An improved particle swarm optimization algorithm for dynamic job shop scheduling problems with random job arrivals

Random job arrivals that happen frequently in manufacturing practice may create a need for dynamic scheduling. This paper considers an issue of how to reschedule the randomly arrived new jobs to pursue both performance and stability of a schedule in a job shop. Firstly, a mixed integer programming m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Swarm and evolutionary computation Jg. 51; S. 100594
Hauptverfasser: Wang, Zhen, Zhang, Jihui, Yang, Shengxiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2019
Schlagworte:
ISSN:2210-6502
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Random job arrivals that happen frequently in manufacturing practice may create a need for dynamic scheduling. This paper considers an issue of how to reschedule the randomly arrived new jobs to pursue both performance and stability of a schedule in a job shop. Firstly, a mixed integer programming model is established to minimize three objectives, including the discontinuity rate of new jobs during the processing, the makespan deviation of initial schedule, and the sequence deviation on machines. Secondly, four match-up strategies from references are modified to determine the rescheduling horizon. Once new jobs arrive, the rescheduling process is immediately triggered with ongoing operations remain. The ongoing operations are treated as machine unavailable constraints (MUC) in the rescheduling horizon. Then, a particle swarm optimization (PSO) algorithm with improvements is proposed to solve the dynamic job shop scheduling problem. Improvement strategies consist of a modified decoding scheme considering MUC, a population initialization approach by designing a new transformation mechanism, and a novel particle movement method by introducing position changes and a random inertia weight. Lastly, extensive experiments are conducted on several instances. The experiments results show that the modified rescheduling strategies are statistically and significantly better than the compared strategies. Moreover, comparative studies with five variants of PSO algorithm and three state-of-the-art meta-heuristics demonstrate the high performance of the improved PSO algorithm.
AbstractList Random job arrivals that happen frequently in manufacturing practice may create a need for dynamic scheduling. This paper considers an issue of how to reschedule the randomly arrived new jobs to pursue both performance and stability of a schedule in a job shop. Firstly, a mixed integer programming model is established to minimize three objectives, including the discontinuity rate of new jobs during the processing, the makespan deviation of initial schedule, and the sequence deviation on machines. Secondly, four match-up strategies from references are modified to determine the rescheduling horizon. Once new jobs arrive, the rescheduling process is immediately triggered with ongoing operations remain. The ongoing operations are treated as machine unavailable constraints (MUC) in the rescheduling horizon. Then, a particle swarm optimization (PSO) algorithm with improvements is proposed to solve the dynamic job shop scheduling problem. Improvement strategies consist of a modified decoding scheme considering MUC, a population initialization approach by designing a new transformation mechanism, and a novel particle movement method by introducing position changes and a random inertia weight. Lastly, extensive experiments are conducted on several instances. The experiments results show that the modified rescheduling strategies are statistically and significantly better than the compared strategies. Moreover, comparative studies with five variants of PSO algorithm and three state-of-the-art meta-heuristics demonstrate the high performance of the improved PSO algorithm.
ArticleNumber 100594
Author Yang, Shengxiang
Wang, Zhen
Zhang, Jihui
Author_xml – sequence: 1
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: Institute of Complexity Science, College of Automation, Qingdao University, Qingdao, 266071, China
– sequence: 2
  givenname: Jihui
  surname: Zhang
  fullname: Zhang, Jihui
  email: zhangjihui@qdu.edu.cn
  organization: Institute of Complexity Science, College of Automation, Qingdao University, Qingdao, 266071, China
– sequence: 3
  givenname: Shengxiang
  surname: Yang
  fullname: Yang, Shengxiang
  organization: Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, LE1 9BH, United Kingdom
