Distributed Bayesian Probabilistic Matrix Factorization
Using the matrix factorization technique in machine learning is very common mainly in areas like rec-ommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used on...
Gespeichert in:
| Veröffentlicht in: | Procedia computer science Jg. 108; S. 1030 - 1039 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
2017
|
| Schlagworte: | |
| ISSN: | 1877-0509, 1877-0509 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Using the matrix factorization technique in machine learning is very common mainly in areas like rec-ommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used on large scale data because of the prohibitive cost. In this paper, we propose a distributed high-performance parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We show by using efficient load balancing using work stealing on a single node, and by using asynchronous communication in the distributed version we beat state of the art implementations. |
|---|---|
| ISSN: | 1877-0509 1877-0509 |
| DOI: | 10.1016/j.procs.2017.05.009 |