An improved particle swarm optimization algorithm for dynamic job shop scheduling problems with random job arrivals
Random job arrivals that happen frequently in manufacturing practice may create a need for dynamic scheduling. This paper considers an issue of how to reschedule the randomly arrived new jobs to pursue both performance and stability of a schedule in a job shop. Firstly, a mixed integer programming m...
Gespeichert in:
| Veröffentlicht in: | Swarm and evolutionary computation Jg. 51; S. 100594 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2019
|
| Schlagworte: | |
| ISSN: | 2210-6502 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Random job arrivals that happen frequently in manufacturing practice may create a need for dynamic scheduling. This paper considers an issue of how to reschedule the randomly arrived new jobs to pursue both performance and stability of a schedule in a job shop. Firstly, a mixed integer programming model is established to minimize three objectives, including the discontinuity rate of new jobs during the processing, the makespan deviation of initial schedule, and the sequence deviation on machines. Secondly, four match-up strategies from references are modified to determine the rescheduling horizon. Once new jobs arrive, the rescheduling process is immediately triggered with ongoing operations remain. The ongoing operations are treated as machine unavailable constraints (MUC) in the rescheduling horizon. Then, a particle swarm optimization (PSO) algorithm with improvements is proposed to solve the dynamic job shop scheduling problem. Improvement strategies consist of a modified decoding scheme considering MUC, a population initialization approach by designing a new transformation mechanism, and a novel particle movement method by introducing position changes and a random inertia weight. Lastly, extensive experiments are conducted on several instances. The experiments results show that the modified rescheduling strategies are statistically and significantly better than the compared strategies. Moreover, comparative studies with five variants of PSO algorithm and three state-of-the-art meta-heuristics demonstrate the high performance of the improved PSO algorithm. |
|---|---|
| AbstractList | Random job arrivals that happen frequently in manufacturing practice may create a need for dynamic scheduling. This paper considers an issue of how to reschedule the randomly arrived new jobs to pursue both performance and stability of a schedule in a job shop. Firstly, a mixed integer programming model is established to minimize three objectives, including the discontinuity rate of new jobs during the processing, the makespan deviation of initial schedule, and the sequence deviation on machines. Secondly, four match-up strategies from references are modified to determine the rescheduling horizon. Once new jobs arrive, the rescheduling process is immediately triggered with ongoing operations remain. The ongoing operations are treated as machine unavailable constraints (MUC) in the rescheduling horizon. Then, a particle swarm optimization (PSO) algorithm with improvements is proposed to solve the dynamic job shop scheduling problem. Improvement strategies consist of a modified decoding scheme considering MUC, a population initialization approach by designing a new transformation mechanism, and a novel particle movement method by introducing position changes and a random inertia weight. Lastly, extensive experiments are conducted on several instances. The experiments results show that the modified rescheduling strategies are statistically and significantly better than the compared strategies. Moreover, comparative studies with five variants of PSO algorithm and three state-of-the-art meta-heuristics demonstrate the high performance of the improved PSO algorithm. |
| ArticleNumber | 100594 |
| Author | Yang, Shengxiang Wang, Zhen Zhang, Jihui |
| Author_xml | – sequence: 1 givenname: Zhen surname: Wang fullname: Wang, Zhen organization: Institute of Complexity Science, College of Automation, Qingdao University, Qingdao, 266071, China – sequence: 2 givenname: Jihui surname: Zhang fullname: Zhang, Jihui email: zhangjihui@qdu.edu.cn organization: Institute of Complexity Science, College of Automation, Qingdao University, Qingdao, 266071, China – sequence: 3 givenname: Shengxiang surname: Yang fullname: Yang, Shengxiang organization: Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, LE1 9BH, United Kingdom |