BookMark eNqFkL1uwjAUhT1QqZTyBF38AqH-IQkeOiDUPwmpSztbxnbgRrEd2S6IPn0DdOrQ3uVIV-c70jk3aOSDtwjdUTKjhFb37Swd7D7MGKFi-JBSzEdozBglRVUSdo2mKbVkuIqwshRjlJYeg-tj2FuDexUz6M7idFDR4dBncPClMgSPVbcNEfLO4SZEbI5eOdC4DRucdqHHSe-s-ezAb_EQtumsS_gw2HFU3gR3NqoYYa-6dIuumkHs9Ecn6OPp8X31Uqzfnl9Xy3Wh-XyRC00rwSkriW6IYQtOdN0wpgVXorSaKVZVtFG1IQ1XfGF1pTmp57QWipaWig2fIHHJ1TGkFG0jNeRzmxwVdJISeRpNtvI8mjyNJi-jDSz_xfYRnIrHf6iHC2WHWnuwUSYN1mtrIFqdpQnwJ_8NxMOONQ
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123970
crossref_primary_10_1007_s10115_025_02538_8
crossref_primary_10_1007_s10696_024_09540_2
crossref_primary_10_3390_machines10070573
crossref_primary_10_1038_s41598_024_79593_8
crossref_primary_10_1109_TASE_2025_3587235
crossref_primary_10_1002_amp2_10119
crossref_primary_10_1016_j_cor_2024_106532
crossref_primary_10_1016_j_engappai_2025_111799
crossref_primary_10_1007_s40747_024_01365_8
crossref_primary_10_1016_j_sysarc_2022_102617
crossref_primary_10_3390_jmse11050892
crossref_primary_10_3390_s20247007
crossref_primary_10_1016_j_jclepro_2021_126489
crossref_primary_10_3390_rs16122184
crossref_primary_10_1016_j_ifacol_2022_10_083
crossref_primary_10_1016_j_jmsy_2024_01_002
crossref_primary_10_1016_j_cor_2022_105731
crossref_primary_10_1016_j_jclepro_2021_126093
crossref_primary_10_1109_TCYB_2022_3151855
crossref_primary_10_1016_j_eswa_2025_129048
crossref_primary_10_1016_j_swevo_2023_101243
crossref_primary_10_1016_j_jmsy_2021_05_007
crossref_primary_10_1016_j_swevo_2020_100805
crossref_primary_10_1080_00207543_2024_2423807
crossref_primary_10_1007_s40815_025_02032_x
crossref_primary_10_1016_j_cie_2024_110295
crossref_primary_10_1109_TEVC_2023_3255246
crossref_primary_10_1177_1687814020985206
crossref_primary_10_1007_s10586_025_05303_2
crossref_primary_10_1016_j_swevo_2025_101979
crossref_primary_10_1016_j_swevo_2022_101131
crossref_primary_10_1016_j_engappai_2023_106636
crossref_primary_10_1111_exsy_13727
crossref_primary_10_1109_ACCESS_2020_3040345
crossref_primary_10_1016_j_physa_2023_128457
crossref_primary_10_1007_s12293_025_00449_3
crossref_primary_10_1155_2021_9951995
crossref_primary_10_1177_00202940241245241
crossref_primary_10_1080_02533839_2023_2194674
crossref_primary_10_1007_s00170_025_15453_7
crossref_primary_10_1016_j_cie_2025_111060
crossref_primary_10_1016_j_eswa_2022_119200
crossref_primary_10_1007_s10845_022_01940_1
crossref_primary_10_1007_s00170_023_11707_4
crossref_primary_10_1007_s13369_021_06317_9
crossref_primary_10_1007_s00170_021_07228_7
crossref_primary_10_3390_pr9060911
crossref_primary_10_1080_17445760_2022_2061484
crossref_primary_10_1109_ACCESS_2022_3188765
crossref_primary_10_1109_ACCESS_2024_3401080
crossref_primary_10_1109_TASE_2023_3271666
crossref_primary_10_1016_j_rcim_2025_103015
crossref_primary_10_3390_math10111873
crossref_primary_10_1007_s12065_024_00976_x
crossref_primary_10_3390_math11102336
crossref_primary_10_1016_j_engappai_2025_112168
crossref_primary_10_1016_j_swevo_2021_100867
crossref_primary_10_1016_j_cor_2023_106294
crossref_primary_10_1016_j_eswa_2023_120268
crossref_primary_10_1109_ACCESS_2021_3114712
crossref_primary_10_1016_j_eswa_2023_121993
crossref_primary_10_1016_j_cie_2023_109650
crossref_primary_10_1016_j_swevo_2023_101312
crossref_primary_10_1016_j_swevo_2025_102024
crossref_primary_10_1088_1757_899X_1125_1_012109
crossref_primary_10_1007_s10479_021_03998_1
crossref_primary_10_1016_j_eswa_2025_127989
crossref_primary_10_1109_TASE_2022_3210259
crossref_primary_10_1109_TEM_2023_3275569
crossref_primary_10_1016_j_ijpe_2020_107669
crossref_primary_10_3390_app14073026
crossref_primary_10_1016_j_engappai_2025_110431
crossref_primary_10_1016_j_swevo_2022_101029
crossref_primary_10_1016_j_cor_2024_106866
crossref_primary_10_1016_j_swevo_2021_100912
crossref_primary_10_1016_j_cor_2023_106442
crossref_primary_10_1016_j_cie_2025_111310
crossref_primary_10_1016_j_eswa_2023_122734
crossref_primary_10_1016_j_swevo_2024_101544
crossref_primary_10_1016_j_eswa_2025_128951
crossref_primary_10_1016_j_asoc_2022_108794
crossref_primary_10_3390_s21144836
crossref_primary_10_1016_j_swevo_2024_101660
crossref_primary_10_1145_3590163
crossref_primary_10_1016_j_engappai_2021_104207
crossref_primary_10_1080_0305215X_2024_2437004
crossref_primary_10_1016_j_swevo_2024_101658
crossref_primary_10_1109_ACCESS_2025_3579248
crossref_primary_10_1155_2021_3534210
crossref_primary_10_1016_j_compenvurbsys_2022_101850
crossref_primary_10_1080_0951192X_2023_2204475
crossref_primary_10_1016_j_cie_2023_109398
crossref_primary_10_1016_j_swevo_2022_101212
crossref_primary_10_1007_s10586_024_04803_x
crossref_primary_10_1007_s43069_025_00429_w
crossref_primary_10_1109_TEVC_2022_3199783
crossref_primary_10_1016_j_aei_2022_101776
crossref_primary_10_3389_fenrg_2023_1251335
crossref_primary_10_1080_23080477_2023_2187528
crossref_primary_10_1007_s10586_024_04970_x
crossref_primary_10_1016_j_cie_2025_111133
