Distributed Bayesian Probabilistic Matrix Factorization

Using the matrix factorization technique in machine learning is very common mainly in areas like rec-ommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 108; s. 1030 - 1039
Hlavní autoři: Vander Aa, Tom, Chakroun, Imen, Haber, Tom
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2017
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Using the matrix factorization technique in machine learning is very common mainly in areas like rec-ommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used on large scale data because of the prohibitive cost. In this paper, we propose a distributed high-performance parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We show by using efficient load balancing using work stealing on a single node, and by using asynchronous communication in the distributed version we beat state of the art implementations.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2017.05.009