| BookMark | eNqFkL1uwjAUhT1QqZTyBF38AqH-IQkeOiDUPwmpSztbxnbgRrEd2S6IPn0DdOrQ3uVIV-c70jk3aOSDtwjdUTKjhFb37Swd7D7MGKFi-JBSzEdozBglRVUSdo2mKbVkuIqwshRjlJYeg-tj2FuDexUz6M7idFDR4dBncPClMgSPVbcNEfLO4SZEbI5eOdC4DRucdqHHSe-s-ezAb_EQtumsS_gw2HFU3gR3NqoYYa-6dIuumkHs9Ecn6OPp8X31Uqzfnl9Xy3Wh-XyRC00rwSkriW6IYQtOdN0wpgVXorSaKVZVtFG1IQ1XfGF1pTmp57QWipaWig2fIHHJ1TGkFG0jNeRzmxwVdJISeRpNtvI8mjyNJi-jDSz_xfYRnIrHf6iHC2WHWnuwUSYN1mtrIFqdpQnwJ_8NxMOONQ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123970 crossref_primary_10_1007_s10115_025_02538_8 crossref_primary_10_1007_s10696_024_09540_2 crossref_primary_10_3390_machines10070573 crossref_primary_10_1038_s41598_024_79593_8 crossref_primary_10_1109_TASE_2025_3587235 crossref_primary_10_1002_amp2_10119 crossref_primary_10_1016_j_cor_2024_106532 crossref_primary_10_1016_j_engappai_2025_111799 crossref_primary_10_1007_s40747_024_01365_8 crossref_primary_10_1016_j_sysarc_2022_102617 crossref_primary_10_3390_jmse11050892 crossref_primary_10_3390_s20247007 crossref_primary_10_1016_j_jclepro_2021_126489 crossref_primary_10_3390_rs16122184 crossref_primary_10_1016_j_ifacol_2022_10_083 crossref_primary_10_1016_j_jmsy_2024_01_002 crossref_primary_10_1016_j_cor_2022_105731 crossref_primary_10_1016_j_jclepro_2021_126093 crossref_primary_10_1109_TCYB_2022_3151855 crossref_primary_10_1016_j_eswa_2025_129048 crossref_primary_10_1016_j_swevo_2023_101243 crossref_primary_10_1016_j_jmsy_2021_05_007 crossref_primary_10_1016_j_swevo_2020_100805 crossref_primary_10_1080_00207543_2024_2423807 crossref_primary_10_1007_s40815_025_02032_x crossref_primary_10_1016_j_cie_2024_110295 crossref_primary_10_1109_TEVC_2023_3255246 crossref_primary_10_1177_1687814020985206 crossref_primary_10_1007_s10586_025_05303_2 crossref_primary_10_1016_j_swevo_2025_101979 crossref_primary_10_1016_j_swevo_2022_101131 crossref_primary_10_1016_j_engappai_2023_106636 crossref_primary_10_1111_exsy_13727 crossref_primary_10_1109_ACCESS_2020_3040345 crossref_primary_10_1016_j_physa_2023_128457 crossref_primary_10_1007_s12293_025_00449_3 crossref_primary_10_1155_2021_9951995 crossref_primary_10_1177_00202940241245241 crossref_primary_10_1080_02533839_2023_2194674 crossref_primary_10_1007_s00170_025_15453_7 crossref_primary_10_1016_j_cie_2025_111060 crossref_primary_10_1016_j_eswa_2022_119200 crossref_primary_10_1007_s10845_022_01940_1 crossref_primary_10_1007_s00170_023_11707_4 crossref_primary_10_1007_s13369_021_06317_9 crossref_primary_10_1007_s00170_021_07228_7 crossref_primary_10_3390_pr9060911 crossref_primary_10_1080_17445760_2022_2061484 crossref_primary_10_1109_ACCESS_2022_3188765 crossref_primary_10_1109_ACCESS_2024_3401080 crossref_primary_10_1109_TASE_2023_3271666 crossref_primary_10_1016_j_rcim_2025_103015 crossref_primary_10_3390_math10111873 crossref_primary_10_1007_s12065_024_00976_x crossref_primary_10_3390_math11102336 crossref_primary_10_1016_j_engappai_2025_112168 crossref_primary_10_1016_j_swevo_2021_100867 crossref_primary_10_1016_j_cor_2023_106294 crossref_primary_10_1016_j_eswa_2023_120268 crossref_primary_10_1109_ACCESS_2021_3114712 crossref_primary_10_1016_j_eswa_2023_121993 crossref_primary_10_1016_j_cie_2023_109650 crossref_primary_10_1016_j_swevo_2023_101312 crossref_primary_10_1016_j_swevo_2025_102024 crossref_primary_10_1088_1757_899X_1125_1_012109 crossref_primary_10_1007_s10479_021_03998_1 crossref_primary_10_1016_j_eswa_2025_127989 crossref_primary_10_1109_TASE_2022_3210259 crossref_primary_10_1109_TEM_2023_3275569 crossref_primary_10_1016_j_ijpe_2020_107669 crossref_primary_10_3390_app14073026 crossref_primary_10_1016_j_engappai_2025_110431 crossref_primary_10_1016_j_swevo_2022_101029 crossref_primary_10_1016_j_cor_2024_106866 crossref_primary_10_1016_j_swevo_2021_100912 crossref_primary_10_1016_j_cor_2023_106442 crossref_primary_10_1016_j_cie_2025_111310 crossref_primary_10_1016_j_eswa_2023_122734 crossref_primary_10_1016_j_swevo_2024_101544 crossref_primary_10_1016_j_eswa_2025_128951 crossref_primary_10_1016_j_asoc_2022_108794 crossref_primary_10_3390_s21144836 crossref_primary_10_1016_j_swevo_2024_101660 crossref_primary_10_1145_3590163 crossref_primary_10_1016_j_engappai_2021_104207 crossref_primary_10_1080_0305215X_2024_2437004 crossref_primary_10_1016_j_swevo_2024_101658 crossref_primary_10_1109_ACCESS_2025_3579248 crossref_primary_10_1155_2021_3534210 crossref_primary_10_1016_j_compenvurbsys_2022_101850 crossref_primary_10_1080_0951192X_2023_2204475 crossref_primary_10_1016_j_cie_2023_109398 crossref_primary_10_1016_j_swevo_2022_101212 crossref_primary_10_1007_s10586_024_04803_x crossref_primary_10_1007_s43069_025_00429_w crossref_primary_10_1109_TEVC_2022_3199783 crossref_primary_10_1016_j_aei_2022_101776 crossref_primary_10_3389_fenrg_2023_1251335 crossref_primary_10_1080_23080477_2023_2187528 crossref_primary_10_1007_s10586_024_04970_x crossref_primary_10_1016_j_cie_2025_111133 crossref_primary_10_3390_s21031019 crossref_primary_10_3390_math12203176 crossref_primary_10_1007_s12204_024_2763_7 |
| Cites_doi | 10.1016/j.cie.2017.09.005 10.1007/s10845-015-1121-x 10.1080/00207543.2012.748227 10.1016/j.jmsy.2013.03.004 10.1007/s10489-010-0215-6 10.1287/opre.8.4.487 10.1016/j.cie.2018.11.021 10.1080/002075497195074 10.1016/j.cirpj.2015.03.003 10.1111/itor.12199 10.1016/j.cie.2015.09.005 10.1109/TCYB.2018.2817240 10.1287/ijoc.6.2.154 10.1016/j.cirpj.2009.10.001 10.1016/j.knosys.2016.06.014 10.1016/j.cie.2016.03.011 10.1016/j.cie.2011.12.001 10.1016/0925-5273(93)90007-8 10.1007/s11432-018-9727-y 10.1080/0020754042000298520 10.1109/5326.885111 10.1016/j.asoc.2017.12.009 10.1287/mnsc.20.9.1264 10.1080/00207548208947763 10.1162/EVCO_r_00180 10.1057/jors.2009.2 10.1080/002075497195641 10.1007/s10845-017-1350-2 10.1007/s12599-019-00590-7 10.1016/S0377-2217(99)00311-2 10.1023/A:1022235519958 10.1016/0305-0483(90)90017-4 10.1109/4235.985692 10.1287/opre.1030.0101 10.1007/s10951-008-0090-8 10.1007/s00170-013-4765-8 10.1007/s10462-016-9471-0 10.1080/00207543.2011.571458 10.1007/s10845-017-1385-4 10.1080/00207543.2017.1285077 10.1016/j.eswa.2015.06.004 10.1080/05695557708975127 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2019.100594 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2019_100594 S2210650219302317 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c348t-c16931250cf0d2830c7f22c93a95ec2a2661fa7d0f3a38ec6c3074179a15e19b3 |
| ISICitedReferencesCount | 118 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500379000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Wed Nov 05 20:57:49 EST 2025 Tue Nov 18 22:32:41 EST 2025 Fri Feb 23 02:47:40 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | New job arrival Dynamic job shop scheduling Particle swarm optimization Multi-objective problem Match-up strategy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-c16931250cf0d2830c7f22c93a95ec2a2661fa7d0f3a38ec6c3074179a15e19b3 |
| OpenAccessLink | https://dora.dmu.ac.uk/handle/2086/18660 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_swevo_2019_100594 crossref_primary_10_1016_j_swevo_2019_100594 elsevier_sciencedirect_doi_10_1016_j_swevo_2019_100594 |
| PublicationCentury | 2000 |
| PublicationDate | December 2019 2019-12-00 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cakici, Mason, Fowler, Geismar (bib7) 2013; 51 Suresh, Chaudhuri (bib18) 1993; 32 Wang, Qi, Cui, Zhang (bib30) 2019; 127 Stevenson, Hendry, Kingsman (bib1) 2005; 43 Nelson, Holloway, Wong (bib16) 1977; 9 Moratori, Petrovic (bib41) 2012; 50 Chaudhry, Khan (bib4) 2015; 23 Clerc, Kennedy (bib50) 2002; 6 Chang (bib25) 1997; 35 Muhlemann, Lockett, Farn (bib24) 1982; 20 Gao, Suganthan, Tasgetiren, Pan, Sun (bib38) 2015; 90 Pinedo (bib46) 2002 Cao, Zhou, Hu, Lin (bib57) 2019; 61 Kunkun, Pan, Gao, Li, Das, Zhang (bib9) 2016; 45 Abumaizar, Svestka (bib44) 1997; 35 Kundakcı, Kulak (bib36) 2016; 96 Lu, Romanowski (bib27) 2013; 67 Cheng, Shi (bib34) 2019; vol. 23 Gao, Yang, Zhou, Pan, Suganthan (bib13) 2019; 49 Gao, Suganthan, Pan, Tasgetiren, Sadollah (bib39) 2016; 109 Ramasesh (bib17) 1990; 18 Kundakcı, Kulak (bib45) 2016; 96 Hall, Potts (bib6) 2004; 52 Kennedy, Eberhart (bib42) 1995 Sharma, Jain (bib28) 2015; 10 Leung, Wang (bib55) 2000; 30 Xixing, Zhao, Baigang, Jun, Wenxiang, Kejia (bib31) 2017; 113 Bakuli (bib3) 2006; 12 Bonyadi, Michalewicz (bib43) 2017; 25 Clerc (bib49) 1999 Fu, Ding, Wang, Wang (bib10) 2018; 68 Potts, Strusevich (bib21) 2009; 60 Wang, Zhang, Qi (bib53) 2017; 32 Dominic, Kaliyamoorthy, Kumar (bib26) 2004; 24 Moratori, Petrovic, Vázquez-Rodríguez (bib40) 2010; 32 Ouelhadj, Petrovic (bib20) 2009; 12 Gao, Suganthan, Chua, Chong, Cai, Pan (bib37) 2015; 42 Jatoth, Krishnanand, Neelakanteswara (bib22) 2019; vol. 30 Cheng, Qin, Chen, Shi (bib33) 2016; 46 Rahmani, Heydari (bib8) 2014; 33 Fattahi, Fallahi (bib29) 2010; 2 Zhang, Ding, Zou, Qin, Fu (bib23) 2019; 30 Liu, Jin, Price (bib5) 2017; 55 Fu, Wang, Tian, Li, Hu (bib11) 2019; 30 Zakaria, Petrovic (bib14) 2012; 62 Bean (bib54) 1994; 6 Sabuncuoglu, Bayiz (bib12) 2000; 126 Vieira, Herrmann, Lin (bib19) 2003; 6 Shi, Eberhart (bib48) 1998 Wang, Li, Lan, Dong, Xia (bib2) 2019; 2019 Dao, Pan, Nguyen, Pan (bib32) 2018; 29 Giffler, Thompson (bib47) 1960; 8 Bansal, Singh, Saraswat, Verma, Jadon, Abraham (bib52) 2011 Holloway, Nelson (bib15) 1974; 20 Ma, Lei, Zhang (bib51) 2009 Cheng, Lei, Lu, Zhang, Shi (bib35) 2019; 62 Taguchi, Phadke (bib56) 1984 Kennedy (10.1016/j.swevo.2019.100594_bib42) 1995 Lu (10.1016/j.swevo.2019.100594_bib27) 2013; 67 Kunkun (10.1016/j.swevo.2019.100594_bib9) 2016; 45 Gao (10.1016/j.swevo.2019.100594_bib39) 2016; 109 Zhang (10.1016/j.swevo.2019.100594_bib23) 2019; 30 Moratori (10.1016/j.swevo.2019.100594_bib40) 2010; 32 Bonyadi (10.1016/j.swevo.2019.100594_bib43) 2017; 25 Moratori (10.1016/j.swevo.2019.100594_bib41) 2012; 50 Potts (10.1016/j.swevo.2019.100594_bib21) 2009; 60 Wang (10.1016/j.swevo.2019.100594_bib2) 2019; 2019 Rahmani (10.1016/j.swevo.2019.100594_bib8) 2014; 33 Suresh (10.1016/j.swevo.2019.100594_bib18) 1993; 32 Chang (10.1016/j.swevo.2019.100594_bib25) 1997; 35 Vieira (10.1016/j.swevo.2019.100594_bib19) 2003; 6 Leung (10.1016/j.swevo.2019.100594_bib55) 2000; 30 Ouelhadj (10.1016/j.swevo.2019.100594_bib20) 2009; 12 Taguchi (10.1016/j.swevo.2019.100594_bib56) 1984 Dao (10.1016/j.swevo.2019.100594_bib32) 2018; 29 Clerc (10.1016/j.swevo.2019.100594_bib49) 1999 Hall (10.1016/j.swevo.2019.100594_bib6) 2004; 52 Nelson (10.1016/j.swevo.2019.100594_bib16) 1977; 9 Xixing (10.1016/j.swevo.2019.100594_bib31) 2017; 113 Chaudhry (10.1016/j.swevo.2019.100594_bib4) 2015; 23 Cheng (10.1016/j.swevo.2019.100594_bib35) 2019; 62 Giffler (10.1016/j.swevo.2019.100594_bib47) 1960; 8 Wang (10.1016/j.swevo.2019.100594_bib53) 2017; 32 Jatoth (10.1016/j.swevo.2019.100594_bib22) 2019; vol. 30 Fu (10.1016/j.swevo.2019.100594_bib11) 2019; 30 Gao (10.1016/j.swevo.2019.100594_bib38) 2015; 90 Bansal (10.1016/j.swevo.2019.100594_bib52) 2011 Sabuncuoglu (10.1016/j.swevo.2019.100594_bib12) 2000; 126 Shi (10.1016/j.swevo.2019.100594_bib48) 1998 Clerc (10.1016/j.swevo.2019.100594_bib50) 2002; 6 Cheng (10.1016/j.swevo.2019.100594_bib33) 2016; 46 Bakuli (10.1016/j.swevo.2019.100594_bib3) 2006; 12 Gao (10.1016/j.swevo.2019.100594_bib37) 2015; 42 Cheng (10.1016/j.swevo.2019.100594_bib34) 2019; vol. 23 Fu (10.1016/j.swevo.2019.100594_bib10) 2018; 68 Bean (10.1016/j.swevo.2019.100594_bib54) 1994; 6 Gao (10.1016/j.swevo.2019.100594_bib13) 2019; 49 Ramasesh (10.1016/j.swevo.2019.100594_bib17) 1990; 18 Cao (10.1016/j.swevo.2019.100594_bib57) 2019; 61 Holloway (10.1016/j.swevo.2019.100594_bib15) 1974; 20 Liu (10.1016/j.swevo.2019.100594_bib5) 2017; 55 Sharma (10.1016/j.swevo.2019.100594_bib28) 2015; 10 Abumaizar (10.1016/j.swevo.2019.100594_bib44) 1997; 35 Kundakcı (10.1016/j.swevo.2019.100594_bib45) 2016; 96 Dominic (10.1016/j.swevo.2019.100594_bib26) 2004; 24 Cakici (10.1016/j.swevo.2019.100594_bib7) 2013; 51 Pinedo (10.1016/j.swevo.2019.100594_bib46) 2002 Stevenson (10.1016/j.swevo.2019.100594_bib1) 2005; 43 Ma (10.1016/j.swevo.2019.100594_bib51) 2009 Wang (10.1016/j.swevo.2019.100594_bib30) 2019; 127 Zakaria (10.1016/j.swevo.2019.100594_bib14) 2012; 62 Kundakcı (10.1016/j.swevo.2019.100594_bib36) 2016; 96 Muhlemann (10.1016/j.swevo.2019.100594_bib24) 1982; 20 Fattahi (10.1016/j.swevo.2019.100594_bib29) 2010; 2 |
| References_xml | – volume: 127 start-page: 841 year: 2019 end-page: 852 ident: bib30 article-title: A hybrid algorithm for order acceptance and scheduling problem in make-to-stock/make-to-order industries publication-title: Comput. Ind. Eng. – volume: 90 start-page: 107 year: 2015 end-page: 117 ident: bib38 article-title: Effective ensembles of heuristics for scheduling flexible job shop problem with new job insertion publication-title: Comput. Ind. Eng. – volume: 29 start-page: 451 year: 2018 end-page: 462 ident: bib32 article-title: Parallel bat algorithm for optimizing makespan in job shop scheduling problems publication-title: J. Intell. Manuf. – volume: 96 start-page: 31 year: 2016 end-page: 51 ident: bib45 article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem publication-title: Comput. Ind. Eng. – volume: 2019 start-page: 1 year: 2019 end-page: 8 ident: bib2 article-title: Application research of chaotic carrier frequency modulation technology in two-stage matrix converter publication-title: Math. Probl. Eng. – start-page: 244 year: 2009 end-page: 248 ident: bib51 article-title: Mobile robot path planning with complex constraints based on the second-order oscillating particle swarm optimization algorithm publication-title: 2009 WRI World Congress on Computer Science and Information Engineering – volume: 55 start-page: 3234 year: 2017 end-page: 3248 ident: bib5 article-title: New scheduling algorithms and digital tool for dynamic permutation flowshop with newly arrived order publication-title: Int. J. Prod. Res. – volume: 35 start-page: 2065 year: 1997 end-page: 2082 ident: bib44 article-title: Rescheduling job shops under random disruptions publication-title: Int. J. Prod. Res. – volume: 49 start-page: 1944 year: 2019 end-page: 1955 ident: bib13 article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm publication-title: IEEE Transactions on Cybernetics – volume: 32 start-page: 811 year: 2017 end-page: 816 ident: bib53 article-title: Job shop scheduling method with idle time in cloud manufacturing publication-title: Control Decis. – volume: 32 start-page: 53 year: 1993 end-page: 63 ident: bib18 article-title: Dynamic scheduling a survey of research publication-title: Int. J. Prod. Econ. – volume: 2 start-page: 114 year: 2010 end-page: 123 ident: bib29 article-title: Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability publication-title: CIRP Journal of Manufacturing Science & Technology – volume: 8 start-page: 487 year: 1960 end-page: 503 ident: bib47 article-title: Algorithms for solving production-scheduling problems publication-title: Oper. Res. – volume: 51 start-page: 2462 year: 2013 end-page: 2477 ident: bib7 article-title: Batch scheduling on parallel machines with dynamic job arrivals and incompatible job families publication-title: Int. J. Prod. Res. – volume: 33 start-page: 84 year: 2014 end-page: 92 ident: bib8 article-title: Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times publication-title: J. Manuf. Syst. – volume: vol. 30 start-page: 34 year: 2019 end-page: 39 ident: bib22 article-title: A review of dynamic job shop scheduling techniques publication-title: 14th Global Congress on Manufacturing and Managemen, – volume: 42 start-page: 7652 year: 2015 end-page: 7663 ident: bib37 article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion publication-title: Expert Systems with Applications An International Journal – volume: 109 start-page: 1 year: 2016 end-page: 16 ident: bib39 article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion publication-title: Knowl. Based Syst. – start-page: 1942 year: 1995 end-page: 1948 ident: bib42 article-title: Particle swarm optimization publication-title: IEEE International Conference on Neural Networks – volume: 60 start-page: S41 year: 2009 end-page: S68 ident: bib21 article-title: Fifty years of scheduling: a survey of milestones publication-title: J. Oper. Res. Soc. – volume: 24 start-page: 70 year: 2004 end-page: 75 ident: bib26 article-title: Efficient dispatching rules for dynamic job shop scheduling publication-title: Int. J. Adv. Manuf. Technol. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib50 article-title: The particle swarm-explosion, stability and convergence in a multi dimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 227 year: 1982 end-page: 241 ident: bib24 article-title: Job shop scheduling heuristics and frequency of scheduling publication-title: Int. J. Prod. Res. – volume: 30 start-page: 293 year: 2000 end-page: 304 ident: bib55 article-title: Multiobjective programming using uniform design and genetic algorithm publication-title: IEEE Transactions on Systems Man & Cybernetics Part C – volume: 45 start-page: 92 year: 2016 end-page: 112 ident: bib9 article-title: A multi-start variable neigbourhood descent algorithm for hybrid flowshop rescheduling publication-title: Comput. Ind. Eng. – volume: 30 start-page: 2257 year: 2019 end-page: 2272 ident: bib11 article-title: Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm publication-title: J. Intell. Manuf. – volume: 12 start-page: 417 year: 2009 end-page: 431 ident: bib20 article-title: A survey of dynamic scheduling in manufacturing systems publication-title: J. Sched. – start-page: 1106 year: 1984 end-page: 1113 ident: bib56 article-title: Quality engineering through design optimization publication-title: IEEE Global Telecommunications Conference, GLOBECOM’84: Communications in the Information Age – volume: 43 start-page: 869 year: 2005 end-page: 898 ident: bib1 article-title: A review of production planning and control: the applicability of key concepts to the make-to-order industry publication-title: Int. J. Prod. Res. – volume: 46 start-page: 445 year: 2016 end-page: 458 ident: bib33 article-title: Brain storm optimization algorithm: a review publication-title: Artif. Intell. Rev. – volume: 68 start-page: 847 year: 2018 end-page: 855 ident: bib10 article-title: Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in Industry 4.0 publication-title: Appl. Soft Comput. – volume: 18 start-page: 43 year: 1990 end-page: 57 ident: bib17 article-title: Dynamic job shop scheduling: a survey of simulation research publication-title: Omega – volume: 20 start-page: 1264 year: 1974 end-page: 1275 ident: bib15 article-title: Job shop scheduling with due dates and variable processing times publication-title: Manag. Sci. – volume: 12 start-page: 51 year: 2006 end-page: 62 ident: bib3 article-title: A survey of multi-objective scheduling techniques applied to the job shop problem (JSP) publication-title: Appl. Manag. Sci. – start-page: 1951 year: 1999 end-page: 1957 ident: bib49 article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 – volume: 6 start-page: 39 year: 2003 end-page: 62 ident: bib19 article-title: Rescheduling manufacturing systems: a framework of strategies, policies, and methods publication-title: J. Sched. – volume: 35 start-page: 651 year: 1997 end-page: 665 ident: bib25 article-title: Heuristics for dynamic job shop scheduling with real-time updated queueing time estimates publication-title: Int. J. Prod. Res. – volume: vol. 23 year: 2019 ident: bib34 publication-title: Brain Storm Optimization Algorithms: Concepts, Principles, and Applications – volume: 32 start-page: 205 year: 2010 end-page: 215 ident: bib40 article-title: Integrating rush orders into existent schedules for a complex job shop problem publication-title: Appl. Intell. – volume: 113 start-page: 10 year: 2017 end-page: 26 ident: bib31 article-title: Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems publication-title: Comput. Ind. Eng. – volume: 67 start-page: 19 year: 2013 end-page: 33 ident: bib27 article-title: Multicontextual dispatching rules for job shops with dynamic job arrival publication-title: Int. J. Adv. Manuf. Technol. – volume: 10 start-page: 110 year: 2015 end-page: 119 ident: bib28 article-title: Performance analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times: simulation approach publication-title: CIRP Journal of Manufacturing Science and Technology – volume: 23 start-page: 551 year: 2015 end-page: 591 ident: bib4 article-title: A research survey: review of flexible job shop scheduling techniques publication-title: Int. Trans. Oper. Res. – volume: 50 start-page: 261 year: 2012 end-page: 276 ident: bib41 article-title: Match-up approaches to a dynamic rescheduling problem publication-title: Int. J. Prod. Res. – volume: 25 start-page: 1 year: 2017 end-page: 54 ident: bib43 article-title: Particle swarm optimization for single objective continuous space problems: a review publication-title: Evol. Comput. – volume: 52 start-page: 440 year: 2004 end-page: 453 ident: bib6 article-title: Rescheduling for new orders publication-title: Oper. Res. – volume: 96 start-page: 31 year: 2016 end-page: 51 ident: bib36 article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem publication-title: Comput. Ind. Eng. – start-page: 69 year: 1998 end-page: 73 ident: bib48 article-title: A modified particle swarm optimizer publication-title: IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence – volume: 62 start-page: 670 year: 2012 end-page: 686 ident: bib14 article-title: Genetic algorithms for match-up