crossref_primary_10_3390_s21031019
crossref_primary_10_3390_math12203176
crossref_primary_10_1007_s12204_024_2763_7
Cites_doi 10.1016/j.cie.2017.09.005
10.1007/s10845-015-1121-x
10.1080/00207543.2012.748227
10.1016/j.jmsy.2013.03.004
10.1007/s10489-010-0215-6
10.1287/opre.8.4.487
10.1016/j.cie.2018.11.021
10.1080/002075497195074
10.1016/j.cirpj.2015.03.003
10.1111/itor.12199
10.1016/j.cie.2015.09.005
10.1109/TCYB.2018.2817240
10.1287/ijoc.6.2.154
10.1016/j.cirpj.2009.10.001
10.1016/j.knosys.2016.06.014
10.1016/j.cie.2016.03.011
10.1016/j.cie.2011.12.001
10.1016/0925-5273(93)90007-8
10.1007/s11432-018-9727-y
10.1080/0020754042000298520
10.1109/5326.885111
10.1016/j.asoc.2017.12.009
10.1287/mnsc.20.9.1264
10.1080/00207548208947763
10.1162/EVCO_r_00180
10.1057/jors.2009.2
10.1080/002075497195641
10.1007/s10845-017-1350-2
10.1007/s12599-019-00590-7
10.1016/S0377-2217(99)00311-2
10.1023/A:1022235519958
10.1016/0305-0483(90)90017-4
10.1109/4235.985692
10.1287/opre.1030.0101
10.1007/s10951-008-0090-8
10.1007/s00170-013-4765-8
10.1007/s10462-016-9471-0
10.1080/00207543.2011.571458
10.1007/s10845-017-1385-4
10.1080/00207543.2017.1285077
10.1016/j.eswa.2015.06.004
10.1080/05695557708975127
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2019.100594
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2019_100594
S2210650219302317
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c348t-c16931250cf0d2830c7f22c93a95ec2a2661fa7d0f3a38ec6c3074179a15e19b3
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500379000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Wed Nov 05 20:57:49 EST 2025
Tue Nov 18 22:32:41 EST 2025
Fri Feb 23 02:47:40 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords New job arrival
Dynamic job shop scheduling
Particle swarm optimization
Multi-objective problem
Match-up strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-c16931250cf0d2830c7f22c93a95ec2a2661fa7d0f3a38ec6c3074179a15e19b3
OpenAccessLink https://dora.dmu.ac.uk/handle/2086/18660
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2019_100594
crossref_primary_10_1016_j_swevo_2019_100594
elsevier_sciencedirect_doi_10_1016_j_swevo_2019_100594
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Swarm and evolutionary computation
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cakici, Mason, Fowler, Geismar (bib7) 2013; 51
Suresh, Chaudhuri (bib18) 1993; 32
Wang, Qi, Cui, Zhang (bib30) 2019; 127
Stevenson, Hendry, Kingsman (bib1) 2005; 43
Nelson, Holloway, Wong (bib16) 1977; 9
Moratori, Petrovic (bib41) 2012; 50
Chaudhry, Khan (bib4) 2015; 23
Clerc, Kennedy (bib50) 2002; 6
Chang (bib25) 1997; 35
Muhlemann, Lockett, Farn (bib24) 1982; 20
Gao, Suganthan, Tasgetiren, Pan, Sun (bib38) 2015; 90
Pinedo (bib46) 2002
Cao, Zhou, Hu, Lin (bib57) 2019; 61
Kunkun, Pan, Gao, Li, Das, Zhang (bib9) 2016; 45
Abumaizar, Svestka (bib44) 1997; 35
Kundakcı, Kulak (bib36) 2016; 96
Lu, Romanowski (bib27) 2013; 67
Cheng, Shi (bib34) 2019; vol. 23
Gao, Yang, Zhou, Pan, Suganthan (bib13) 2019; 49
Gao, Suganthan, Pan, Tasgetiren, Sadollah (bib39) 2016; 109
Ramasesh (bib17) 1990; 18
Kundakcı, Kulak (bib45) 2016; 96
Hall, Potts (bib6) 2004; 52
Kennedy, Eberhart (bib42) 1995
Sharma, Jain (bib28) 2015; 10
Leung, Wang (bib55) 2000; 30
Xixing, Zhao, Baigang, Jun, Wenxiang, Kejia (bib31) 2017; 113
Bakuli (bib3) 2006; 12
Bonyadi, Michalewicz (bib43) 2017; 25
Clerc (bib49) 1999
Fu, Ding, Wang, Wang (bib10) 2018; 68
Potts, Strusevich (bib21) 2009; 60
Wang, Zhang, Qi (bib53) 2017; 32
Dominic, Kaliyamoorthy, Kumar (bib26) 2004; 24
Moratori, Petrovic, Vázquez-Rodríguez (bib40) 2010; 32
Ouelhadj, Petrovic (bib20) 2009; 12
Gao, Suganthan, Chua, Chong, Cai, Pan (bib37) 2015; 42
Jatoth, Krishnanand, Neelakanteswara (bib22) 2019; vol. 30
Cheng, Qin, Chen, Shi (bib33) 2016; 46
Rahmani, Heydari (bib8) 2014; 33
Fattahi, Fallahi (bib29) 2010; 2
Zhang, Ding, Zou, Qin, Fu (bib23) 2019; 30
Liu, Jin, Price (bib5) 2017; 55
Fu, Wang, Tian, Li, Hu (bib11) 2019; 30
Zakaria, Petrovic (bib14) 2012; 62
Bean (bib54) 1994; 6
Sabuncuoglu, Bayiz (bib12) 2000; 126
Vieira, Herrmann, Lin (bib19) 2003; 6
Shi, Eberhart (bib48) 1998
Wang, Li, Lan, Dong, Xia (bib2) 2019; 2019
Dao, Pan, Nguyen, Pan (bib32) 2018; 29
Giffler, Thompson (bib47) 1960; 8
Bansal, Singh, Saraswat, Verma, Jadon, Abraham (bib52) 2011
Holloway, Nelson (bib15) 1974; 20
Ma, Lei, Zhang (bib51) 2009
Cheng, Lei, Lu, Zhang, Shi (bib35) 2019; 62
Taguchi, Phadke (bib56) 1984
Kennedy (10.1016/j.swevo.2019.100594_bib42) 1995
Lu (10.1016/j.swevo.2019.100594_bib27) 2013; 67
Kunkun (10.1016/j.swevo.2019.100594_bib9) 2016; 45
Gao (10.1016/j.swevo.2019.100594_bib39) 2016; 109
Zhang (10.1016/j.swevo.2019.100594_bib23) 2019; 30
Moratori (10.1016/j.swevo.2019.100594_bib40) 2010; 32
Bonyadi (10.1016/j.swevo.2019.100594_bib43) 2017; 25
Moratori (10.1016/j.swevo.2019.100594_bib41) 2012; 50
Potts (10.1016/j.swevo.2019.100594_bib21) 2009; 60
Wang (10.1016/j.swevo.2019.100594_bib2) 2019; 2019
Rahmani (10.1016/j.swevo.2019.100594_bib8) 2014; 33
Suresh (10.1016/j.swevo.2019.100594_bib18) 1993; 32
Chang (10.1016/j.swevo.2019.100594_bib25) 1997; 35
Vieira (10.1016/j.swevo.2019.100594_bib19) 2003; 6
Leung (10.1016/j.swevo.2019.100594_bib55) 2000; 30
Ouelhadj (10.1016/j.swevo.2019.100594_bib20) 2009; 12
Taguchi (10.1016/j.swevo.2019.100594_bib56) 1984
Dao (10.1016/j.swevo.2019.100594_bib32) 2018; 29
Clerc (10.1016/j.swevo.2019.100594_bib49) 1999
Hall (10.1016/j.swevo.2019.100594_bib6) 2004; 52
Nelson (10.1016/j.swevo.2019.100594_bib16) 1977; 9
Xixing (10.1016/j.swevo.2019.100594_bib31) 2017; 113
Chaudhry (10.1016/j.swevo.2019.100594_bib4) 2015; 23
Cheng (10.1016/j.swevo.2019.100594_bib35) 2019; 62
Giffler (10.1016/j.swevo.2019.100594_bib47) 1960; 8
Wang (10.1016/j.swevo.2019.100594_bib53) 2017; 32
Jatoth (10.1016/j.swevo.2019.100594_bib22) 2019; vol. 30
Fu (10.1016/j.swevo.2019.100594_bib11) 2019; 30
Gao (10.1016/j.swevo.2019.100594_bib38) 2015; 90
Bansal (10.1016/j.swevo.2019.100594_bib52) 2011
Sabuncuoglu (10.1016/j.swevo.2019.100594_bib12) 2000; 126
Shi (10.1016/j.swevo.2019.100594_bib48) 1998
Clerc (10.1016/j.swevo.2019.100594_bib50) 2002; 6
Cheng (10.1016/j.swevo.2019.100594_bib33) 2016; 46
Bakuli (10.1016/j.swevo.2019.100594_bib3) 2006; 12
Gao (10.1016/j.swevo.2019.100594_bib37) 2015; 42
Cheng (10.1016/j.swevo.2019.100594_bib34) 2019; vol. 23
Fu (10.1016/j.swevo.2019.100594_bib10) 2018; 68
Bean (10.1016/j.swevo.2019.100594_bib54) 1994; 6
Gao (10.1016/j.swevo.2019.100594_bib13) 2019; 49
Ramasesh (10.1016/j.swevo.2019.100594_bib17) 1990; 18
Cao (10.1016/j.swevo.2019.100594_bib57) 2019; 61
Holloway (10.1016/j.swevo.2019.100594_bib15) 1974; 20
Liu (10.1016/j.swevo.2019.100594_bib5) 2017; 55
Sharma (10.1016/j.swevo.2019.100594_bib28) 2015; 10
Abumaizar (10.1016/j.swevo.2019.100594_bib44) 1997; 35
Kundakcı (10.1016/j.swevo.2019.100594_bib45) 2016; 96
Dominic (10.1016/j.swevo.2019.100594_bib26) 2004; 24
Cakici (10.1016/j.swevo.2019.100594_bib7) 2013; 51
Pinedo (10.1016/j.swevo.2019.100594_bib46) 2002
Stevenson (10.1016/j.swevo.2019.100594_bib1) 2005; 43
Ma (10.1016/j.swevo.2019.100594_bib51) 2009
Wang (10.1016/j.swevo.2019.100594_bib30) 2019; 127
Zakaria (10.1016/j.swevo.2019.100594_bib14) 2012; 62
Kundakcı (10.1016/j.swevo.2019.100594_bib36) 2016; 96
Muhlemann (10.1016/j.swevo.2019.100594_bib24) 1982; 20
Fattahi (10.1016/j.swevo.2019.100594_bib29) 2010; 2
References_xml – volume: 127
  start-page: 841
  year: 2019
  end-page: 852
  ident: bib30
  article-title: A hybrid algorithm for order acceptance and scheduling problem in make-to-stock/make-to-order industries
  publication-title: Comput. Ind. Eng.
– volume: 90
  start-page: 107
  year: 2015
  end-page: 117
  ident: bib38
  article-title: Effective ensembles of heuristics for scheduling flexible job shop problem with new job insertion
  publication-title: Comput. Ind. Eng.
– volume: 29
  start-page: 451
  year: 2018
  end-page: 462
  ident: bib32
  article-title: Parallel bat algorithm for optimizing makespan in job shop scheduling problems
  publication-title: J. Intell. Manuf.
– volume: 96
  start-page: 31
  year: 2016
  end-page: 51
  ident: bib45
  article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib2
  article-title: Application research of chaotic carrier frequency modulation technology in two-stage matrix converter
  publication-title: Math. Probl. Eng.
– start-page: 244
  year: 2009
  end-page: 248
  ident: bib51
  article-title: Mobile robot path planning with complex constraints based on the second-order oscillating particle swarm optimization algorithm
  publication-title: 2009 WRI World Congress on Computer Science and Information Engineering
– volume: 55
  start-page: 3234
  year: 2017
  end-page: 3248
  ident: bib5
  article-title: New scheduling algorithms and digital tool for dynamic permutation flowshop with newly arrived order
  publication-title: Int. J. Prod. Res.
– volume: 35
  start-page: 2065
  year: 1997
  end-page: 2082
  ident: bib44
  article-title: Rescheduling job shops under random disruptions
  publication-title: Int. J. Prod. Res.
– volume: 49
  start-page: 1944
  year: 2019
  end-page: 1955
  ident: bib13
  article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm
  publication-title: IEEE Transactions on Cybernetics
– volume: 32
  start-page: 811
  year: 2017
  end-page: 816
  ident: bib53
  article-title: Job shop scheduling method with idle time in cloud manufacturing
  publication-title: Control Decis.
