A Class of Communication-avoiding Algorithms for Solving General Dense Linear Systems on CPU/GPU Parallel Machines

We study several solvers for the solution of general linear systems where the main objective is to reduce the communication overhead due to pivoting. We first describe two existing algorithms for the LU factorization on hybrid CPU/GPU architectures. The first one is based on partial pivoting and the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 9; s. 17 - 26
Hlavní autoři: Baboulin, Marc, Donfack, Simplice, Dongarra, Jack, Grigori, Laura, Rémy, Adrien, Tomov, Stanimire
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2012
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study several solvers for the solution of general linear systems where the main objective is to reduce the communication overhead due to pivoting. We first describe two existing algorithms for the LU factorization on hybrid CPU/GPU architectures. The first one is based on partial pivoting and the second uses a random preconditioning of the original matrix to avoid pivoting. Then we introduce a solver where the panel factorization is performed using a communication-avoiding pivoting heuristic while the update of the trailing submatrix is performed by the GPU. We provide performance comparisons and tests on accuracy for these solvers on current hybrid multicore-GPU parallel machines.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2012.04.003