rescheduling of the flexible manufacturing systems publication-title: Comput. Ind. Eng. – volume: 6 start-page: 154 year: 1994 end-page: 160 ident: bib54 article-title: Genetic algorithms and random keys for sequencing andoptimization publication-title: ORSA J. Comput. – volume: 30 start-page: 1809 year: 2019 end-page: 1830 ident: bib23 article-title: Review of job shop scheduling research and its new perspectives under Industry 4.0 publication-title: J. Intell. Manuf. – year: 2002 ident: bib46 article-title: Scheduling Theory, Algorithms, and Systems – volume: 62 year: 2019 ident: bib35 article-title: Generalized pigeon-inspired optimization algorithms publication-title: Sci. China Inf. Sci. – start-page: 633 year: 2011 end-page: 640 ident: bib52 article-title: Inertia weight strategies in particle swarm optimization publication-title: 2011 Third World Congress on Nature and Biologically Inspired Computing – volume: 9 start-page: 95 year: 1977 end-page: 102 ident: bib16 article-title: Centralized scheduling and priority implementation heuristics for a dynamic job shop model publication-title: A I I E Transactions – volume: 126 start-page: 567 year: 2000 end-page: 586 ident: bib12 article-title: Analysis of reactive scheduling problems in a job shop environment publication-title: Eur. J. Oper. Res. – volume: 61 start-page: 299 year: 2019 end-page: 309 ident: bib57 article-title: An adaptive scheduling algorithm for dynamic jobs for dealing with the flexible job shop scheduling problem publication-title: Business & Information Systems Engineering – volume: 45 start-page: 92 year: 2016 ident: 10.1016/j.swevo.2019.100594_bib9 article-title: A multi-start variable neigbourhood descent algorithm for hybrid flowshop rescheduling publication-title: Comput. Ind. Eng. – volume: 2019 start-page: 1 issue: 11 year: 2019 ident: 10.1016/j.swevo.2019.100594_bib2 article-title: Application research of chaotic carrier frequency modulation technology in two-stage matrix converter publication-title: Math. Probl. Eng. – volume: 113 start-page: 10 year: 2017 ident: 10.1016/j.swevo.2019.100594_bib31 article-title: Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.09.005 – volume: 29 start-page: 451 issue: 2 year: 2018 ident: 10.1016/j.swevo.2019.100594_bib32 article-title: Parallel bat algorithm for optimizing makespan in job shop scheduling problems publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1121-x – volume: 51 start-page: 2462 issue: 8 year: 2013 ident: 10.1016/j.swevo.2019.100594_bib7 article-title: Batch scheduling on parallel machines with dynamic job arrivals and incompatible job families publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2012.748227 – volume: 33 start-page: 84 issue: 1 year: 2014 ident: 10.1016/j.swevo.2019.100594_bib8 article-title: Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2013.03.004 – volume: 32 start-page: 205 issue: 2 year: 2010 ident: 10.1016/j.swevo.2019.100594_bib40 article-title: Integrating rush orders into existent schedules for a complex job shop problem publication-title: Appl. Intell. doi: 10.1007/s10489-010-0215-6 – volume: 8 start-page: 487 issue: 4 year: 1960 ident: 10.1016/j.swevo.2019.100594_bib47 article-title: Algorithms for solving production-scheduling problems publication-title: Oper. Res. doi: 10.1287/opre.8.4.487 – volume: 127 start-page: 841 issue: 46 year: 2019 ident: 10.1016/j.swevo.2019.100594_bib30 article-title: A hybrid algorithm for order acceptance and scheduling problem in make-to-stock/make-to-order industries publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.11.021 – volume: 35 start-page: 2065 issue: 7 year: 1997 ident: 10.1016/j.swevo.2019.100594_bib44 article-title: Rescheduling job shops under random disruptions publication-title: Int. J. Prod. Res. doi: 10.1080/002075497195074 – volume: 10 start-page: 110 issue: 4 year: 2015 ident: 10.1016/j.swevo.2019.100594_bib28 article-title: Performance analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times: simulation approach publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2015.03.003 – volume: 32 start-page: 811 issue: 5 year: 2017 ident: 10.1016/j.swevo.2019.100594_bib53 article-title: Job shop scheduling method with idle time in cloud manufacturing publication-title: Control Decis. – volume: 23 start-page: 551 issue: 3 year: 2015 ident: 10.1016/j.swevo.2019.100594_bib4 article-title: A research survey: review of flexible job shop scheduling techniques publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12199 – volume: vol. 30 start-page: 34 year: 2019 ident: 10.1016/j.swevo.2019.100594_bib22 article-title: A review of dynamic job shop scheduling techniques – volume: 90 start-page: 107 year: 2015 ident: 10.1016/j.swevo.2019.100594_bib38 article-title: Effective ensembles of heuristics for scheduling flexible job shop problem with new job insertion publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.09.005 – volume: 49 start-page: 1944 issue: 5 year: 2019 ident: 10.1016/j.swevo.2019.100594_bib13 article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2817240 – volume: 6 start-page: 154 issue: 2 year: 1994 ident: 10.1016/j.swevo.2019.100594_bib54 article-title: Genetic