– volume: 32
  start-page: 53
  year: 1993
  end-page: 63
  ident: bib18
  article-title: Dynamic scheduling a survey of research
  publication-title: Int. J. Prod. Econ.
– volume: 2
  start-page: 114
  year: 2010
  end-page: 123
  ident: bib29
  article-title: Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability
  publication-title: CIRP Journal of Manufacturing Science & Technology
– volume: 8
  start-page: 487
  year: 1960
  end-page: 503
  ident: bib47
  article-title: Algorithms for solving production-scheduling problems
  publication-title: Oper. Res.
– volume: 51
  start-page: 2462
  year: 2013
  end-page: 2477
  ident: bib7
  article-title: Batch scheduling on parallel machines with dynamic job arrivals and incompatible job families
  publication-title: Int. J. Prod. Res.
– volume: 33
  start-page: 84
  year: 2014
  end-page: 92
  ident: bib8
  article-title: Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times
  publication-title: J. Manuf. Syst.
– volume: vol. 30
  start-page: 34
  year: 2019
  end-page: 39
  ident: bib22
  article-title: A review of dynamic job shop scheduling techniques
  publication-title: 14th Global Congress on Manufacturing and Managemen,
– volume: 42
  start-page: 7652
  year: 2015
  end-page: 7663
  ident: bib37
  article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion
  publication-title: Expert Systems with Applications An International Journal
– volume: 109
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib39
  article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion
  publication-title: Knowl. Based Syst.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib42
  article-title: Particle swarm optimization
  publication-title: IEEE International Conference on Neural Networks
– volume: 60
  start-page: S41
  year: 2009
  end-page: S68
  ident: bib21
  article-title: Fifty years of scheduling: a survey of milestones
  publication-title: J. Oper. Res. Soc.
– volume: 24
  start-page: 70
  year: 2004
  end-page: 75
  ident: bib26
  article-title: Efficient dispatching rules for dynamic job shop scheduling
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib50
  article-title: The particle swarm-explosion, stability and convergence in a multi dimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 227
  year: 1982
  end-page: 241
  ident: bib24
  article-title: Job shop scheduling heuristics and frequency of scheduling
  publication-title: Int. J. Prod. Res.
– volume: 30
  start-page: 293
  year: 2000
  end-page: 304
  ident: bib55
  article-title: Multiobjective programming using uniform design and genetic algorithm
  publication-title: IEEE Transactions on Systems Man & Cybernetics Part C
– volume: 45
  start-page: 92
  year: 2016
  end-page: 112
  ident: bib9
  article-title: A multi-start variable neigbourhood descent algorithm for hybrid flowshop rescheduling
  publication-title: Comput. Ind. Eng.
– volume: 30
  start-page: 2257
  year: 2019
  end-page: 2272
  ident: bib11
  article-title: Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm
  publication-title: J. Intell. Manuf.
– volume: 12
  start-page: 417
  year: 2009
  end-page: 431
  ident: bib20
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: J. Sched.
– start-page: 1106
  year: 1984
  end-page: 1113
  ident: bib56
  article-title: Quality engineering through design optimization
  publication-title: IEEE Global Telecommunications Conference, GLOBECOM’84: Communications in the Information Age
– volume: 43
  start-page: 869
  year: 2005
  end-page: 898
  ident: bib1
  article-title: A review of production planning and control: the applicability of key concepts to the make-to-order industry
  publication-title: Int. J. Prod. Res.
– volume: 46
  start-page: 445
  year: 2016
  end-page: 458
  ident: bib33
  article-title: Brain storm optimization algorithm: a review
  publication-title: Artif. Intell. Rev.
– volume: 68
  start-page: 847
  year: 2018
  end-page: 855
  ident: bib10
  article-title: Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in Industry 4.0
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 43
  year: 1990
  end-page: 57
  ident: bib17
  article-title: Dynamic job shop scheduling: a survey of simulation research
  publication-title: Omega
– volume: 20
  start-page: 1264
  year: 1974
  end-page: 1275
  ident: bib15
  article-title: Job shop scheduling with due dates and variable processing times
  publication-title: Manag. Sci.
– volume: 12
  start-page: 51
  year: 2006
  end-page: 62
  ident: bib3
  article-title: A survey of multi-objective scheduling techniques applied to the job shop problem (JSP)
  publication-title: Appl. Manag. Sci.
– start-page: 1951
  year: 1999
  end-page: 1957
  ident: bib49
  article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99
– volume: 6
  start-page: 39
  year: 2003
  end-page: 62
  ident: bib19
  article-title: Rescheduling manufacturing systems: a framework of strategies, policies, and methods
  publication-title: J. Sched.
– volume: 35
  start-page: 651
  year: 1997
  end-page: 665
  ident: bib25
  article-title: Heuristics for dynamic job shop scheduling with real-time updated queueing time estimates
  publication-title: Int. J. Prod. Res.
– volume: vol. 23
  year: 2019
  ident: bib34
  publication-title: Brain Storm Optimization Algorithms: Concepts, Principles, and Applications
– volume: 32
  start-page: 205
  year: 2010
  end-page: 215
  ident: bib40
  article-title: Integrating rush orders into existent schedules for a complex job shop problem
  publication-title: Appl. Intell.
– volume: 113
  start-page: 10
  year: 2017
  end-page: 26
  ident: bib31
  article-title: Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems
  publication-title: Comput. Ind. Eng.
– volume: 67
  start-page: 19
  year: 2013
  end-page: 33
  ident: bib27
  article-title: Multicontextual dispatching rules for job shops with dynamic job arrival
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 10
  start-page: 110
  year: 2015
  end-page: 119
  ident: bib28
  article-title: Performance analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times: simulation approach
  publication-title: CIRP Journal of Manufacturing Science and Technology
– volume: 23
  start-page: 551
  year: 2015
  end-page: 591
  ident: bib4
  article-title: A research survey: review of flexible job shop scheduling techniques
  publication-title: Int. Trans. Oper. Res.
– volume: 50
  start-page: 261
  year: 2012
  end-page: 276
  ident: bib41
  article-title: Match-up approaches to a dynamic rescheduling problem
  publication-title: Int. J. Prod. Res.
– volume: 25
  start-page: 1
  year: 2017
  end-page: 54
  ident: bib43
  article-title: Particle swarm optimization for single objective continuous space problems: a review
  publication-title: Evol. Comput.
– volume: 52
  start-page: 440
  year: 2004
  end-page: 453
  ident: bib6
  article-title: Rescheduling for new orders
  publication-title: Oper. Res.
– volume: 96
  start-page: 31
  year: 2016
  end-page: 51
  ident: bib36
  article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem
  publication-title: Comput. Ind. Eng.
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib48
  article-title: A modified particle swarm optimizer
  publication-title: IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence
– volume: 62
  start-page: 670
  year: 2012
  end-page: 686
  ident: bib14
  article-title: Genetic algorithms for match-up rescheduling of the flexible manufacturing systems
  publication-title: Comput. Ind. Eng.
– volume: 6
  start-page: 154
  year: 1994
  end-page: 160
  ident: bib54
  article-title: Genetic algorithms and random keys for sequencing andoptimization
  publication-title: ORSA J. Comput.
– volume: 30
  start-page: 1809
  year: 2019
  end-page: 1830
  ident: bib23
  article-title: Review of job shop scheduling research and its new perspectives under Industry 4.0
  publication-title: J. Intell. Manuf.
– year: 2002
  ident: bib46
  article-title: Scheduling Theory, Algorithms, and Systems
– volume: 62
  year: 2019
  ident: bib35
  article-title: Generalized pigeon-inspired optimization algorithms
  publication-title: Sci. China Inf. Sci.
– start-page: 633
  year: 2011
  end-page: 640
  ident: bib52
  article-title: Inertia weight strategies in particle swarm optimization
  publication-title: 2011 Third World Congress on Nature and Biologically Inspired Computing
– volume: 9
  start-page: 95
  year: 1977
  end-page: 102
  ident: bib16
  article-title: Centralized scheduling and priority implementation heuristics for a dynamic job shop model
  publication-title: A I I E Transactions
– volume: 126
  start-page: 567
  year: 2000
  end-page: 586
  ident: bib12
  article-title: Analysis of reactive scheduling problems in a job shop environment
  publication-title: Eur. J. Oper. Res.
– volume: 61
  start-page: 299
  year: 2019
  end-page: 309
  ident: bib57
  article-title: An adaptive scheduling algorithm for dynamic jobs for dealing with the flexible job shop scheduling problem
  publication-title: Business & Information Systems Engineering
– volume: 45
  start-page: 92
  year: 2016
  ident: 10.1016/j.swevo.2019.100594_bib9
  article-title: A multi-start variable neigbourhood descent algorithm for hybrid flowshop rescheduling
  publication-title: Comput. Ind. Eng.
– volume: 2019
  start-page: 1
  issue: 11
  year: 2019
  ident: 10.1016/j.swevo.2019.100594_bib2
  article-title: Application research of chaotic carrier frequency modulation technology in two-stage matrix converter
  publication-title: Math. Probl. Eng.
– volume: 113
  start-page: 10
  year: 2017
  ident: 10.1016/j.swevo.2019.100594_bib31
  article-title: Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.09.005
– volume: 29
  start-page: 451
  issue: 2
  year: 2018
  ident: 10.1016/j.swevo.2019.100594_bib32
  article-title: Parallel bat algorithm for optimizing makespan in job shop scheduling problems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1121-x
– volume: 51
  start-page: 2462
  issue: 8
  year: 2013
  ident: 10.1016/j.swevo.2019.100594_bib7
  article-title: Batch scheduling on parallel machines with dynamic job arrivals and incompatible job families
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2012.748227
– volume: 33
  start-page: 84
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2019.100594_bib8
  article-title: Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2013.03.004
– volume: 32
  start-page: 205
  issue: 2
  year: 2010
  ident: 10.1016/j.swevo.2019.100594_bib40
  article-title: Integrating rush orders into existent schedules for a complex job shop problem
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-010-0215-6
– volume: 8
  start-page: 487
  issue: 4
  year: 1960
  ident: 10.1016/j.swevo.2019.100594_bib47
  article-title: Algorithms for solving production-scheduling problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.8.4.487
– volume: 127
  start-page: 841
  issue: 46
  year: 2019
  ident: 10.1016/j.swevo.2019.100594_bib30
  article-title: A hybrid algorithm for order acceptance and scheduling problem in make-to-stock/make-to-order industries
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.11.021
– volume: 35
  start-page: 2065
  issue: 7
  year: 1997
  ident: 10.1016/j.swevo.2019.100594_bib44
  article-title: Rescheduling job shops under random disruptions
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/002075497195074
– volume: 10
  start-page: 110
  issue: 4
  year: 2015
  ident: 10.1016/j.swevo.2019.100594_bib28
  article-title: Performance analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times: simulation approach
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2015.03.003
– volume: 32
  start-page: 811
  issue: 5
  year: 2017
  ident: 10.1016/j.swevo.2019.100594_bib53
  article-title: Job shop scheduling method with idle time in cloud manufacturing
  publication-title: Control Decis.
– volume: 23
  start-page: 551
  issue: 3
  year: 2015
  ident: 10.1016/j.swevo.2019.100594_bib4
  article-title: A research survey: review of flexible job shop scheduling techniques
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12199
– volume: vol. 30
  start-page: 34
  year: 2019
  ident: 10.1016/j.swevo.2019.100594_bib22
  article-title: A review of dynamic job shop scheduling techniques
– volume: 90
  start-page: 107
  year: 2015
  ident: 10.1016/j.swevo.2019.100594_bib38
  article-title: Effective ensembles of heuristics for scheduling flexible job shop problem with new job insertion
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.09.005
– volume: 49
  start-page: 1944
  issue: 5
  year: 2019
  ident: 10.1016/j.swevo.2019.100594_bib13
  article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2817240
– volume: 6
  start-page: 154
  issue: 2
  year: 1994
  ident: 10.1016/j.swevo.2019.100594_bib54
  article-title: Genetic algorithms and random keys for sequencing andoptimization
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.6.2.154
– volume: 2
  start-page: 114
  issue: 2
  year: 2010
  ident: 10.1016/j.swevo.2019.100594_bib29
  article-title: Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability
  publication-title: CIRP Journal of Manufacturing Science & Technology
  doi: 10.1016/j.cirpj.2009.10.001
– volume: 109
  start-page: 1
  year: 2016
  ident: 10.1016/j.swevo.2019.100594_bib39
  article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.06.014
– volume: 96
  start-page: 31
  year: 2016
  ident: 10.1016/j.swevo.2019.100594_bib45
  article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.03.011
– volume: 62
  start-page: 670
  issue: 2
  year: 2012
  ident: 10.1016/j.swevo.2019.100594_bib14
  article-title: Genetic algorithms for match-up rescheduling of the flexible manufacturing systems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2011.12.001
– start-page: 633
  year: 2011
  ident: 10.1016/j.swevo.2019.100594_bib52
  article-title: Inertia weight strategies in particle swarm optimization
– volume: 32
  start-page: 53
  issue: 1
  year: 1993
  ident: 10.1016/j.swevo.2019.100594_bib18
  article-title: Dynamic scheduling a survey of research
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/0925-5273(93)90007-8
– volume: 62
  issue: 7
  year: 2019
  ident: 10.1016/j.swevo.2019.100594_bib35
  article-title: Generalized pigeon-inspired optimization algorithms
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-018-9727-y
– start-page: 1106
  year: 1984
  ident: 10.1016/j.swevo.2019.100594_bib56
  article-title: Quality engineering through design optimization
– start-page: 1951
  year: 1999
  ident: 10.1016/j.swevo.2019.100594_bib49
  article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
– volume: 43
  start-page: 869
  issue: 5
  year: 2005
  ident: 10.1016/j.swevo.2019.100594_bib1
  article-title: A review of production planning and control: the applicability of key concepts to the make-to-order industry
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/0020754042000298520
– start-page: 244
  year: 2009
  ident: 10.1016/j.swevo.2019.100594_bib51
  article-title: Mobile robot path planning with complex constraints based on the second-order oscillating particle swarm optimization algorithm
– start-page: 1942
  year: 1995
  ident: 10.1016/j.swevo.2019.100594_bib42
  article-title: Particle swarm optimization
– volume: 30
  start-page: 293
  issue: 3
  year: 2000
  ident: 10.1016/j.swevo.2019.100594_bib55
  article-title: Multiobjective programming using uniform design and genetic algorithm
  publication-title: IEEE Transactions on Systems Man & Cybernetics Part C
  doi: 10.1109/5326.885111
– volume: 68
  start-page: 847
  year: 2018
  ident: 10.1016/j.swevo.2019.100594_bib10
  article-title: Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in Industry 4.0
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.009
– volume: 20
  start-page: 1264
  issue: 9
  year: 1974
  ident: 10.1016/j.swevo.2019.100594_bib15
  article-title: Job shop scheduling with due dates and variable processing times
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.20.9.1264
– volume: 20
  start-page: 227
  issue: 2
  year: 1982
  ident: 10.1016/j.swevo.2019.100594_bib24
  article-title: Job shop scheduling heuristics and frequency of scheduling
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207548208947763
– volume: 25
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.swevo.2019.100594_bib43
  article-title: Particle swarm optimization for single objective continuous space problems: a review
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_r_00180
– volume: 60
  start-page: S41
  issue: 1
  year: 2009
  ident: 10.1016/j.swevo.2019.100594_bib21
  article-title: Fifty years of scheduling: a survey of milestones
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2009.2
– volume: 35
  start-page: 651
  issue: 3
  year: 1997
  ident: 10.1016/j.swevo.2019.100594_bib25
  article-title: Heuristics for dynamic job shop scheduling with real-time updated queueing time estimates
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/002075497195641
– volume: 30
  start-page: 1809
  year: 2019
  ident: 10.1016/j.swevo.2019.100594_bib23
  article-title: Review of job shop scheduling research and its new perspectives under Industry 4.0
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1350-2
– volume: 61
  start-page: 299
  issue: 3
  year: 2019
  ident: 10.1016/j.swevo.2019.100594_bib57
  article-title: An adaptive scheduling algorithm for dynamic jobs for dealing with the flexible job shop scheduling problem
  publication-title: Business & Information Systems Engineering
  doi: 10.1007/s12599-019-00590-7
– volume: 126
  start-page: 567
  issue: 3
  year: 2000
  ident: 10.1016/j.swevo.2019.100594_bib12
  article-title: Analysis of reactive scheduling problems in a job shop environment
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00311-2
– volume: 6
  start-page: 39
  issue: 1
  year: 2003
  ident: 10.1016/j.swevo.2019.100594_bib19
  article-title: Rescheduling manufacturing systems: a framework of strategies, policies, and methods
  publication-title: J. Sched.
  doi: 10.1023/A:1022235519958
– volume: 18
  start-page: 43
  issue: 1
  year: 1990
  ident: 10.1016/j.swevo.2019.100594_bib17
  article-title: Dynamic job shop scheduling: a survey of simulation research
  publication-title: Omega
  doi: 10.1016/0305-0483(90)90017-4
– volume: 6
  start-page: 58
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2019.100594_bib50
  article-title: The particle swarm-explosion, stability and convergence in a multi dimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 96
  start-page: 31
  year: 2016
  ident: 10.1016/j.swevo.2019.100594_bib36
  article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.03.011
– volume: 52
  start-page: 440
  issue: 3
  year: 2004
  ident: 10.1016/j.swevo.2019.100594_bib6
  article-title: Rescheduling for new orders
  publication-title: Oper. Res.
  doi: 10.1287/opre.1030.0101
– volume: 12
  start-page: 417
  issue: 4
  year: 2009
  ident: 10.1016/j.swevo.2019.100594_bib20
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: J. Sched.
  doi: 10.1007/s10951-008-0090-8
– volume: 67
  start-page: 19
  issue: 1–4
  year: 2013
  ident: 10.1016/j.swevo.2019.100594_bib27
  article-title: Multicontextual dispatching rules for job shops with dynamic job arrival
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-4765-8
– year: 2002
  ident: 10.1016/j.swevo.2019.100594_bib46
– volume: 46
  start-page: 445
  issue: 4
  year: 2016
  ident: 10.1016/j.swevo.2019.100594_bib33
  article-title: Brain storm optimization algorithm: a review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-016-9471-0
– start-page: 69
  year: 1998
  ident: 10.1016/j.swevo.2019.100594_bib48
  article-title: A modified particle swarm optimizer
– volume: vol. 23
  year: 2019
  ident: 10.1016/j.swevo.2019.100594_bib34
– volume: 24
  start-page: 70
  issue: 1–2
  year: 2004
  ident: 10.1016/j.swevo.2019.100594_bib26
  article-title: Efficient dispatching rules for dynamic job shop scheduling
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 50
  start-page: 261
  issue: 1
  year: 2012
  ident: 10.1016/j.swevo.2019.100594_bib41
  article-title: Match-up approaches to a dynamic rescheduling problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.571458
– volume: 30
  start-page: 2257
  issue: 5
  year: 2019
  ident: 10.1016/j.swevo.2019.100594_bib11
  article-title: Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1385-4
– volume: 55
  start-page: 3234
  issue: 11
  year: 2017
  ident: 10.1016/j.swevo.2019.100594_bib5
  article-title: New scheduling algorithms and digital tool for dynamic permutation flowshop with newly arrived order
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2017.1285077
– volume: 42
  start-page: 7652
  issue: 21
  year: 2015
  ident: 10.1016/j.swevo.2019.100594_bib37
  article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion
  publication-title: Expert Systems with Applications An International Journal
  doi: 10.1016/j.eswa.2015.06.004
– volume: 12
  start-page: 51
  year: 2006
  ident: 10.1016/j.swevo.2019.100594_bib3
  article-title: A survey of multi-objective scheduling techniques applied to the job shop problem (JSP)
  publication-title: Appl. Manag. Sci.
– volume: 9
  start-page: 95
  issue: 1
  year: 1977
  ident: 10.1016/j.swevo.2019.100594_bib16
  article-title: Centralized scheduling and priority implementation heuristics for a dynamic job shop model
  publication-title: A I I E Transactions
  doi: 10.1080/05695557708975127
SSID ssj0000602559
Score 2.548553
Snippet Random job arrivals that happen frequently in manufacturing practice may create a need for dynamic scheduling. This paper considers an issue of how to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100594
SubjectTerms Dynamic job shop scheduling
Match-up strategy
Multi-objective problem
New job arrival
Particle swarm optimization
Title An improved particle swarm optimization algorithm for dynamic job shop scheduling problems with random job arrivals
URI https://dx.doi.org/10.1016/j.swevo.2019.100594
Volume 51
WOSCitedRecordID wos000500379000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb5swFLeydIdd9j21-5IPuzGqgDHgYzR12qqpmrROi3ZBxuCEKIEI0jTn_uV9NjYhWxWth11QRB7G5P14_vnlfSD0QXIqpcgoWD9J3YBweOcEoS6h3CckFTKXurr-t-jiIp5M2PfB4MbmwmwWUVnG2y1b_VdVwzlQtkqdvYe6u0HhBHwGpcMR1A7Hf1L8uFSpj3W1ASq5Mt87zTWvl04F9mFpEi8dvphWdbGeLXWkYdZ2pnfmVeo0s2rlwK4XViGTrK6bzphEOFjcsmqpBXldFzD1ps9wf-g7KXd8vjHPqQLzhO4esfe3_y_jqv4926Wjdf7r82J2VXQmyTq1QXK6BUBP-84Kj_UCP7RN82GH6QIp3DPApuJsa0E9XUHmTuPe-hnmp801PICKymOnO-n9Utp_LHFd4KGNaZsnepBEDZK0gzxAR35EWTxER-OvZ5PzzlM3CvW-S3UptLO35at0oOBf07mb4vRoy-VT9NjsN_C4xcEzNMjL5-iJ7eWBjWl_gZpxiS1ssIUN1rDBfdjgDjYYYIMNbDCgASvY4B1ssIUNVrDBLWy0oIXNS_Tz89nlpy-uacjhChLEa1eoyj3AiEdCjjJVOU5E0vcFI5zRXPhckT3Jo2wkCSdxLkJBFGONGPdo7rGUvELDsirzY4TzgHMacl8EcRhkksd5mBLqpYEqSZgy7wT59jdMhKlWr5qmLJIDKjxBH7uLVm2xlsPioVVOYvhmyyMTQNyhC1_f7z5v0KPdu_AWDdf1Vf4OPRSbddHU7w3cbgG7kqlG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+particle+swarm+optimization+algorithm+for+dynamic+job+shop+scheduling+problems+with+random+job+arrivals&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wang%2C+Zhen&rft.au=Zhang%2C+Jihui&rft.au=Yang%2C+Shengxiang&rft.date=2019-12-01&rft.issn=2210-6502&rft.volume=51&rft.spage=100594&rft_id=info:doi/10.1016%2Fj.swevo.2019.100594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2019_100594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon