The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems

•A general MIP model for non-guillotine and guillotine rectangular cutting problems•Allows for the incorporation of many and diverse cutting technological constraints•Outperforms problem tailored state-of-the-art approaches for some problem variants•For the other problem variants presents results fa...

Full description

Saved in:
Bibliographic Details
Published in:Omega (Oxford) Vol. 114; p. 102738
Main Authors: Silva, Elsa, Oliveira, José Fernando, Silveira, Tiago, Mundim, Leandro, Carravilla, Maria Antónia
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.01.2023
Subjects:
ISSN:0305-0483, 1873-5274
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A general MIP model for non-guillotine and guillotine rectangular cutting problems•Allows for the incorporation of many and diverse cutting technological constraints•Outperforms problem tailored state-of-the-art approaches for some problem variants•For the other problem variants presents results fairly close to the best approaches Cutting and packing problems are challenging combinatorial optimization problems that have many relevant industrial applications and arise whenever a raw material has to be cut into smaller parts while minimizing waste, or products have to be packed, minimizing the empty space. Thus, the optimal solution to these problems has a positive economic and environmental impact. In many practical applications, both the raw material and the cut parts have a rectangular shape, and cutting plans are generated for one raw material rectangle (also known as plate) at a time. This is known in the literature as the (two-dimensional) rectangular cutting problem. Many variants of this problem may arise, led by cutting technology constraints, raw-material characteristics, and different planning goals, the most relevant of which are the guillotine cuts. The absence of the guillotine cuts imposition makes the problem harder to solve to optimality. Based on the Floating-Cuts paradigm, a general and flexible mixed-integer programming model for the general rectangular cutting problem is proposed. To the best of our knowledge, it is the first mixed integer linear programming model in the literature for both non-guillotine and guillotine problems. The basic idea of this model is a tree search where branching occurs by successive first-order non-guillotine-type cuts. The exact position of the cuts is not fixed, but instead remains floating until a concrete small rectangle (also known as item) is assigned to a child node. This model does not include decision variables either for the position coordinates of the items or for the coordinates of the cuts. Under this framework, it was possible to address various different variants of the problem. Extensive computational experiments were run to evaluate the model’s performance considering 16 different problem variants, and to compare it with the state-of-the-art formulations of each variant. The results confirm the power of this flexible model, as, for some variants, it outperforms the state-of-the-art approaches and, for the other variants, it presents results fairly close to the best approaches. But, even more importantly, this is a new way of looking at these problems which may trigger even better approaches, with the consequent economic and environmental benefits.
AbstractList •A general MIP model for non-guillotine and guillotine rectangular cutting problems•Allows for the incorporation of many and diverse cutting technological constraints•Outperforms problem tailored state-of-the-art approaches for some problem variants•For the other problem variants presents results fairly close to the best approaches Cutting and packing problems are challenging combinatorial optimization problems that have many relevant industrial applications and arise whenever a raw material has to be cut into smaller parts while minimizing waste, or products have to be packed, minimizing the empty space. Thus, the optimal solution to these problems has a positive economic and environmental impact. In many practical applications, both the raw material and the cut parts have a rectangular shape, and cutting plans are generated for one raw material rectangle (also known as plate) at a time. This is known in the literature as the (two-dimensional) rectangular cutting problem. Many variants of this problem may arise, led by cutting technology constraints, raw-material characteristics, and different planning goals, the most relevant of which are the guillotine cuts. The absence of the guillotine cuts imposition makes the problem harder to solve to optimality. Based on the Floating-Cuts paradigm, a general and flexible mixed-integer programming model for the general rectangular cutting problem is proposed. To the best of our knowledge, it is the first mixed integer linear programming model in the literature for both non-guillotine and guillotine problems. The basic idea of this model is a tree search where branching occurs by successive first-order non-guillotine-type cuts. The exact position of the cuts is not fixed, but instead remains floating until a concrete small rectangle (also known as item) is assigned to a child node. This model does not include decision variables either for the position coordinates of the items or for the coordinates of the cuts. Under this framework, it was possible to address various different variants of the problem. Extensive computational experiments were run to evaluate the model’s performance considering 16 different problem variants, and to compare it with the state-of-the-art formulations of each variant. The results confirm the power of this flexible model, as, for some variants, it outperforms the state-of-the-art approaches and, for the other variants, it presents results fairly close to the best approaches. But, even more importantly, this is a new way of looking at these problems which may trigger even better approaches, with the consequent economic and environmental benefits.
ArticleNumber 102738
Author Carravilla, Maria Antónia
Silveira, Tiago
Mundim, Leandro
Oliveira, José Fernando
Silva, Elsa
Author_xml – sequence: 1
  givenname: Elsa
  orcidid: 0000-0002-6274-8095
  surname: Silva
  fullname: Silva, Elsa
  organization: INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Portugal
– sequence: 2
  givenname: José Fernando
  orcidid: 0000-0002-4061-1311
  surname: Oliveira
  fullname: Oliveira, José Fernando
  email: jfo@fe.up.pt
  organization: INESC TEC, Faculdade de Engenharia, Universidade do Porto, Portugal
– sequence: 3
  givenname: Tiago
  surname: Silveira
  fullname: Silveira, Tiago
  organization: Department of Engineering and Architecture, University of Parma, Italy
– sequence: 4
  givenname: Leandro
  surname: Mundim
  fullname: Mundim, Leandro
  organization: Optimized Decision Making (ODM), São Carlos, Brazil
– sequence: 5
  givenname: Maria Antónia
  orcidid: 0000-0002-9245-2674
  surname: Carravilla
  fullname: Carravilla, Maria Antónia
  organization: INESC TEC, Faculdade de Engenharia, Universidade do Porto, Portugal
BookMark eNqFkE1OwzAQRi1UJNrCCdj4Ain-SRoHiQWqKCBVYlPWluNMgivHrpwUlUtwZpyGBWIBK2ssvW_mezM0cd4BQteULCihy5vdwrfQqAUjjMUflnNxhqZU5DzJWJ5O0JRwkiUkFfwCzbpuRwihgvAp-ty-AV5br3rjmmR16Dvc-grsLVa4AQdBWaxchWsLR1NawK05QpUY10MDAe-Db4Jq2wiPHK59wPG6pDkYa31MhRP_Ywyge-Wag1UB60M_LB5yYnjbXaLzWtkOrr7fOXpdP2xXT8nm5fF5db9JNE9Fn-il4EtR0FhUsUKVlWK1IsBirZIxAZQUdQZAAXhdqCoVjGmic1FlNS2ZLvgc8TFXB991AWq5D6ZV4UNSIgelcidPSuWgVI5KI1X8orTpoznv-qCM_Ye9G1mItd4NBNlpA05DZQYhsvLmT_4L9zmY8Q
CitedBy_id crossref_primary_10_1016_j_cor_2025_107182
crossref_primary_10_1016_j_omega_2024_103139
crossref_primary_10_1109_ACCESS_2024_3447092
crossref_primary_10_3390_math12172670
crossref_primary_10_1111_itor_13358
crossref_primary_10_1080_00207543_2025_2512228
crossref_primary_10_1111_itor_13236
crossref_primary_10_1016_j_ejor_2024_09_013
crossref_primary_10_1016_j_ejor_2025_05_033
Cites_doi 10.1016/0377-2217(93)E0278-6
10.1016/j.ejor.2005.11.064
10.1080/01605682.2020.1813640
10.1016/j.ejor.2007.08.029
10.1016/j.omega.2021.102432
10.1016/j.cor.2014.04.001
10.1287/opre.1040.0154
10.1016/j.cor.2019.104851
10.1057/jors.1985.51
10.1016/j.ejor.2020.06.050
10.1016/j.ejor.2018.06.016
10.1016/j.cor.2011.08.005
10.1016/j.ejor.2005.12.047
10.1016/0377-2217(90)90361-E
10.1016/j.omega.2013.08.007
10.1287/ijoc.1060.0181
10.1016/j.cor.2007.12.004
10.1016/0377-2217(95)00026-M
10.1016/S0167-6377(03)00057-9
10.1287/opre.13.1.94
10.1016/0377-2217(92)90212-R
10.1023/A:1011628809603
10.1287/ijoc.15.3.310.16082
10.1287/ijoc.2016.0710
10.1287/opre.31.3.573
10.1016/j.ijpe.2013.04.031
10.1016/0377-2217(93)E0277-5
10.1287/opre.1060.0369
10.1057/palgrave.jors.2600638
10.1016/j.omega.2020.102311
10.1111/itor.12703
10.1023/A:1008743711658
10.1287/opre.25.1.30
10.1016/j.disopt.2018.02.003
10.1287/opre.14.6.1045
10.1111/itor.12687
10.1016/j.ejor.2010.01.039
10.1287/opre.33.1.49
10.1080/02331939308843904
10.1007/s10107-002-0319-9
10.1016/j.ejor.2005.11.060
10.1016/j.ejor.2007.08.007
10.1016/j.cor.2010.12.018
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.omega.2022.102738
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-5274
ExternalDocumentID 10_1016_j_omega_2022_102738
S0305048322001451
GroupedDBID --K
--M
-~X
.~1
0R~
13V
1B1
1OL
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
96U
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABJNI
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACBMB
ACDAQ
ACGFS
ACHQT
ACHRH
ACNCT
ACNTT
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFACB
AFAZI
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGQRV
AGUBO
AGUMN
AGYEJ
AHEHV
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BAAKF
BDEBP
BKOJK
BKOMP
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HAMUX
HVGLF
HZ~
IAO
IEA
IGG
IHE
IHR
IOF
IPO
ITC
J1W
KOM
LPU
LXL
LY1
M41
MO0
MS~
N95
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPCBC
SSB
SSD
SSL
SSZ
T5K
TAE
TAF
TN5
U5U
VQA
WUQ
XI7
XPP
XSW
XYO
YNT
ZRQ
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
IPC
~HD
ID FETCH-LOGICAL-c348t-c6836891273a29abda2fa0e2000b228e109f5ee1ee3f9ad4822c0c78d5f1b2c93
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000874774300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0483
IngestDate Tue Nov 18 21:59:17 EST 2025
Sat Nov 29 07:23:09 EST 2025
Fri Feb 23 02:41:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords non-guillotine and guillotine cutting and packing problems
cutting
mixed-integer linear programming model
tree search
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-c6836891273a29abda2fa0e2000b228e109f5ee1ee3f9ad4822c0c78d5f1b2c93
ORCID 0000-0002-9245-2674
0000-0002-6274-8095
0000-0002-4061-1311
OpenAccessLink https://dx.doi.org/10.1016/j.omega.2022.102738
ParticipantIDs crossref_primary_10_1016_j_omega_2022_102738
crossref_citationtrail_10_1016_j_omega_2022_102738
elsevier_sciencedirect_doi_10_1016_j_omega_2022_102738
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Omega (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Messaoud, Chu, Espinouse (bib0034) 2008; 191
Hadjiconstantinou, Christofides (bib0021) 1995; 83
Russo, Sforza, Sterle (bib0043) 2014; 50
Caprara, Monaci (bib0005) 2004; 32
Polyakovskiy, M’Hallah (bib0039) 2021; 102
Cintra, Miyazawa, Wakabayashi, Xavier (bib0008) 2008; 191
Oliveira, Ferreira (bib0036) 1990; 44
Furini, Malaguti, Thomopulos (bib0018) 2016; 28
Parreño, Alvarez-Valdes (bib0037) 2021
Gilmore, Gomory (bib0020) 1966; 14
Beasley (bib0004) 1985; 33
Russo, Boccia, Sforza, Sterle (bib0041) 2020; 27
Martin, Morabito, Munari (bib0032) 2020; 115
Wäscher, Haußner, Schumann (bib0048) 2007; 183
Martello, Monaci, Vigo (bib0030) 2003; 15
Russo, Sforza, Sterle (bib0042) 2013; 145
Martin, Birgin, Lobato, Morabito, Munari (bib0031) 2020; 27
Fayard, Hifi, Zissimopoulos (bib0014) 1998; 49
Fekete S.P., Schepers J.. On more-dimensional packing iii: Exact algorithms. 2000.
Hifi (bib0023) 2001; 18
Malaguti, Durán, Toth (bib0029) 2014; 47
Cung, Hifi, Le Cun (bib0010) 2000; 7
Puchinger, Raidl (bib0040) 2007; 183
Egeblad, Pisinger (bib0013) 2009; 36
Morabito, Arenales, Arcaro (bib0035) 1992; 58
Dolatabadi, Lodi, Monaci (bib0011) 2012; 39
Velasco, Uchoa (bib0046) 2019; 272
Pisinger, Sigurd (bib0038) 2007; 19
Christofides, Hadjiconstantinou (bib0006) 1995; 83
Wang (bib0047) 1983; 31
Hifi, Roucairol (bib0025) 2001; 5
Martin, Morabito, Munari (bib0033) 2021; 72
Christofides, Whitlock (bib0007) 1977; 25
Clautiaux, Sadykov, Vanderbeck, Viaud (bib0009) 2018
Fekete, Schepers, van der (bib0017) 2007; 55
Lodi, Monaci (bib0028) 2003; 94
Silva, Alvelos, de Carvalho (bib0045) 2010; 205
rep=rep1&type=pdf.
Iori, de Lima, Martello, Miyazawa, Monaci (bib0026) 2021; 289
Fekete, Schepers (bib0015) 1997
Arenales, Morabito (bib0001) 1995; 84
Hifi, M’Hallah (bib0024) 2005; 53
Gilmore, Gomory (bib0019) 1965; 13
He, Huang, Jin (bib0022) 2012; 39
Pisinger, Sigurd (bib0012) 2007; 19
Libralesso, Fontan (bib0027) 2020
Scheithauer, Terno (bib0044) 1993; 28
Baldacci, Boschetti (bib0002) 2007; 183
Beasley (bib0003) 1985; 36
Hifi (10.1016/j.omega.2022.102738_bib0024) 2005; 53
Fayard (10.1016/j.omega.2022.102738_bib0014) 1998; 49
Furini (10.1016/j.omega.2022.102738_bib0018) 2016; 28
Pisinger (10.1016/j.omega.2022.102738_bib0038) 2007; 19
Silva (10.1016/j.omega.2022.102738_bib0045) 2010; 205
Christofides (10.1016/j.omega.2022.102738_bib0006) 1995; 83
Christofides (10.1016/j.omega.2022.102738_bib0007) 1977; 25
Wäscher (10.1016/j.omega.2022.102738_bib0048) 2007; 183
Baldacci (10.1016/j.omega.2022.102738_bib0002) 2007; 183
Puchinger (10.1016/j.omega.2022.102738_bib0040) 2007; 183
Pisinger (10.1016/j.omega.2022.102738_bib0012) 2007; 19
Hifi (10.1016/j.omega.2022.102738_bib0025) 2001; 5
Caprara (10.1016/j.omega.2022.102738_bib0005) 2004; 32
Fekete (10.1016/j.omega.2022.102738_bib0017) 2007; 55
Malaguti (10.1016/j.omega.2022.102738_bib0029) 2014; 47
Cintra (10.1016/j.omega.2022.102738_bib0008) 2008; 191
Martello (10.1016/j.omega.2022.102738_bib0030) 2003; 15
Martin (10.1016/j.omega.2022.102738_bib0033) 2021; 72
Dolatabadi (10.1016/j.omega.2022.102738_bib0011) 2012; 39
Beasley (10.1016/j.omega.2022.102738_bib0003) 1985; 36
Wang (10.1016/j.omega.2022.102738_bib0047) 1983; 31
Russo (10.1016/j.omega.2022.102738_bib0042) 2013; 145
Hadjiconstantinou (10.1016/j.omega.2022.102738_bib0021) 1995; 83
Hifi (10.1016/j.omega.2022.102738_bib0023) 2001; 18
Libralesso (10.1016/j.omega.2022.102738_sbref0027) 2020
Velasco (10.1016/j.omega.2022.102738_bib0046) 2019; 272
Egeblad (10.1016/j.omega.2022.102738_bib0013) 2009; 36
Martin (10.1016/j.omega.2022.102738_bib0031) 2020; 27
10.1016/j.omega.2022.102738_bib0016
Oliveira (10.1016/j.omega.2022.102738_bib0036) 1990; 44
Polyakovskiy (10.1016/j.omega.2022.102738_bib0039) 2021; 102
Gilmore (10.1016/j.omega.2022.102738_bib0019) 1965; 13
Russo (10.1016/j.omega.2022.102738_bib0041) 2020; 27
Arenales (10.1016/j.omega.2022.102738_sbref0001) 1995; 84
Martin (10.1016/j.omega.2022.102738_bib0032) 2020; 115
Morabito (10.1016/j.omega.2022.102738_bib0035) 1992; 58
Cung (10.1016/j.omega.2022.102738_bib0010) 2000; 7
Clautiaux (10.1016/j.omega.2022.102738_bib0009) 2018
Lodi (10.1016/j.omega.2022.102738_bib0028) 2003; 94
Scheithauer (10.1016/j.omega.2022.102738_bib0044) 1993; 28
Beasley (10.1016/j.omega.2022.102738_bib0004) 1985; 33
Russo (10.1016/j.omega.2022.102738_bib0043) 2014; 50
Messaoud (10.1016/j.omega.2022.102738_bib0034) 2008; 191
Parreño (10.1016/j.omega.2022.102738_bib0037) 2021
Gilmore (10.1016/j.omega.2022.102738_bib0020) 1966; 14
He (10.1016/j.omega.2022.102738_bib0022) 2012; 39
Fekete (10.1016/j.omega.2022.102738_bib0015) 1997
Iori (10.1016/j.omega.2022.102738_bib0026) 2021; 289
References_xml – volume: 36
  start-page: 297
  year: 1985
  end-page: 306
  ident: bib0003
  article-title: Algorithms for unconstrained two-dimensional guillotine cutting
  publication-title: Journal of the Operational Research Society
– volume: 83
  start-page: 39
  year: 1995
  end-page: 56
  ident: bib0021
  article-title: An exact algorithm for general, orthogonal, two-dimensional knapsack problems
  publication-title: European Journal of Operational Research
– volume: 102
  start-page: 102311
  year: 2021
  ident: bib0039
  article-title: Just-in-time two-dimensional bin packing
  publication-title: Omega
– volume: 58
  start-page: 263
  year: 1992
  end-page: 271
  ident: bib0035
  article-title: An and—or-graph approach for two-dimensional cutting problems
  publication-title: European Journal of Operational Research
– volume: 32
  start-page: 5
  year: 2004
  end-page: 14
  ident: bib0005
  article-title: On the two-dimensional knapsack problem
  publication-title: Operations Research Letters
– volume: 115
  start-page: 104851
  year: 2020
  ident: bib0032
  article-title: A bottom-up packing approach for modeling the constrained two-dimensional guillotine placement problem
  publication-title: Computers & Operations Research
– volume: 39
  start-page: 48
  year: 2012
  end-page: 53
  ident: bib0011
  article-title: Exact algorithms for the two-dimensional guillotine knapsack
  publication-title: Computers and Operations Research
– volume: 19
  start-page: 36
  year: 2007
  end-page: 51
  ident: bib0038
  article-title: Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem
  publication-title: INFORMS Journal on Computing
– year: 2018
  ident: bib0009
  article-title: Combining dynamic programming with filtering to solve a four-stage two-dimensional guillotine-cut bounded knapsack problem
  publication-title: Discrete Optimization
– start-page: 102432
  year: 2021
  ident: bib0037
  article-title: Mathematical models for a cutting problem in the glass manufacturing industry
  publication-title: Omega
– volume: 31
  start-page: 573
  year: 1983
  end-page: 586
  ident: bib0047
  article-title: Two algorithms for constrained two-dimensional cutting stock problems
  publication-title: Operations Research
– volume: 13
  start-page: 94
  year: 1965
  end-page: 120
  ident: bib0019
  article-title: Multistage cutting stock problems of two and more dimensions
  publication-title: Operations Research
– volume: 36
  start-page: 1026
  year: 2009
  end-page: 1049
  ident: bib0013
  article-title: Heuristic approaches for the two-and three-dimensional knapsack packing problem
  publication-title: Computers & Operations Research
– volume: 84
  start-page: 599
  year: 1995
  end-page: 617
  ident: bib0001
  article-title: An andor-graph approach to the solution of two-dimensional non-guillotine cutting problems
  publication-title: European Journal of Operational Research
– volume: 289
  start-page: 399
  year: 2021
  end-page: 415
  ident: bib0026
  article-title: Exact solution techniques for two-dimensional cutting and packing
  publication-title: European Journal of Operational Research
– year: 2020
  ident: bib0027
  article-title: An anytime tree search algorithm for the 2018 ROADEF/EURO challenge glass cutting problem
  publication-title: CoRR
– volume: 72
  start-page: 2755
  year: 2021
  end-page: 2769
  ident: bib0033
  article-title: A top-down cutting approach for modeling the constrained two- and three-dimensional guillotine cutting problems
  publication-title: Journal of the Operational Research Society
– volume: 205
  start-page: 699
  year: 2010
  end-page: 708
  ident: bib0045
  article-title: An integer programming model for two-and three-stage two-dimensional cutting stock problems
  publication-title: European Journal of Operational Research
– volume: 94
  start-page: 257
  year: 2003
  end-page: 278
  ident: bib0028
  article-title: Integer linear programming models for 2-staged two-dimensional knapsack problems
  publication-title: Mathematical Programming
– volume: 183
  start-page: 1136
  year: 2007
  end-page: 1149
  ident: bib0002
  article-title: A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem
  publication-title: European Journal of Operational Research
– volume: 183
  start-page: 1109
  year: 2007
  end-page: 1130
  ident: bib0048
  article-title: An improved typology of cutting and packing problems
  publication-title: European Journal of Operational Research
– volume: 28
  start-page: 736
  year: 2016
  end-page: 751
  ident: bib0018
  article-title: Modeling two-dimensional guillotine cutting problems via integer programming
  publication-title: INFORMS Journal on Computing
– volume: 50
  start-page: 97
  year: 2014
  end-page: 114
  ident: bib0043
  article-title: An exact dynamic programming algorithm for large-scale unconstrained two-dimensional guillotine cutting problems
  publication-title: Computers & Operations Research
– volume: 19
  start-page: 36
  year: 2007
  end-page: 51
  ident: bib0012
  article-title: Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem
  publication-title: INFORMS Journal on Computing
– volume: 15
  start-page: 310
  year: 2003
  end-page: 319
  ident: bib0030
  article-title: An exact approach to the strip-packing problem
  publication-title: INFORMS Journal on Computing
– year: 1997
  ident: bib0015
  article-title: A new exact algorithm for general orthogonal d-dimensional knapsack problems
  publication-title: Algorithms — ESA ’97
– volume: 183
  start-page: 1304
  year: 2007
  end-page: 1327
  ident: bib0040
  article-title: Models and algorithms for three-stage two-dimensional bin packing
  publication-title: European Journal of Operational Research
– volume: 191
  start-page: 112
  year: 2008
  end-page: 126
  ident: bib0034
  article-title: Characterization and modelling of guillotine constraints
  publication-title: European Journal of Operational Research
– volume: 28
  start-page: 63
  year: 1993
  end-page: 84
  ident: bib0044
  article-title: Modeling of packing problems
  publication-title: Optimization
– volume: 47
  start-page: 99
  year: 2014
  end-page: 115
  ident: bib0029
  article-title: Approaches to real world two-dimensional cutting problems
  publication-title: Omega
– volume: 44
  start-page: 256
  year: 1990
  end-page: 266
  ident: bib0036
  article-title: An improved version of Wang’s algorithm for two-dimensional cutting problems
  publication-title: European Journal of Operational Research
– volume: 83
  start-page: 21
  year: 1995
  end-page: 38
  ident: bib0006
  article-title: An exact algorithm for orthogonal 2-d cutting problems using guillotine cuts
  publication-title: European Journal of Operational Research
– volume: 49
  start-page: 1270
  year: 1998
  end-page: 1277
  ident: bib0014
  article-title: An efficient approach for large-scale two-dimensional guillotine cutting stock problems
  publication-title: Journal of the Operational Research Society
– volume: 39
  start-page: 1355
  year: 2012
  end-page: 1363
  ident: bib0022
  article-title: An efficient deterministic heuristic for two-dimensional rectangular packing
  publication-title: Computers & Operations Research
– volume: 145
  start-page: 451
  year: 2013
  end-page: 462
  ident: bib0042
  article-title: An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem
  publication-title: International Journal of Production Economics
– volume: 18
  start-page: 63
  year: 2001
  end-page: 88
  ident: bib0023
  article-title: Exact algorithms for large-scale unconstrained two and three staged cutting problems
  publication-title: Computational Optimization and Applications
– volume: 27
  start-page: 794
  year: 2020
  end-page: 834
  ident: bib0041
  article-title: Constrained two-dimensional guillotine cutting problem: upper-bound review and categorization
  publication-title: International Transactions in Operational Research
– volume: 53
  start-page: 140
  year: 2005
  end-page: 150
  ident: bib0024
  article-title: An exact algorithm for constrained two-dimensional two-staged cutting problems
  publication-title: Operations Research
– volume: 272
  start-page: 106
  year: 2019
  end-page: 120
  ident: bib0046
  article-title: Improved state space relaxation for constrained two-dimensional guillotine cutting problems
  publication-title: European Journal of Operational Research
– volume: 55
  start-page: 569
  year: 2007
  end-page: 587
  ident: bib0017
  article-title: An exact algorithm for higher-dimensional orthogonal packing
  publication-title: Operations Research
– volume: 33
  start-page: 49
  year: 1985
  end-page: 64
  ident: bib0004
  article-title: An exact two-dimensional non-guillotine cutting tree search procedure
  publication-title: Operations Research
– reference: Fekete S.P., Schepers J.. On more-dimensional packing iii: Exact algorithms. 2000.
– volume: 5
  start-page: 465
  year: 2001
  end-page: 494
  ident: bib0025
  article-title: Approximate and exact algorithms for constrained (un) weighted two-dimensional two-staged cutting stock problems
  publication-title: Journal of Combinatorial Optimization
– volume: 25
  start-page: 30
  year: 1977
  end-page: 44
  ident: bib0007
  article-title: An algorithm for two-dimensional cutting problems
  publication-title: Operations Research
– volume: 7
  start-page: 185
  year: 2000
  end-page: 210
  ident: bib0010
  article-title: Constrained two-dimensional cutting stock problems a best-first branch-and-bound algorithm
  publication-title: International Transactions in Operational Research
– reference: &rep=rep1&type=pdf.
– volume: 14
  start-page: 1045
  year: 1966
  end-page: 1074
  ident: bib0020
  article-title: The theory and computation of knapsack functions
  publication-title: Operations Research
– volume: 191
  start-page: 61
  year: 2008
  end-page: 85
  ident: bib0008
  article-title: Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation
  publication-title: European Journal of Operational Research
– volume: 27
  start-page: 767
  year: 2020
  end-page: 793
  ident: bib0031
  article-title: Models for the two-dimensional rectangular single large placement problem with guillotine cuts and constrained pattern
  publication-title: International Transactions in Operational Research
– volume: 83
  start-page: 39
  issue: 1
  year: 1995
  ident: 10.1016/j.omega.2022.102738_bib0021
  article-title: An exact algorithm for general, orthogonal, two-dimensional knapsack problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(93)E0278-6
– volume: 183
  start-page: 1304
  issue: 3
  year: 2007
  ident: 10.1016/j.omega.2022.102738_bib0040
  article-title: Models and algorithms for three-stage two-dimensional bin packing
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.11.064
– volume: 72
  start-page: 2755
  issue: 12
  year: 2021
  ident: 10.1016/j.omega.2022.102738_bib0033
  article-title: A top-down cutting approach for modeling the constrained two- and three-dimensional guillotine cutting problems
  publication-title: Journal of the Operational Research Society
  doi: 10.1080/01605682.2020.1813640
– volume: 191
  start-page: 112
  issue: 1
  year: 2008
  ident: 10.1016/j.omega.2022.102738_bib0034
  article-title: Characterization and modelling of guillotine constraints
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.08.029
– start-page: 102432
  year: 2021
  ident: 10.1016/j.omega.2022.102738_bib0037
  article-title: Mathematical models for a cutting problem in the glass manufacturing industry
  publication-title: Omega
  doi: 10.1016/j.omega.2021.102432
– volume: 50
  start-page: 97
  year: 2014
  ident: 10.1016/j.omega.2022.102738_bib0043
  article-title: An exact dynamic programming algorithm for large-scale unconstrained two-dimensional guillotine cutting problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2014.04.001
– volume: 53
  start-page: 140
  issue: 1
  year: 2005
  ident: 10.1016/j.omega.2022.102738_bib0024
  article-title: An exact algorithm for constrained two-dimensional two-staged cutting problems
  publication-title: Operations Research
  doi: 10.1287/opre.1040.0154
– volume: 115
  start-page: 104851
  year: 2020
  ident: 10.1016/j.omega.2022.102738_bib0032
  article-title: A bottom-up packing approach for modeling the constrained two-dimensional guillotine placement problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2019.104851
– volume: 36
  start-page: 297
  issue: 4
  year: 1985
  ident: 10.1016/j.omega.2022.102738_bib0003
  article-title: Algorithms for unconstrained two-dimensional guillotine cutting
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.1985.51
– volume: 289
  start-page: 399
  issue: 2
  year: 2021
  ident: 10.1016/j.omega.2022.102738_bib0026
  article-title: Exact solution techniques for two-dimensional cutting and packing
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.06.050
– volume: 272
  start-page: 106
  issue: 1
  year: 2019
  ident: 10.1016/j.omega.2022.102738_bib0046
  article-title: Improved state space relaxation for constrained two-dimensional guillotine cutting problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.06.016
– volume: 39
  start-page: 1355
  issue: 7
  year: 2012
  ident: 10.1016/j.omega.2022.102738_bib0022
  article-title: An efficient deterministic heuristic for two-dimensional rectangular packing
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.08.005
– volume: 183
  start-page: 1109
  issue: 3
  year: 2007
  ident: 10.1016/j.omega.2022.102738_bib0048
  article-title: An improved typology of cutting and packing problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.12.047
– volume: 44
  start-page: 256
  issue: 2
  year: 1990
  ident: 10.1016/j.omega.2022.102738_bib0036
  article-title: An improved version of Wang’s algorithm for two-dimensional cutting problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(90)90361-E
– ident: 10.1016/j.omega.2022.102738_bib0016
– volume: 47
  start-page: 99
  year: 2014
  ident: 10.1016/j.omega.2022.102738_bib0029
  article-title: Approaches to real world two-dimensional cutting problems
  publication-title: Omega
  doi: 10.1016/j.omega.2013.08.007
– volume: 19
  start-page: 36
  issue: 1
  year: 2007
  ident: 10.1016/j.omega.2022.102738_bib0038
  article-title: Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1060.0181
– volume: 36
  start-page: 1026
  issue: 4
  year: 2009
  ident: 10.1016/j.omega.2022.102738_bib0013
  article-title: Heuristic approaches for the two-and three-dimensional knapsack packing problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2007.12.004
– volume: 19
  start-page: 36
  issue: 1
  year: 2007
  ident: 10.1016/j.omega.2022.102738_bib0012
  article-title: Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1060.0181
– volume: 84
  start-page: 599
  issue: 3
  year: 1995
  ident: 10.1016/j.omega.2022.102738_sbref0001
  article-title: An andor-graph approach to the solution of two-dimensional non-guillotine cutting problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(95)00026-M
– volume: 32
  start-page: 5
  issue: 1
  year: 2004
  ident: 10.1016/j.omega.2022.102738_bib0005
  article-title: On the two-dimensional knapsack problem
  publication-title: Operations Research Letters
  doi: 10.1016/S0167-6377(03)00057-9
– volume: 13
  start-page: 94
  issue: 1
  year: 1965
  ident: 10.1016/j.omega.2022.102738_bib0019
  article-title: Multistage cutting stock problems of two and more dimensions
  publication-title: Operations Research
  doi: 10.1287/opre.13.1.94
– volume: 58
  start-page: 263
  issue: 2
  year: 1992
  ident: 10.1016/j.omega.2022.102738_bib0035
  article-title: An and—or-graph approach for two-dimensional cutting problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(92)90212-R
– volume: 5
  start-page: 465
  issue: 4
  year: 2001
  ident: 10.1016/j.omega.2022.102738_bib0025
  article-title: Approximate and exact algorithms for constrained (un) weighted two-dimensional two-staged cutting stock problems
  publication-title: Journal of Combinatorial Optimization
  doi: 10.1023/A:1011628809603
– volume: 15
  start-page: 310
  issue: 3
  year: 2003
  ident: 10.1016/j.omega.2022.102738_bib0030
  article-title: An exact approach to the strip-packing problem
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.15.3.310.16082
– volume: 28
  start-page: 736
  issue: 4
  year: 2016
  ident: 10.1016/j.omega.2022.102738_bib0018
  article-title: Modeling two-dimensional guillotine cutting problems via integer programming
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.2016.0710
– volume: 31
  start-page: 573
  issue: 3
  year: 1983
  ident: 10.1016/j.omega.2022.102738_bib0047
  article-title: Two algorithms for constrained two-dimensional cutting stock problems
  publication-title: Operations Research
  doi: 10.1287/opre.31.3.573
– volume: 145
  start-page: 451
  issue: 2
  year: 2013
  ident: 10.1016/j.omega.2022.102738_bib0042
  article-title: An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2013.04.031
– volume: 83
  start-page: 21
  issue: 1
  year: 1995
  ident: 10.1016/j.omega.2022.102738_bib0006
  article-title: An exact algorithm for orthogonal 2-d cutting problems using guillotine cuts
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(93)E0277-5
– volume: 55
  start-page: 569
  issue: 3
  year: 2007
  ident: 10.1016/j.omega.2022.102738_bib0017
  article-title: An exact algorithm for higher-dimensional orthogonal packing
  publication-title: Operations Research
  doi: 10.1287/opre.1060.0369
– volume: 49
  start-page: 1270
  issue: 12
  year: 1998
  ident: 10.1016/j.omega.2022.102738_bib0014
  article-title: An efficient approach for large-scale two-dimensional guillotine cutting stock problems
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2600638
– volume: 102
  start-page: 102311
  year: 2021
  ident: 10.1016/j.omega.2022.102738_bib0039
  article-title: Just-in-time two-dimensional bin packing
  publication-title: Omega
  doi: 10.1016/j.omega.2020.102311
– year: 1997
  ident: 10.1016/j.omega.2022.102738_bib0015
  article-title: A new exact algorithm for general orthogonal d-dimensional knapsack problems
– volume: 27
  start-page: 767
  issue: 2
  year: 2020
  ident: 10.1016/j.omega.2022.102738_bib0031
  article-title: Models for the two-dimensional rectangular single large placement problem with guillotine cuts and constrained pattern
  publication-title: International Transactions in Operational Research
  doi: 10.1111/itor.12703
– volume: 7
  start-page: 185
  issue: 3
  year: 2000
  ident: 10.1016/j.omega.2022.102738_bib0010
  article-title: Constrained two-dimensional cutting stock problems a best-first branch-and-bound algorithm
  publication-title: International Transactions in Operational Research
– volume: 18
  start-page: 63
  issue: 1
  year: 2001
  ident: 10.1016/j.omega.2022.102738_bib0023
  article-title: Exact algorithms for large-scale unconstrained two and three staged cutting problems
  publication-title: Computational Optimization and Applications
  doi: 10.1023/A:1008743711658
– volume: 25
  start-page: 30
  issue: 1
  year: 1977
  ident: 10.1016/j.omega.2022.102738_bib0007
  article-title: An algorithm for two-dimensional cutting problems
  publication-title: Operations Research
  doi: 10.1287/opre.25.1.30
– year: 2018
  ident: 10.1016/j.omega.2022.102738_bib0009
  article-title: Combining dynamic programming with filtering to solve a four-stage two-dimensional guillotine-cut bounded knapsack problem
  publication-title: Discrete Optimization
  doi: 10.1016/j.disopt.2018.02.003
– volume: 14
  start-page: 1045
  issue: 6
  year: 1966
  ident: 10.1016/j.omega.2022.102738_bib0020
  article-title: The theory and computation of knapsack functions
  publication-title: Operations Research
  doi: 10.1287/opre.14.6.1045
– volume: 27
  start-page: 794
  issue: 2
  year: 2020
  ident: 10.1016/j.omega.2022.102738_bib0041
  article-title: Constrained two-dimensional guillotine cutting problem: upper-bound review and categorization
  publication-title: International Transactions in Operational Research
  doi: 10.1111/itor.12687
– volume: 205
  start-page: 699
  issue: 3
  year: 2010
  ident: 10.1016/j.omega.2022.102738_bib0045
  article-title: An integer programming model for two-and three-stage two-dimensional cutting stock problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2010.01.039
– volume: 33
  start-page: 49
  issue: 1
  year: 1985
  ident: 10.1016/j.omega.2022.102738_bib0004
  article-title: An exact two-dimensional non-guillotine cutting tree search procedure
  publication-title: Operations Research
  doi: 10.1287/opre.33.1.49
– volume: 28
  start-page: 63
  issue: 1
  year: 1993
  ident: 10.1016/j.omega.2022.102738_bib0044
  article-title: Modeling of packing problems
  publication-title: Optimization
  doi: 10.1080/02331939308843904
– year: 2020
  ident: 10.1016/j.omega.2022.102738_sbref0027
  article-title: An anytime tree search algorithm for the 2018 ROADEF/EURO challenge glass cutting problem
  publication-title: CoRR
– volume: 94
  start-page: 257
  issue: 2-3
  year: 2003
  ident: 10.1016/j.omega.2022.102738_bib0028
  article-title: Integer linear programming models for 2-staged two-dimensional knapsack problems
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-002-0319-9
– volume: 183
  start-page: 1136
  issue: 3
  year: 2007
  ident: 10.1016/j.omega.2022.102738_bib0002
  article-title: A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.11.060
– volume: 191
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.omega.2022.102738_bib0008
  article-title: Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.08.007
– volume: 39
  start-page: 48
  issue: 1
  year: 2012
  ident: 10.1016/j.omega.2022.102738_bib0011
  article-title: Exact algorithms for the two-dimensional guillotine knapsack
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2010.12.018
SSID ssj0001803
Score 2.4463744
Snippet •A general MIP model for non-guillotine and guillotine rectangular cutting problems•Allows for the incorporation of many and diverse cutting technological...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102738
SubjectTerms cutting
mixed-integer linear programming model
non-guillotine and guillotine cutting and packing problems
tree search
Title The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems
URI https://dx.doi.org/10.1016/j.omega.2022.102738
Volume 114
WOSCitedRecordID wos000874774300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001803
  issn: 0305-0483
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcpyh6Kboi6QYeemtliFrJ3oIgQVsESYG6hW8CRVGGAlkKvMFfkf_J33W4SKbbwGgOvQiWwKEozRM5Hr6ZQehDXKQE1pnQiwpVwiwXvpcn0vegNYsjAp-fLtr36zy9uKCTCfs-GNx2sTDrOm0autmw6_-qargGylahs_dQd98pXIDfoHQ4gtrh-M-KP6tbrvjM3slqaavdmKjmqckyrbcMSpULUwVOzaqNLDydOELOO8bWTPkQtKRmIjZt401XVV23S2WXKnnnVE2byvGpKK1iZajUtlTNwjV_L2dyynWG040h1fduiB9VveaGZ7boV4rLGubias7tVoXZ1P9oXd-tK9q1Gld82m5B1BSmWPS55Coxg-viCELHxWFDuxTDMDIVb_ppm0TOxEt0Xp471wTjnrgateoRR9B_MNq23s3A_cfK2PMVOyrcVaY7yVQnmenkAToI0pjRITo4_no6-dabAYT6pja3HXuX8kqTC_8ay91mkWPqjJ-iJ_Y_Cj422HqGBrJ5jh51IRIv0A1ADO9ADGugfMYcW4BheN-4AxjeARh2AGbkMGAB7wJMyzunDsCwBRjuAPYS_Tw7HZ988WxdD0-EEV16IqFhQhmB5-YB43nBg5L7UgWN5UFAJfFZGUtJpAxLxosIbFjhi5QWcUnyQLDwFRrCoOQhwqkoE0GpTCLJIlgrudrlIGHuk8JPZRofoaB7rZmwSe9V7ZU626PSI_SpF7o2OV_2N086fWXWbDXmaAYI3Cf4-n73eYMebz-Ot2i4nK_kO_RQrJfVYv7ewu83YRy9CQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Floating-Cuts+model%3A+a+general+and+flexible+mixed-integer+programming+model+for+non-guillotine+and+guillotine+rectangular+cutting+problems&rft.jtitle=Omega+%28Oxford%29&rft.au=Silva%2C+Elsa&rft.au=Oliveira%2C+Jos%C3%A9+Fernando&rft.au=Silveira%2C+Tiago&rft.au=Mundim%2C+Leandro&rft.date=2023-01-01&rft.issn=0305-0483&rft.volume=114&rft.spage=102738&rft_id=info:doi/10.1016%2Fj.omega.2022.102738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_omega_2022_102738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0483&client=summon