algorithms and random keys for sequencing andoptimization publication-title: ORSA J. Comput. doi: 10.1287/ijoc.6.2.154 – volume: 2 start-page: 114 issue: 2 year: 2010 ident: 10.1016/j.swevo.2019.100594_bib29 article-title: Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability publication-title: CIRP Journal of Manufacturing Science & Technology doi: 10.1016/j.cirpj.2009.10.001 – volume: 109 start-page: 1 year: 2016 ident: 10.1016/j.swevo.2019.100594_bib39 article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.06.014 – volume: 96 start-page: 31 year: 2016 ident: 10.1016/j.swevo.2019.100594_bib45 article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.03.011 – volume: 62 start-page: 670 issue: 2 year: 2012 ident: 10.1016/j.swevo.2019.100594_bib14 article-title: Genetic algorithms for match-up rescheduling of the flexible manufacturing systems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2011.12.001 – start-page: 633 year: 2011 ident: 10.1016/j.swevo.2019.100594_bib52 article-title: Inertia weight strategies in particle swarm optimization – volume: 32 start-page: 53 issue: 1 year: 1993 ident: 10.1016/j.swevo.2019.100594_bib18 article-title: Dynamic scheduling a survey of research publication-title: Int. J. Prod. Econ. doi: 10.1016/0925-5273(93)90007-8 – volume: 62 issue: 7 year: 2019 ident: 10.1016/j.swevo.2019.100594_bib35 article-title: Generalized pigeon-inspired optimization algorithms publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-018-9727-y – start-page: 1106 year: 1984 ident: 10.1016/j.swevo.2019.100594_bib56 article-title: Quality engineering through design optimization – start-page: 1951 year: 1999 ident: 10.1016/j.swevo.2019.100594_bib49 article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization – volume: 43 start-page: 869 issue: 5 year: 2005 ident: 10.1016/j.swevo.2019.100594_bib1 article-title: A review of production planning and control: the applicability of key concepts to the make-to-order industry publication-title: Int. J. Prod. Res. doi: 10.1080/0020754042000298520 – start-page: 244 year: 2009 ident: 10.1016/j.swevo.2019.100594_bib51 article-title: Mobile robot path planning with complex constraints based on the second-order oscillating particle swarm optimization algorithm – start-page: 1942 year: 1995 ident: 10.1016/j.swevo.2019.100594_bib42 article-title: Particle swarm optimization – volume: 30 start-page: 293 issue: 3 year: 2000 ident: 10.1016/j.swevo.2019.100594_bib55 article-title: Multiobjective programming using uniform design and genetic algorithm publication-title: IEEE Transactions on Systems Man & Cybernetics Part C doi: 10.1109/5326.885111 – volume: 68 start-page: 847 year: 2018 ident: 10.1016/j.swevo.2019.100594_bib10 article-title: Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in Industry 4.0 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.009 – volume: 20 start-page: 1264 issue: 9 year: 1974 ident: 10.1016/j.swevo.2019.100594_bib15 article-title: Job shop scheduling with due dates and variable processing times publication-title: Manag. Sci. doi: 10.1287/mnsc.20.9.1264 – volume: 20 start-page: 227 issue: 2 year: 1982 ident: 10.1016/j.swevo.2019.100594_bib24 article-title: Job shop scheduling heuristics and frequency of scheduling publication-title: Int. J. Prod. Res. doi: 10.1080/00207548208947763 – volume: 25 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.swevo.2019.100594_bib43 article-title: Particle swarm optimization for single objective continuous space problems: a review publication-title: Evol. Comput. doi: 10.1162/EVCO_r_00180 – volume: 60 start-page: S41 issue: 1 year: 2009 ident: 10.1016/j.swevo.2019.100594_bib21 article-title: Fifty years of scheduling: a survey of milestones publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2009.2 – volume: 35 start-page: 651 issue: 3 year: 1997 ident: 10.1016/j.swevo.2019.100594_bib25 article-title: Heuristics for dynamic job shop scheduling with real-time updated queueing time estimates publication-title: Int. J. Prod. Res. doi: 10.1080/002075497195641 – volume: 30 start-page: 1809 year: 2019 ident: 10.1016/j.swevo.2019.100594_bib23 article-title: Review of job shop scheduling research and its new perspectives under Industry 4.0 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1350-2 – volume: 61 start-page: 299 issue: 3 year: 2019 ident: 10.1016/j.swevo.2019.100594_bib57 article-title: An adaptive scheduling algorithm for dynamic jobs for dealing with the flexible job shop scheduling problem publication-title: Business & Information Systems Engineering doi: 10.1007/s12599-019-00590-7 – volume: 126 start-page: 567 issue: 3 year: 2000 ident: 10.1016/j.swevo.2019.100594_bib12 article-title: Analysis of reactive scheduling problems in a job shop environment publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(99)00311-2 – volume: 6 start-page: 39 issue: 1 year: 2003 ident: 10.1016/j.swevo.2019.100594_bib19 article-title: Rescheduling manufacturing systems: a framework of strategies, policies, and methods publication-title: J. Sched. doi: 10.1023/A:1022235519958 – volume: 18 start-page: 43 issue: 1 year: 1990 ident: 10.1016/j.swevo.2019.100594_bib17 article-title: Dynamic job shop scheduling: a survey of simulation research publication-title: Omega doi: 10.1016/0305-0483(90)90017-4 – volume: 6 start-page: 58 issue: 2 year: 2002 ident: 10.1016/j.swevo.2019.100594_bib50 article-title: The particle swarm-explosion, stability and convergence in a multi dimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 96 start-page: 31 year: 2016 ident: 10.1016/j.swevo.2019.100594_bib36 article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.03.011 – volume: 52 start-page: 440 issue: 3 year: 2004 ident: 10.1016/j.swevo.2019.100594_bib6 article-title: Rescheduling for new orders publication-title: Oper. Res. doi: 10.1287/opre.1030.0101 – volume: 12 start-page: 417 issue: 4 year: 2009 ident: 10.1016/j.swevo.2019.100594_bib20 article-title: A survey of dynamic scheduling in manufacturing systems publication-title: J. Sched. doi: 10.1007/s10951-008-0090-8 – volume: 67 start-page: 19 issue: 1–4 year: 2013 ident: 10.1016/j.swevo.2019.100594_bib27 article-title: Multicontextual dispatching rules for job shops with dynamic job arrival publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-4765-8 – year: 2002 ident: 10.1016/j.swevo.2019.100594_bib46 – volume: 46 start-page: 445 issue: 4 year: 2016 ident: 10.1016/j.swevo.2019.100594_bib33 article-title: Brain storm optimization algorithm: a review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-016-9471-0 – start-page: 69 year: 1998 ident: 10.1016/j.swevo.2019.100594_bib48 article-title: A modified particle swarm optimizer – volume: vol. 23 year: 2019 ident: 10.1016/j.swevo.2019.100594_bib34 – volume: 24 start-page: 70 issue: 1–2 year: 2004 ident: 10.1016/j.swevo.2019.100594_bib26 article-title: Efficient dispatching rules for dynamic job shop scheduling publication-title: Int. J. Adv. Manuf. Technol. – volume: 50 start-page: 261 issue: 1 year: 2012 ident: 10.1016/j.swevo.2019.100594_bib41 article-title: Match-up approaches to a dynamic rescheduling problem publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2011.571458 – volume: 30 start-page: 2257 issue: 5 year: 2019 ident: 10.1016/j.swevo.2019.100594_bib11 article-title: Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1385-4 – volume: 55 start-page: 3234 issue: 11 year: 2017 ident: 10.1016/j.swevo.2019.100594_bib5 article-title: New scheduling algorithms and digital tool for dynamic permutation flowshop with newly arrived order publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2017.1285077 – volume: 42 start-page: 7652 issue: 21 year: 2015 ident: 10.1016/j.swevo.2019.100594_bib37 article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion publication-title: Expert Systems with Applications An International Journal doi: 10.1016/j.eswa.2015.06.004 – volume: 12 start-page: 51 year: 2006 ident: 10.1016/j.swevo.2019.100594_bib3 article-title: A survey of multi-objective scheduling techniques applied to the job shop problem (JSP) publication-title: Appl. Manag. Sci. – volume: 9 start-page: 95 issue: 1 year: 1977 ident: 10.1016/j.swevo.2019.100594_bib16 article-title: Centralized scheduling and priority implementation heuristics for a dynamic job shop model publication-title: A I I E Transactions doi: 10.1080/05695557708975127 |
| SSID | ssj0000602559 |
| Score | 2.548553 |
| Snippet | Random job arrivals that happen frequently in manufacturing practice may create a need for dynamic scheduling. This paper considers an issue of how to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100594 |
| SubjectTerms | Dynamic job shop scheduling Match-up strategy Multi-objective problem New job arrival Particle swarm optimization |
| Title | An improved particle swarm optimization algorithm for dynamic job shop scheduling problems with random job arrivals |
| URI | https://dx.doi.org/10.1016/j.swevo.2019.100594 |
| Volume | 51 |
| WOSCitedRecordID | wos000500379000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb5swFLeydIdd9j21-5IPuzGqgDHgYzR12qqpmrROi3ZBxuCEKIEI0jTn_uV9NjYhWxWth11QRB7G5P14_vnlfSD0QXIqpcgoWD9J3YBweOcEoS6h3CckFTKXurr-t-jiIp5M2PfB4MbmwmwWUVnG2y1b_VdVwzlQtkqdvYe6u0HhBHwGpcMR1A7Hf1L8uFSpj3W1ASq5Mt87zTWvl04F9mFpEi8dvphWdbGeLXWkYdZ2pnfmVeo0s2rlwK4XViGTrK6bzphEOFjcsmqpBXldFzD1ps9wf-g7KXd8vjHPqQLzhO4esfe3_y_jqv4926Wjdf7r82J2VXQmyTq1QXK6BUBP-84Kj_UCP7RN82GH6QIp3DPApuJsa0E9XUHmTuPe-hnmp801PICKymOnO-n9Utp_LHFd4KGNaZsnepBEDZK0gzxAR35EWTxER-OvZ5PzzlM3CvW-S3UptLO35at0oOBf07mb4vRoy-VT9NjsN_C4xcEzNMjL5-iJ7eWBjWl_gZpxiS1ssIUN1rDBfdjgDjYYYIMNbDCgASvY4B1ssIUNVrDBLWy0oIXNS_Tz89nlpy-uacjhChLEa1eoyj3AiEdCjjJVOU5E0vcFI5zRXPhckT3Jo2wkCSdxLkJBFGONGPdo7rGUvELDsirzY4TzgHMacl8EcRhkksd5mBLqpYEqSZgy7wT59jdMhKlWr5qmLJIDKjxBH7uLVm2xlsPioVVOYvhmyyMTQNyhC1_f7z5v0KPdu_AWDdf1Vf4OPRSbddHU7w3cbgG7kqlG |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+particle+swarm+optimization+algorithm+for+dynamic+job+shop+scheduling+problems+with+random+job+arrivals&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wang%2C+Zhen&rft.au=Zhang%2C+Jihui&rft.au=Yang%2C+Shengxiang&rft.date=2019-12-01&rft.issn=2210-6502&rft.volume=51&rft.spage=100594&rft_id=info:doi/10.1016%2Fj.swevo.2019.100594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2019_100594 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |