start-page: 25
  issue: 4
  year: 1987
  ident: 271_CR43
  publication-title: Comput Graph
  doi: 10.1145/37402.37406
– volume-title: Genetic programming: on the programming of computers by means of natural selection
  year: 1992
  ident: 271_CR5
– volume: 3
  start-page: 129
  issue: 2
  year: 1995
  ident: 271_CR9
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.388168
– volume: 18
  start-page: 155
  issue: 2
  year: 2003
  ident: 271_CR14
  publication-title: Appl Intell
  doi: 10.1023/A:1021986309149
– volume: 1
  start-page: 7
  issue: 1
  year: 1993
  ident: 271_CR36
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.1993.390281
– volume: 24
  start-page: 7
  issue: 1
  year: 2006
  ident: 271_CR16
  publication-title: Appl Intell
  doi: 10.1007/s10489-006-6925-0
– volume: 1
  start-page: 127
  issue: 2
  year: 1993
  ident: 271_CR31
  publication-title: Evol Comput
  doi: 10.1162/evco.1993.1.2.127
– volume-title: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence
  year: 1997
  ident: 271_CR2
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: 271_CR4
– start-page: 434
  volume-title: Proceedings of the 3rd international conference on genetic algorithms
  year: 1989
  ident: 271_CR28
– volume: 3
  start-page: 363
  issue: 5
  year: 1999
  ident: 271_CR26
  publication-title: Intell Data Anal
  doi: 10.1016/S1088-467X(99)00028-1
– volume-title: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence
  year: 1997
  ident: 271_CR35
– start-page: 450
  volume-title: Proceedings of the 4th international conference on genetic algorithms
  year: 1991
  ident: 271_CR8
– volume: 31
  start-page: 15
  issue: 1
  year: 2009
  ident: 271_CR15
  publication-title: Appl Intell
  doi: 10.1007/s10489-007-0107-6
– volume: 29
  start-page: 1
  issue: 2
  year: 2000
  ident: 271_CR25
  publication-title: SIGMOD Rec
  doi: 10.1145/335191.335372
– start-page: 612
  volume-title: Proceedings of the IEEE international conference on fuzzy systems
  year: 1993
  ident: 271_CR10
  doi: 10.1109/FUZZY.1993.327418
– start-page: 52
  volume-title: Proceedings of the fourth IEEE workshop on software technologies for future embedded and ubiquitous systems, and the second international workshop on collaborative computing, integration, and assurance
  year: 2006
  ident: 271_CR27
– volume: 19
  start-page: 718
  issue: 2
  year: 2004
  ident: 271_CR13
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.825924
– volume: 157
  start-page: 1036
  issue: 8
  year: 2006
  ident: 271_CR20
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2005.09.001
– volume: 5
  start-page: 223
  issue: 2
  year: 1997
  ident: 271_CR39
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.580797
SSID ssj0003301
Score 1.9037511
Snippet In this paper, a self-organization mining based hybrid evolution (SOME) learning algorithm for designing a TSK-type fuzzy model (TFM) is proposed. In the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 454
SubjectTerms Algorithms
Artificial Intelligence
Chromosomes
Computer Science
Controllers
Data mining
Evolution
Fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Genetic algorithms
Learning
Machines
Manufacturing
Mechanical Engineering
Mutation
Network topologies
Optimization techniques
Processes
Strategy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_4dfDitzinEsGTElybNktOoqIIyhg6YXgpaZKqMDe1m7D99eZ16aaCXjy3TUrey_vIe_n9AA6EjkyNK06d7-M0YjylwsSayihVJmZGp1mBrn9TbzREuy2bvjcn922VpU0sDLXpaTwjP5ahc0x1KeKT1zeKpFFYXPUMGrMwj0BlTs3nzy4azduJKXbJekGZ55IMyrlsl2XN8d25CLuFsBYc1gM6_O6YptHmjwJp4Xcul__5xyuw5ANOcjrWkFWYsd01WC7JHIjf2-vwcEpy28lo78vlTPJS0EcQdHWGPA3xdhexH15biWeceCQu8CWtu2uK57kkG4xGQ1Iw7BBT9IdswP3lRev8inriBapZJPpUqyDVxsUWAsOJUDMW11SBjCVTZlgmnJ9XYWgjxO5RUmSZZlKrWBqXTIlAsU2Y6_a6dguIUDXLQ20yhkB9Lly0QZ1nAhMlt_xcVaBWrnqiPSo5kmN0kimeMgoqcYJKUFDJsAKHk09ex5Acf71cLYWT-N2ZJxPJVGB_8tRtK6yVqK7tDXLsfEPTxIKwAkelBkxH-HW-7T_nq8KiC7jCcQ_bDsz13wd2Fxb0R_85f9_z2vsJDef1kg
  priority: 102
  providerName: ProQuest
Title A self-organization mining based hybrid evolution learning for TSK-type fuzzy model design
URI https://link.springer.com/article/10.1007/s10489-010-0271-y
https://www.proquest.com/docview/922937985
https://www.proquest.com/docview/1019638312
Volume 36
WOSCitedRecordID wos000300657400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOvRSoLTq8lgZqSeQpSROHPtIEQgJWK1YaBd6iBzbKUh0F5FdpOXX9Lfwy_B4k11AUIleLEVxnGj8mG8yM98AfBM6NgFXnDrdx2nMeE6FSTSVca5MwozOC8-uf5S2WqLble0qj7uso91rl6Q_qZ8ku8UY3oPO2ygN6WgW5hMkm0ETvfNjcvw6A92XyXOGBeVcdmtX5mtDPFdGU4T5winqdc3-4n995RJ8rKAl2RmvhWWYsb1PsFiXbSDVLl6BXzuktNcF7T9JwyR_fKEIgkrNkMsR5nERe1etS1LVlvhNHMR9-HvaOaT465YUw_v7EfHFdIjxoSCf4Wx_73T3gFY1FqhmsRhQrcJcGwcjBCKHSDOWBMqTYMmcGVYIp9JVFNkYaXqUFEWhmdQqkcbZTSJU7AvM9fo9-xWIUIHlkTYFQ04-hwxtmPJCoE3kRMJVA4Ja2JmuCMixDsZ1NqVORuFlTngZCi8bNWBr8sjNmH3jX53X6hnMqo1YZjJyeCaVImnA5uSu20HoFlE92x-WGOSGpxALowZs15M6HeHN962-q_cafHBYKxqHr63D3OB2aDdgQd8NrsrbJsymP8-bMP99r9U-cVeHKXXtcbCLbdpxbTu5aPqF_ghAzvJk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFgkutHyJpVBcqVxAFomdeO1Dhap-qNVuV0gs0opLcGynRSq7pdktSv9T_yMeJ9mFSvTWA-ckthI_z5vJjOcBbEmT2EhoQT33CZpwkVNpU0NVkmubcmvyInTX73cHAzkaqU9LcN2ehcGyytYmBkNtJwb_kX9QzBNTV8n04_lPiqJRmFxtFTRqVPRc9ctHbOX20Z5f3reMHewPdw9pIypADU_klBod58Z63pRIlcxwnkY6dH1SObe8kJ7DNGMuwb40WsmiMFwZnSrrAwUZa-7HvQcriY-7cFsdR7tzw895UFuOfEhDhVCjNolan9RLsDYJM8-sG9Pqbxpc-LY30rGB5Q5W_7PvswaPGnea7NT4fwxLbvwEVlupCtJYrqfwdYeU7qygkz-OnpIfQRyDIJFbclrh2TXiLpu9SBo9jRPi3Xoy_Nyj-LeaFLOrq4oE_SBiQ_XLM_hyJ2_4HJbHk7F7AUTqyAlmbMGxDaF3hl3cFYXEMNAvt9AdiNpVzkzTcx2lP86yRbdoBEbmgZEhMLKqA-_mj5zXDUduu3m9BUPW2J4ymyOhA5vzq95oYCZIj91kVmJdHxpeHrMOvG8Rtxjhn_O9vHW-N_DgcHjcz_pHg946PPSuJaur9V7B8vRi5l7DfXM5_V5ebIR9Q-DbXQPxN7fPToI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBSE2lKcYysNIsAFZTezEsRcIVZQR1VSjkSjSqJvg-AFIZaY0M0Xpn_F3-DrJDCDRXResk9hKfHzPde7jADyXJrOJ0IIG7hM046Ki0uaGqqzSNufWVD521z8oxmM5narJBvzsa2EwrbK3idFQ27nBf-Q7igViKpTMd3yXFTHZG745-U5RQAoDrb2aRouQkWt-hNNb_Xp_Lyz1C8aG7w7fvqedwAA1PJMLanRaGRs4VCJtMsN5nujYAUpV3HIvA59pxlyGPWq0kt4brozOlQ2HBplqHsa9AleLTEjMJpvkRysS4DwqLyfheEOFUNM-oNpW7WWYp4RRaFaktPmTEtd-7l-h2ch4w63_-Fvdgpudm012231xGzbc7A5s9RIWpLNod-Fol9Tu2NP5byWp5FsUzSBI8JZ8abCmjbizbo-STmfjMwnuPjn8MKL4F5v45fl5Q6KuELExK-YefLyUN7wPm7P5zD0AInXiBDPWc2xPGJxklxbCSzwehqUXegBJv-Kl6XqxoyTIcbnuIo0gKQNISgRJ2Qzg5eqRk7YRyUU3b_fAKDubVJcrVAzg2epqMCYYIdIzN1_WmO-HBpmnbACvevStR_jnfA8vnO8pXA_4Kw_2x6NtuBE8TtYm8T2CzcXp0j2Ga-Zs8bU-fRK3EIFPl43DX6YLV5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-organization+mining+based+hybrid+evolution+learning+for%C2%A0TSK-type+fuzzy+model+design&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Lin%2C+Sheng-Fuu&rft.au=Chang%2C+Jyun-Wei&rft.au=Hsu%2C+Yung-Chi&rft.date=2012-03-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=36&rft.issue=2&rft.spage=454&rft.epage=471&rft_id=info:doi/10.1007%2Fs10489-010-0271-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_010_0271_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon