Vision Transformers for Single Image Dehazing

Image dehazing is a representative low-level vision task that estimates latent haze-free images from hazy images. In recent years, convolutional neural network-based methods have dominated image dehazing. However, vision Transformers, which has recently made a breakthrough in high-level vision tasks...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 32; p. 1
Main Authors: Song, Yuda, He, Zhuqing, Qian, Hui, Du, Xin
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image dehazing is a representative low-level vision task that estimates latent haze-free images from hazy images. In recent years, convolutional neural network-based methods have dominated image dehazing. However, vision Transformers, which has recently made a breakthrough in high-level vision tasks, has not brought new dimensions to image dehazing. We start with the popular Swin Transformer and find that several of its key designs are unsuitable for image dehazing. To this end, we propose DehazeFormer, which consists of various improvements, such as the modified normalization layer, activation function, and spatial information aggregation scheme. We train multiple variants of DehazeFormer on various datasets to demonstrate its effectiveness. Specifically, on the most frequently used SOTS indoor set, our small model outperforms FFA-Net with only 25% #Param and 5% computational cost. To the best of our knowledge, our large model is the first method with the PSNR over 40 dB on the SOTS indoor set, dramatically outperforming the previous state-of-the-art methods. We also collect a large-scale realistic remote sensing dehazing dataset for evaluating the method's capability to remove highly non-homogeneous haze. We share our code and dataset at https://github.com/IDKiro/DehazeFormer.
AbstractList Image dehazing is a representative low-level vision task that estimates latent haze-free images from hazy images. In recent years, convolutional neural network-based methods have dominated image dehazing. However, vision Transformers, which has recently made a breakthrough in high-level vision tasks, has not brought new dimensions to image dehazing. We start with the popular Swin Transformer and find that several of its key designs are unsuitable for image dehazing. To this end, we propose DehazeFormer, which consists of various improvements, such as the modified normalization layer, activation function, and spatial information aggregation scheme. We train multiple variants of DehazeFormer on various datasets to demonstrate its effectiveness. Specifically, on the most frequently used SOTS indoor set, our small model outperforms FFA-Net with only 25% #Param and 5% computational cost. To the best of our knowledge, our large model is the first method with the PSNR over 40 dB on the SOTS indoor set, dramatically outperforming the previous state-of-the-art methods. We also collect a large-scale realistic remote sensing dehazing dataset for evaluating the method's capability to remove highly non-homogeneous haze. We share our code and dataset at https://github.com/IDKiro/DehazeFormer.
Image dehazing is a representative low-level vision task that estimates latent haze-free images from hazy images. In recent years, convolutional neural network-based methods have dominated image dehazing. However, vision Transformers, which has recently made a breakthrough in high-level vision tasks, has not brought new dimensions to image dehazing. We start with the popular Swin Transformer and find that several of its key designs are unsuitable for image dehazing. To this end, we propose DehazeFormer, which consists of various improvements, such as the modified normalization layer, activation function, and spatial information aggregation scheme. We train multiple variants of DehazeFormer on various datasets to demonstrate its effectiveness. Specifically, on the most frequently used SOTS indoor set, our small model outperforms FFA-Net with only 25% #Param and 5% computational cost. To the best of our knowledge, our large model is the first method with the PSNR over 40 dB on the SOTS indoor set, dramatically outperforming the previous state-of-the-art methods. We also collect a large-scale realistic remote sensing dehazing dataset for evaluating the method's capability to remove highly non-homogeneous haze. We share our code and dataset at https://github.com/IDKiro/DehazeFormer.Image dehazing is a representative low-level vision task that estimates latent haze-free images from hazy images. In recent years, convolutional neural network-based methods have dominated image dehazing. However, vision Transformers, which has recently made a breakthrough in high-level vision tasks, has not brought new dimensions to image dehazing. We start with the popular Swin Transformer and find that several of its key designs are unsuitable for image dehazing. To this end, we propose DehazeFormer, which consists of various improvements, such as the modified normalization layer, activation function, and spatial information aggregation scheme. We train multiple variants of DehazeFormer on various datasets to demonstrate its effectiveness. Specifically, on the most frequently used SOTS indoor set, our small model outperforms FFA-Net with only 25% #Param and 5% computational cost. To the best of our knowledge, our large model is the first method with the PSNR over 40 dB on the SOTS indoor set, dramatically outperforming the previous state-of-the-art methods. We also collect a large-scale realistic remote sensing dehazing dataset for evaluating the method's capability to remove highly non-homogeneous haze. We share our code and dataset at https://github.com/IDKiro/DehazeFormer.
Author Du, Xin
Song, Yuda
He, Zhuqing
Qian, Hui
Author_xml – sequence: 1
  givenname: Yuda
  orcidid: 0000-0002-7339-1335
  surname: Song
  fullname: Song, Yuda
  organization: Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Zhuqing
  orcidid: 0000-0001-9606-8402
  surname: He
  fullname: He, Zhuqing
  organization: Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Hui
  surname: Qian
  fullname: Qian, Hui
  organization: Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Xin
  orcidid: 0000-0002-6215-9733
  surname: Du
  fullname: Du, Xin
  organization: Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37030760$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtPwzAQhy0Eog_YGRCKxMKSco4dJx5ReVWqBBKFNXLsS0mVR7GTAf56XLUg1IHpLPv7-e6-ETls2gYJOaMwoRTk9WL2PIkgYhMWxSIR7IAMqeQ0BODRoT9DnIQJ5XJARs6tACiPqTgmA5YAg0TAkIRvpSvbJlhY1biitTVaF_gavJTNssJgVqslBrf4rr78xQk5KlTl8HRXx-T1_m4xfQznTw-z6c081IynXZgXqQGKKKXQqdLcxLFQKcTKpByZkLEGYXLDacGEf-aRjjE1uQdNURSYsDG52v67tu1Hj67L6tJprCrVYNu7LEpk6vfym3n0cg9dtb1t_HQbCihLI0k9dbGj-rxGk61tWSv7mf2I8ABsAW1b5ywWvwiFbOM6866zjets59pHxF5El53qvM3OqrL6L3i-DZaI-KePH4RJyb4BnUmJsQ
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3447219
crossref_primary_10_1049_ipr2_13146
crossref_primary_10_1109_ACCESS_2024_3378737
crossref_primary_10_1016_j_dsp_2024_104722
crossref_primary_10_1080_01431161_2025_2475523
crossref_primary_10_1038_s41598_023_39524_5
crossref_primary_10_1109_TCSVT_2024_3497594
crossref_primary_10_1016_j_jvcir_2025_104516
crossref_primary_10_3390_math12233650
crossref_primary_10_1109_TIP_2025_3602657
crossref_primary_10_1109_TMI_2023_3331488
crossref_primary_10_3390_electronics14153099
crossref_primary_10_1016_j_neucom_2025_129512
crossref_primary_10_1016_j_neunet_2023_12_003
crossref_primary_10_1049_ipr2_13259
crossref_primary_10_1016_j_dsp_2024_104710
crossref_primary_10_1016_j_inffus_2025_103036
crossref_primary_10_1016_j_jag_2024_104347
crossref_primary_10_1016_j_patcog_2024_111198
crossref_primary_10_1109_LSP_2025_3551201
crossref_primary_10_3390_jimaging11090290
crossref_primary_10_1109_TITS_2023_3277709
crossref_primary_10_1016_j_engappai_2024_108933
crossref_primary_10_3390_diagnostics14080786
crossref_primary_10_1007_s11760_025_04185_6
crossref_primary_10_3390_rs15184617
crossref_primary_10_1109_TCSVT_2024_3519352
crossref_primary_10_1109_TGRS_2025_3546489
crossref_primary_10_1016_j_patcog_2024_111074
crossref_primary_10_1007_s00034_025_03058_0
crossref_primary_10_3390_jmse12071208
crossref_primary_10_1016_j_jvcir_2024_104132
crossref_primary_10_1109_LSP_2025_3530852
crossref_primary_10_1016_j_infrared_2025_105975
crossref_primary_10_1016_j_eswa_2025_127837
crossref_primary_10_1109_TGRS_2024_3489964
crossref_primary_10_1016_j_displa_2024_102714
crossref_primary_10_1007_s00371_023_03109_0
crossref_primary_10_1007_s00371_024_03794_5
crossref_primary_10_1016_j_optlaseng_2025_109233
crossref_primary_10_3390_app131810475
crossref_primary_10_3390_rs14225737
crossref_primary_10_1007_s11227_025_07089_x
crossref_primary_10_1016_j_patcog_2025_112206
crossref_primary_10_1007_s11042_023_17554_5
crossref_primary_10_1109_TITS_2023_3309600
crossref_primary_10_1007_s10489_024_05443_9
crossref_primary_10_1109_JSTARS_2025_3556845
crossref_primary_10_1109_TMM_2023_3326881
crossref_primary_10_1109_TCSVT_2023_3274366
crossref_primary_10_3390_s24123972
crossref_primary_10_1007_s11207_024_02312_z
crossref_primary_10_1016_j_engappai_2023_107692
crossref_primary_10_34248_bsengineering_1349643
crossref_primary_10_1016_j_knosys_2025_113426
crossref_primary_10_1007_s00371_025_03837_5
crossref_primary_10_1109_JSTARS_2025_3579431
crossref_primary_10_1109_TCSVT_2024_3412093
crossref_primary_10_1109_TIP_2025_3592546
crossref_primary_10_1109_TGRS_2025_3585894
crossref_primary_10_3390_app142411565
crossref_primary_10_1016_j_patcog_2025_111664
crossref_primary_10_1111_cgf_15221
crossref_primary_10_1007_s10489_025_06280_0
crossref_primary_10_1016_j_knosys_2025_113579
crossref_primary_10_1109_TGRS_2023_3338611
crossref_primary_10_1007_s00530_024_01630_3
crossref_primary_10_1145_3758097
crossref_primary_10_3390_app142411558
crossref_primary_10_3390_s24072041
crossref_primary_10_1007_s10489_025_06665_1
crossref_primary_10_1016_j_eswa_2025_128959
crossref_primary_10_3390_s23010043
crossref_primary_10_1016_j_neunet_2025_107495
crossref_primary_10_1109_TIP_2024_3378472
crossref_primary_10_1007_s00530_025_01845_y
crossref_primary_10_3390_rs16081450
crossref_primary_10_1109_TPAMI_2025_3562211
crossref_primary_10_3390_app13085171
crossref_primary_10_1002_sdtp_17317
crossref_primary_10_1109_TCSVT_2024_3465670
crossref_primary_10_1016_j_neucom_2024_129168
crossref_primary_10_1016_j_neucom_2024_129044
crossref_primary_10_1007_s00371_025_04140_z
crossref_primary_10_1007_s00371_024_03740_5
crossref_primary_10_3390_app14198633
crossref_primary_10_3390_app14135464
crossref_primary_10_3390_electronics13101900
crossref_primary_10_3390_rs17172944
crossref_primary_10_1016_j_eswa_2025_126549
crossref_primary_10_1007_s12559_023_10244_2
crossref_primary_10_1007_s11263_024_02056_0
crossref_primary_10_1049_ipr2_70079
crossref_primary_10_3390_s24144566
crossref_primary_10_1038_s41598_025_95510_z
crossref_primary_10_3390_electronics13245003
crossref_primary_10_3390_electronics13173392
crossref_primary_10_1016_j_dsp_2024_104828
crossref_primary_10_3390_ai6080181
crossref_primary_10_3390_rs17061055
crossref_primary_10_1080_09540091_2025_2465448
crossref_primary_10_1109_LSP_2024_3430066
crossref_primary_10_3390_rs17030458
crossref_primary_10_1016_j_compeleceng_2025_110257
crossref_primary_10_1109_JSTARS_2025_3552582
crossref_primary_10_3390_app15105374
crossref_primary_10_1007_s11760_025_04515_8
crossref_primary_10_1016_j_imavis_2025_105700
crossref_primary_10_1016_j_engappai_2025_111385
crossref_primary_10_1109_TNNLS_2025_3561924
crossref_primary_10_1002_qre_3492
crossref_primary_10_1016_j_engappai_2025_112119
crossref_primary_10_1016_j_patcog_2025_111863
crossref_primary_10_3390_app15094785
crossref_primary_10_1109_TIP_2025_3587578
crossref_primary_10_1109_LGRS_2024_3350652
crossref_primary_10_1109_TGRS_2024_3427788
crossref_primary_10_1016_j_patrec_2025_01_022
crossref_primary_10_1038_s41598_023_36149_6
crossref_primary_10_3390_s25154755
crossref_primary_10_1007_s11227_024_06665_x
crossref_primary_10_1016_j_patrec_2025_08_008
crossref_primary_10_1016_j_neucom_2024_129075
crossref_primary_10_1109_TFUZZ_2024_3512864
crossref_primary_10_3390_app15179320
crossref_primary_10_1007_s11760_025_04625_3
crossref_primary_10_1049_ipr2_70207
crossref_primary_10_1109_TGRS_2025_3526927
crossref_primary_10_1016_j_cviu_2024_104274
crossref_primary_10_1016_j_patcog_2025_111615
crossref_primary_10_1016_j_cviu_2024_104033
crossref_primary_10_1007_s13042_024_02335_9
crossref_primary_10_1016_j_asoc_2024_111873
crossref_primary_10_1016_j_neunet_2025_107739
crossref_primary_10_3390_rs17101688
crossref_primary_10_1007_s11760_024_03665_5
crossref_primary_10_1016_j_compeleceng_2025_110221
crossref_primary_10_1088_1361_6501_ad9f88
crossref_primary_10_1016_j_eswa_2025_128511
crossref_primary_10_3390_s24123917
crossref_primary_10_1016_j_inffus_2025_103104
crossref_primary_10_1007_s11760_024_03160_x
crossref_primary_10_1007_s00371_023_03129_w
crossref_primary_10_1016_j_dsp_2025_105037
crossref_primary_10_1016_j_imavis_2024_105212
crossref_primary_10_1016_j_infrared_2023_104837
crossref_primary_10_1117_1_JEI_33_1_013056
crossref_primary_10_1109_ACCESS_2024_3419063
crossref_primary_10_3390_math12142221
crossref_primary_10_1016_j_cviu_2025_104336
crossref_primary_10_1145_3628451
crossref_primary_10_1109_JSTARS_2025_3585939
crossref_primary_10_1007_s11227_025_07429_x
crossref_primary_10_1109_TIP_2024_3456583
crossref_primary_10_1016_j_eswa_2025_128761
crossref_primary_10_1109_TIM_2025_3541646
crossref_primary_10_1109_TMM_2025_3535316
crossref_primary_10_1109_LRA_2023_3300254
crossref_primary_10_1109_TIM_2024_3379388
crossref_primary_10_1109_TPAMI_2024_3403234
crossref_primary_10_1109_LGRS_2023_3319832
crossref_primary_10_1109_JOE_2024_3519681
crossref_primary_10_1016_j_engappai_2025_110372
crossref_primary_10_1016_j_neucom_2023_126535
crossref_primary_10_1109_TMM_2025_3543063
crossref_primary_10_3390_s25061889
crossref_primary_10_1109_TPAMI_2023_3330416
crossref_primary_10_1111_phor_70018
crossref_primary_10_1016_j_cviu_2024_104222
crossref_primary_10_1111_exsy_13575
crossref_primary_10_1016_j_imavis_2024_105236
crossref_primary_10_1007_s13042_024_02510_y
crossref_primary_10_32604_cmc_2023_046685
crossref_primary_10_3390_pr13082628
crossref_primary_10_1016_j_eswa_2025_128542
crossref_primary_10_1109_TGRS_2024_3438245
crossref_primary_10_1109_TGRS_2023_3325927
crossref_primary_10_1007_s10489_024_06226_y
crossref_primary_10_1016_j_engappai_2025_111635
crossref_primary_10_1109_TAI_2024_3379113
crossref_primary_10_1016_j_jvcir_2024_104324
crossref_primary_10_1007_s00530_024_01599_z
crossref_primary_10_1016_j_infrared_2025_106098
crossref_primary_10_1016_j_jvcir_2024_104325
crossref_primary_10_1109_TMRB_2024_3517139
crossref_primary_10_1016_j_aei_2024_102723
crossref_primary_10_1109_TMM_2024_3359769
crossref_primary_10_3390_s23198102
crossref_primary_10_1007_s11431_023_2614_8
crossref_primary_10_3390_electronics11203351
crossref_primary_10_1007_s00371_024_03551_8
crossref_primary_10_1016_j_optlastec_2025_113081
crossref_primary_10_1109_JSEN_2025_3526670
crossref_primary_10_1016_j_engappai_2023_106822
crossref_primary_10_3390_electronics13101867
crossref_primary_10_1587_transfun_2024EAP1104
crossref_primary_10_1007_s10586_024_05047_5
crossref_primary_10_1007_s11042_024_18112_3
crossref_primary_10_1007_s11263_024_02161_0
crossref_primary_10_1109_TIP_2024_3480696
crossref_primary_10_1007_s11760_024_03392_x
crossref_primary_10_1016_j_aei_2024_102931
crossref_primary_10_1109_TCSVT_2025_3526647
crossref_primary_10_1016_j_imavis_2024_105014
crossref_primary_10_1016_j_imavis_2025_105659
crossref_primary_10_1007_s11263_024_02108_5
crossref_primary_10_1016_j_eswa_2025_128565
crossref_primary_10_1016_j_knosys_2025_114167
crossref_primary_10_3390_math12223553
crossref_primary_10_1109_TCSVT_2024_3429557
crossref_primary_10_1016_j_sigpro_2024_109768
crossref_primary_10_1016_j_sigpro_2023_109225
crossref_primary_10_1109_TETCI_2024_3451550
crossref_primary_10_1016_j_jvcir_2025_104407
crossref_primary_10_1007_s00371_023_02987_8
crossref_primary_10_1016_j_imavis_2024_105129
crossref_primary_10_1109_TGRS_2025_3526993
crossref_primary_10_3390_electronics14132582
crossref_primary_10_1007_s10044_025_01510_0
crossref_primary_10_3390_electronics13193812
crossref_primary_10_1080_01431161_2024_2449476
crossref_primary_10_3390_sym16050511
crossref_primary_10_1016_j_engappai_2025_111666
crossref_primary_10_1109_TCE_2024_3433432
crossref_primary_10_1016_j_eswa_2024_123731
crossref_primary_10_1109_TAI_2024_3421175
crossref_primary_10_3390_electronics13122269
crossref_primary_10_1007_s10462_023_10595_0
crossref_primary_10_1080_03772063_2025_2479761
crossref_primary_10_1109_TETCI_2024_3386838
crossref_primary_10_1016_j_engappai_2025_110981
crossref_primary_10_1109_TETCI_2024_3382233
crossref_primary_10_1016_j_engappai_2024_109486
crossref_primary_10_1109_TPAMI_2024_3416731
crossref_primary_10_1109_TGRS_2025_3600540
crossref_primary_10_3390_d17020139
crossref_primary_10_3390_f14102062
crossref_primary_10_3390_rs16193641
crossref_primary_10_1016_j_eswa_2024_125901
crossref_primary_10_1007_s11760_024_03767_0
crossref_primary_10_1016_j_neucom_2024_128955
crossref_primary_10_1016_j_engappai_2024_109236
crossref_primary_10_1016_j_measurement_2025_118565
crossref_primary_10_1016_j_eswa_2025_127263
crossref_primary_10_1016_j_inffus_2025_102977
crossref_primary_10_1038_s41598_024_73866_y
crossref_primary_10_1016_j_mejo_2025_106782
crossref_primary_10_1016_j_neucom_2025_131130
crossref_primary_10_3390_electronics14163245
crossref_primary_10_1002_advs_202309998
crossref_primary_10_1007_s13042_022_01753_x
crossref_primary_10_1109_ACCESS_2025_3588390
crossref_primary_10_3390_rs17152664
crossref_primary_10_1109_TGRS_2024_3435470
crossref_primary_10_1016_j_eswa_2025_128488
crossref_primary_10_1007_s11263_024_02182_9
crossref_primary_10_1016_j_isprsjprs_2024_09_034
crossref_primary_10_1109_JOE_2024_3525150
crossref_primary_10_1016_j_neucom_2025_131002
crossref_primary_10_1007_s00521_024_10930_8
crossref_primary_10_3390_app15094950
crossref_primary_10_1007_s00530_023_01224_5
crossref_primary_10_1007_s11554_024_01464_2
crossref_primary_10_1109_JSTARS_2024_3454754
crossref_primary_10_1016_j_aei_2023_102326
crossref_primary_10_1016_j_engappai_2024_109012
crossref_primary_10_1109_TGRS_2025_3551286
crossref_primary_10_1007_s11760_025_03928_9
crossref_primary_10_1049_ipr2_12995
crossref_primary_10_1177_30504554241296445
crossref_primary_10_1080_09500340_2025_2502109
crossref_primary_10_1016_j_isprsjprs_2024_09_001
crossref_primary_10_1016_j_inffus_2024_102277
crossref_primary_10_1109_ACCESS_2024_3459588
crossref_primary_10_1016_j_rse_2025_114913
crossref_primary_10_1016_j_cviu_2024_104069
crossref_primary_10_1016_j_engappai_2024_108346
crossref_primary_10_1007_s11760_024_03373_0
crossref_primary_10_1109_TCSVT_2024_3411655
crossref_primary_10_1117_1_JEI_34_1_013051
crossref_primary_10_3390_s25144472
crossref_primary_10_1016_j_neucom_2024_128741
crossref_primary_10_1007_s13042_023_02055_6
crossref_primary_10_1016_j_knosys_2023_111156
crossref_primary_10_1109_JSTARS_2023_3312515
crossref_primary_10_1109_LGRS_2024_3450181
crossref_primary_10_1007_s11042_023_17010_4
crossref_primary_10_1007_s11063_023_11301_5
crossref_primary_10_1007_s40747_025_02076_4
crossref_primary_10_1007_s00034_024_02837_5
crossref_primary_10_1016_j_measurement_2025_116697
crossref_primary_10_1080_13682199_2024_2444778
crossref_primary_10_1016_j_neunet_2024_106107
crossref_primary_10_1007_s11554_024_01432_w
crossref_primary_10_1016_j_patcog_2025_112188
crossref_primary_10_3390_rs16020225
crossref_primary_10_3390_rs17050759
crossref_primary_10_1109_TIM_2024_3374305
crossref_primary_10_3390_sym17071122
crossref_primary_10_1007_s00530_024_01462_1
crossref_primary_10_1038_s41598_025_08690_z
crossref_primary_10_1109_TII_2023_3331114
crossref_primary_10_32604_cmes_2024_049737
crossref_primary_10_1016_j_cviu_2025_104495
crossref_primary_10_3390_photonics10101072
crossref_primary_10_1109_TMM_2024_3377133
crossref_primary_10_1016_j_neucom_2025_130356
crossref_primary_10_3390_atmos16091065
crossref_primary_10_1109_TMM_2024_3369979
crossref_primary_10_1109_TCE_2024_3417476
crossref_primary_10_1007_s11760_023_02752_3
crossref_primary_10_3390_app15115858
crossref_primary_10_1016_j_optlastec_2023_110039
crossref_primary_10_1109_ACCESS_2024_3461318
crossref_primary_10_3390_s25165125
crossref_primary_10_1109_TGRS_2024_3379744
crossref_primary_10_1016_j_knosys_2023_111116
crossref_primary_10_3390_electronics14101906
crossref_primary_10_1016_j_inffus_2025_103533
crossref_primary_10_1016_j_displa_2025_103212
crossref_primary_10_1007_s11760_024_03516_3
crossref_primary_10_1007_s11760_025_03829_x
crossref_primary_10_1109_TIP_2025_3586514
crossref_primary_10_1016_j_neunet_2024_106689
crossref_primary_10_1109_TPAMI_2025_3568690
crossref_primary_10_1109_TIM_2025_3558788
crossref_primary_10_1007_s11042_023_17473_5
crossref_primary_10_1007_s11760_025_03870_w
crossref_primary_10_1109_TGRS_2024_3474711
crossref_primary_10_3390_rs16152822
crossref_primary_10_1016_j_neucom_2025_131431
crossref_primary_10_1016_j_atres_2025_06_001
crossref_primary_10_1109_TII_2023_3345464
crossref_primary_10_1109_TITS_2025_3534472
crossref_primary_10_3390_rs17122033
crossref_primary_10_1109_ACCESS_2024_3520484
crossref_primary_10_1109_LGRS_2025_3569580
crossref_primary_10_1016_j_patcog_2025_112152
crossref_primary_10_1109_TGRS_2024_3457868
crossref_primary_10_1109_ACCESS_2025_3607857
crossref_primary_10_1109_TGRS_2025_3576979
crossref_primary_10_3390_jmse12091467
crossref_primary_10_1109_LSP_2025_3527197
crossref_primary_10_3390_jimaging9090183
crossref_primary_10_1109_TGRS_2025_3584234
crossref_primary_10_1016_j_asoc_2025_113322
crossref_primary_10_1109_TGRS_2023_3346384
crossref_primary_10_1109_JSEN_2025_3555446
crossref_primary_10_1007_s41976_023_00089_6
crossref_primary_10_1007_s00371_024_03511_2
crossref_primary_10_1016_j_ocecoaman_2025_107783
crossref_primary_10_1016_j_neucom_2025_130566
crossref_primary_10_1109_TIM_2024_3427775
crossref_primary_10_1007_s10044_025_01430_z
crossref_primary_10_1016_j_inffus_2025_102930
crossref_primary_10_1109_TIV_2023_3347952
crossref_primary_10_1109_ACCESS_2025_3578195
crossref_primary_10_1016_j_patrec_2025_05_023
crossref_primary_10_1002_cav_70029
crossref_primary_10_1016_j_asoc_2025_113648
crossref_primary_10_1007_s11760_025_04411_1
crossref_primary_10_1109_JSEN_2024_3372496
crossref_primary_10_3390_rs17122058
crossref_primary_10_1109_TIP_2025_3572788
crossref_primary_10_1007_s11760_025_04434_8
crossref_primary_10_1109_TIV_2023_3331017
crossref_primary_10_1109_TNNLS_2024_3460973
crossref_primary_10_3390_electronics12244984
crossref_primary_10_1109_TGRS_2024_3518568
crossref_primary_10_1016_j_optlastec_2025_113545
crossref_primary_10_1007_s00371_025_03882_0
crossref_primary_10_1007_s11063_023_11384_0
crossref_primary_10_1088_1361_6501_ad6f35
crossref_primary_10_1109_TCSVT_2024_3414677
crossref_primary_10_1007_s10489_024_05569_w
crossref_primary_10_1007_s11227_024_06638_0
crossref_primary_10_1109_LSP_2024_3353161
crossref_primary_10_3390_rs16081422
crossref_primary_10_1007_s00371_024_03556_3
crossref_primary_10_3390_s24113422
crossref_primary_10_1016_j_neucom_2025_130789
crossref_primary_10_1016_j_neucom_2025_131517
crossref_primary_10_1109_TCSVT_2024_3520816
crossref_primary_10_1109_TMM_2024_3521711
crossref_primary_10_1016_j_inffus_2024_102790
crossref_primary_10_1016_j_inffus_2023_102151
crossref_primary_10_1371_journal_pone_0286711
crossref_primary_10_1016_j_neucom_2024_128105
crossref_primary_10_1016_j_neucom_2023_03_061
crossref_primary_10_1109_JSTARS_2025_3580718
crossref_primary_10_3390_electronics12173693
crossref_primary_10_1007_s44267_025_00083_0
crossref_primary_10_1016_j_neucom_2025_130650
crossref_primary_10_1007_s11042_023_14950_9
crossref_primary_10_1007_s11042_025_21095_4
crossref_primary_10_1109_TMM_2024_3368918
crossref_primary_10_3390_app14135391
crossref_primary_10_3390_rs17050919
crossref_primary_10_1007_s10489_025_06635_7
crossref_primary_10_1109_LGRS_2024_3368430
crossref_primary_10_1109_TGRS_2024_3458986
crossref_primary_10_1007_s00138_024_01601_8
crossref_primary_10_3390_electronics13173438
crossref_primary_10_1080_13682199_2025_2516862
crossref_primary_10_1016_j_infrared_2024_105252
crossref_primary_10_3390_rs16091525
crossref_primary_10_4218_etrij_2024_0037
crossref_primary_10_1117_1_JRS_18_046506
crossref_primary_10_1088_1361_6501_adea8d
crossref_primary_10_1109_ACCESS_2025_3568027
crossref_primary_10_3390_s24165098
crossref_primary_10_1109_JAS_2024_124521
crossref_primary_10_1007_s00371_025_03885_x
crossref_primary_10_1007_s00371_024_03611_z
crossref_primary_10_3390_electronics12020299
crossref_primary_10_1109_JSTARS_2024_3417615
crossref_primary_10_3390_jimaging9080153
crossref_primary_10_4218_etrij_2024_0146
crossref_primary_10_1016_j_optlaseng_2024_108558
crossref_primary_10_1109_TIP_2025_3579148
crossref_primary_10_1016_j_jes_2024_04_037
crossref_primary_10_1007_s00371_025_04144_9
crossref_primary_10_1109_TGRS_2024_3506780
crossref_primary_10_3390_rs16244780
crossref_primary_10_3390_app15063191
crossref_primary_10_3390_electronics13112082
crossref_primary_10_1016_j_displa_2024_102904
crossref_primary_10_1007_s00530_025_01754_0
Cites_doi 10.1109/TIP.2015.2446191
10.1109/CVPR.2016.90
10.1109/CVPR.2017.632
10.1109/CVPRW53098.2021.00028
10.1109/WACV45572.2020.9093471
10.1109/LGRS.2020.3006533
10.1109/CVPR52688.2022.01167
10.1109/IGARSS.2002.1026134
10.1007/978-3-030-58577-8_12
10.1109/TIP.2016.2598681
10.1609/aaai.v36i3.20176
10.1109/CVPRW50498.2020.00230
10.1109/WACV48630.2021.00046
10.1145/1508044.1508113
10.1109/ICCV48922.2021.00041
10.1109/CVPR.2018.00343
10.1609/aaai.v34i07.6865
10.1109/CVPR46437.2021.01041
10.1007/978-3-030-01449-0_52
10.1109/CVPR52688.2022.00572
10.1007/978-3-319-46475-6_10
10.1007/978-3-540-74831-1_5
10.1109/CVPR42600.2020.00223
10.1007/978-3-030-58539-6_43
10.1109/ICCV48922.2021.00061
10.1109/WACV.2019.00151
10.1109/CVPRW53098.2021.00029
10.1145/2651362
10.1109/CVPR42600.2020.00288
10.1109/TIP.2018.2867951
10.5555/3104322.3104425
10.48550/ARXIV.1706.03762
10.1109/ICIP.2017.8296874
10.1016/0034-4257(88)90019-3
10.1109/CVPR52688.2022.01716
10.1109/ICCV48922.2021.00060
10.1109/CVPR.2019.00060
10.1109/CVPR.2017.195
10.1109/JSTARS.2018.2812726
10.1109/TGRS.2021.3131035
10.1109/ICCV48922.2021.00986
10.48550/ARXIV.1710.05941
10.1109/ACSSC.2003.1292216
10.48550/arXiv.1603.08155
10.1109/TGRS.2020.3004556
10.1109/TPAMI.2010.168
10.1109/ICIP.2016.7532754
10.1007/978-3-030-01264-9_8
10.1109/CVPR52688.2022.01181
10.1016/j.knosys.2021.107279
10.1109/tpami.2023.3341806
10.1109/CVPRW50498.2020.00223
10.1109/CVPR.2018.00337
10.1109/CVPR46437.2021.01592
10.1109/ICCVW54120.2021.00210
10.1109/CVPRW.2018.00119
10.5555/3045118.3045167
10.1007/978-3-031-19784-0_8
10.1007/978-3-319-24574-4_28
10.1109/ICCV.1999.790306
10.1109/ICIP.2019.8803046
10.1109/ICCV.2017.511
10.1109/TIP.2021.3108022
10.1109/CVPR.2016.185
10.1109/ICCV.2019.00741
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2023.3256763
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID 37030760
10_1109_TIP_2023_3256763
10076399
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
53G
5VS
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
AAYOK
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c348t-bf8d01ee996c8ac4d556a805ad84e3695c06dbd41f36ac442c5e8dbc4ddfffe73
IEDL.DBID RIE
ISICitedReferencesCount 554
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967927100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Nov 09 13:52:30 EST 2025
Mon Jun 30 10:20:11 EDT 2025
Sun Apr 06 01:21:18 EDT 2025
Sat Nov 29 03:34:41 EST 2025
Tue Nov 18 22:18:53 EST 2025
Wed Aug 27 02:25:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-bf8d01ee996c8ac4d556a805ad84e3695c06dbd41f36ac442c5e8dbc4ddfffe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7339-1335
0000-0001-9606-8402
0000-0002-6215-9733
0000-0003-0293-2656
PMID 37030760
PQID 2790138291
PQPubID 85429
PageCount 1
ParticipantIDs proquest_journals_2790138291
pubmed_primary_37030760
crossref_primary_10_1109_TIP_2023_3256763
proquest_miscellaneous_2798714149
ieee_primary_10076399
crossref_citationtrail_10_1109_TIP_2023_3256763
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
Hendrycks (ref43) 2016
ref56
ref15
ref59
Zhao (ref66) 2021
ref14
ref58
ref53
Loshchilov (ref77)
ref52
ref11
ref55
ref10
ref54
Dosovitskiy (ref60)
ref17
ref16
ref19
ref18
Choromanski (ref26)
Lin (ref35) 2021
ref51
Yu (ref33); 34
ref50
Huang (ref32) 2021
Chen (ref36) 2021
ref46
ref45
ref89
ref48
ref47
ref85
ref44
ref88
Maas (ref72)
ref87
Tan (ref70)
ref49
ref8
Li (ref29)
ref7
ref9
ref4
ref3
ref6
ref5
McCartney (ref1) 1976
ref82
ref81
ref40
ref84
ref83
ref80
ref79
ref34
ref78
ref37
ref31
Dai (ref28); 34
ref74
Mei (ref86) 2020
ref2
ref39
Yang (ref41); 34
Park (ref30)
ref71
Ba (ref42) 2016
Goyal (ref75) 2017
ref24
Chu (ref38); 34
ref68
ref23
ref67
ref25
ref69
ref20
ref64
ref63
ref22
ref21
Loshchilov (ref76)
Li (ref65) 2021
Islam (ref73)
Xiao (ref27); 34
ref62
ref61
References_xml – ident: ref6
  doi: 10.1109/TIP.2015.2446191
– ident: ref68
  doi: 10.1109/CVPR.2016.90
– ident: ref85
  doi: 10.1109/CVPR.2017.632
– ident: ref88
  doi: 10.1109/CVPRW53098.2021.00028
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref26
  article-title: Rethinking attention with performers
– ident: ref58
  doi: 10.1109/WACV45572.2020.9093471
– start-page: 6105
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref70
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref78
  doi: 10.1109/LGRS.2020.3006533
– ident: ref71
  doi: 10.1109/CVPR52688.2022.01167
– ident: ref81
  doi: 10.1109/IGARSS.2002.1026134
– ident: ref15
  doi: 10.1007/978-3-030-58577-8_12
– ident: ref8
  doi: 10.1109/TIP.2016.2598681
– ident: ref40
  doi: 10.1609/aaai.v36i3.20176
– year: 2016
  ident: ref42
  article-title: Layer normalization
  publication-title: arXiv:1607.06450
– ident: ref47
  doi: 10.1109/CVPRW50498.2020.00230
– ident: ref59
  doi: 10.1109/WACV48630.2021.00046
– ident: ref3
  doi: 10.1145/1508044.1508113
– volume: 34
  start-page: 3965
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: CoAtNet: Marrying convolution and attention for all data sizes
– ident: ref37
  doi: 10.1109/ICCV48922.2021.00041
– volume: 34
  start-page: 30008
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Focal attention for long-range interactions in vision transformers
– year: 2021
  ident: ref66
  article-title: Complementary feature enhanced network with vision transformer for image dehazing
  publication-title: arXiv:2109.07100
– ident: ref12
  doi: 10.1109/CVPR.2018.00343
– year: 2017
  ident: ref75
  article-title: Accurate, large minibatch SGD: Training ImageNet in 1 hour
  publication-title: arXiv:1706.02677
– ident: ref18
  doi: 10.1609/aaai.v34i07.6865
– ident: ref19
  doi: 10.1109/CVPR46437.2021.01041
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref30
  article-title: How do vision transformers work?
– ident: ref50
  doi: 10.1007/978-3-030-01449-0_52
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref77
  article-title: SGDR: Stochastic gradient descent with warm restarts
– ident: ref67
  doi: 10.1109/CVPR52688.2022.00572
– ident: ref9
  doi: 10.1007/978-3-319-46475-6_10
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref76
  article-title: Decoupled weight decay regularization
– ident: ref82
  doi: 10.1007/978-3-540-74831-1_5
– ident: ref17
  doi: 10.1109/CVPR42600.2020.00223
– ident: ref16
  doi: 10.1007/978-3-030-58539-6_43
– ident: ref24
  doi: 10.1109/ICCV48922.2021.00061
– ident: ref14
  doi: 10.1109/WACV.2019.00151
– volume: 34
  start-page: 30392
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Early convolutions help transformers see better
– ident: ref89
  doi: 10.1109/CVPRW53098.2021.00029
– ident: ref5
  doi: 10.1145/2651362
– ident: ref22
  doi: 10.1109/CVPR42600.2020.00288
– ident: ref55
  doi: 10.1109/TIP.2018.2867951
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref73
  article-title: How much position information do convolutional neural networks encode?
– ident: ref45
  doi: 10.5555/3104322.3104425
– ident: ref23
  doi: 10.48550/ARXIV.1706.03762
– ident: ref54
  doi: 10.1109/ICIP.2017.8296874
– ident: ref80
  doi: 10.1016/0034-4257(88)90019-3
– year: 2016
  ident: ref43
  article-title: Gaussian error linear units (GELUs)
  publication-title: arXiv:1606.08415
– year: 2020
  ident: ref86
  article-title: Pyramid attention networks for image restoration
  publication-title: arXiv:2004.13824
– ident: ref63
  doi: 10.1109/CVPR52688.2022.01716
– year: 2021
  ident: ref35
  article-title: CAT: Cross attention in vision transformer
  publication-title: arXiv:2106.05786
– year: 2021
  ident: ref36
  article-title: RegionViT: Regional-to-local attention for vision transformers
  publication-title: arXiv:2106.02689
– ident: ref25
  doi: 10.1109/ICCV48922.2021.00060
– start-page: 1
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref72
  article-title: Rectifier nonlinearities improve neural network acoustic models
– ident: ref46
  doi: 10.1109/CVPR.2019.00060
– ident: ref64
  doi: 10.1109/CVPR.2017.195
– year: 2021
  ident: ref65
  article-title: LocalViT: Bringing locality to vision transformers
  publication-title: arXiv:2104.05707
– ident: ref56
  doi: 10.1109/JSTARS.2018.2812726
– volume: 34
  start-page: 12992
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Glance-and-gaze vision transformer
– ident: ref79
  doi: 10.1109/TGRS.2021.3131035
– ident: ref31
  doi: 10.1109/ICCV48922.2021.00986
– volume: 34
  start-page: 9355
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: Twins: Revisiting the design of spatial attention in vision transformers
– ident: ref44
  doi: 10.48550/ARXIV.1710.05941
– ident: ref83
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref84
  doi: 10.48550/arXiv.1603.08155
– ident: ref57
  doi: 10.1109/TGRS.2020.3004556
– start-page: 408
  volume-title: Optics of the Atmosphere: Scattering by Molecules and Particles
  year: 1976
  ident: ref1
– ident: ref4
  doi: 10.1109/TPAMI.2010.168
– ident: ref53
  doi: 10.1109/ICIP.2016.7532754
– ident: ref74
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref39
  doi: 10.1109/CVPR52688.2022.01181
– ident: ref20
  doi: 10.1016/j.knosys.2021.107279
– ident: ref34
  doi: 10.1109/tpami.2023.3341806
– year: 2021
  ident: ref32
  article-title: Shuffle transformer: Rethinking spatial shuffle for vision transformer
  publication-title: arXiv:2106.03650
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref60
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
– ident: ref87
  doi: 10.1109/CVPRW50498.2020.00223
– ident: ref10
  doi: 10.1109/CVPR.2018.00337
– ident: ref49
  doi: 10.1109/CVPR46437.2021.01592
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref29
  article-title: UniFormer: Unified transformer for efficient spatiotemporal representation learning
– ident: ref62
  doi: 10.1109/ICCVW54120.2021.00210
– ident: ref51
  doi: 10.1109/CVPRW.2018.00119
– ident: ref69
  doi: 10.5555/3045118.3045167
– ident: ref48
  doi: 10.1007/978-3-031-19784-0_8
– ident: ref61
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref2
  doi: 10.1109/ICCV.1999.790306
– ident: ref52
  doi: 10.1109/ICIP.2019.8803046
– ident: ref11
  doi: 10.1109/ICCV.2017.511
– ident: ref21
  doi: 10.1109/TIP.2021.3108022
– ident: ref7
  doi: 10.1109/CVPR.2016.185
– ident: ref13
  doi: 10.1109/ICCV.2019.00741
SSID ssj0014516
Score 2.757391
Snippet Image dehazing is a representative low-level vision task that estimates latent haze-free images from hazy images. In recent years, convolutional neural...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Datasets
Deep Learning
Image Dehazing
Image Processing
Remote sensing
Spatial data
Vision Transformer
Title Vision Transformers for Single Image Dehazing
URI https://ieeexplore.ieee.org/document/10076399
https://www.ncbi.nlm.nih.gov/pubmed/37030760
https://www.proquest.com/docview/2790138291
https://www.proquest.com/docview/2798714149
Volume 32
WOSCitedRecordID wos000967927100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BtQd4gI2PkY2hIO2FB7du4_jjcdpWDQkhJDrUt8ixz4BU2om2_P2cnbTqC0h7SiRfEuds537ny_0O4DuX2iL2PePBlkwM0LDaWGTWC1_zEEtJJ3b9K3V9rcdjc9Mmq6dcGERMP59hN56mWL6fuWXcKuvFiH60qNuwrZRqkrXWIYNYcTaFNkvFFOH-VUySm97o8qYby4R3CzLwifFzwwaloipv48tkZ4b7_9nDj7DXAsr8RzMDPsEWTg9gvwWXebt05wewu8E8eAjsLuWU56MVbiUUmNMxv6XmCeaXT_SdyX_hQ2Sfvj-Cv8Pfo59_WFs5gblC6AWrg_a8j0jOjNPWCV-W0mpeWq8FFtKUjktfe9EPhaRmMXAlal-ToA8hoCqOoTOdTfEEcoJYsuYSfWFJqUYTnJJB0NCbQivnQga9lS4r19KKx-oWkyq5F9xUpP0qar9qtZ_BxfqKfw2lxjuyR1HJG3KNfjM4XY1X1S66eTVQJsZdB6afwfm6mZZLjIHYKc6WSYZcREGvksHnZpzXNy8SOZrkX9546FfYiX1rNmBOobN4XuI3-OBeFo_z5zOak2N9lubkK4dx3A8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5tbNLgYTDGj2yMZRIvPLh1EsexHxEbolpXIa2beIsc-7whQYtoy9_P2UmrvjBpT4nkS-J8tnPf-XJ3ACdcKoOYOca9KZnIUbNGG2TGCddwH0pJx-z6w2o0UtfX-qoLVo-xMIgYfz7DXjiNvnw3tYuwVdYPHv2gUV_Cq1KIPGvDtVZOg1BzNjo3y4pVxPyXXkmu--PBVS8UCu8VpOJjzs81LRTLqjzPMKOmudj-zz7uwNuOUqZn7Rx4By9wsgvbHb1Mu8U724WttdyD74H9jlHl6XjJXIkHpnRMf1LzLaaDO_rSpF_xb8g__WcPfl18G59fsq52ArOFUHPWeOV4hkjmjFXGCleW0iheGqcEFlKXlkvXOJH5QlKzyG2JyjUk6Lz3WBX7sDGZTvAQUiJZsuESXWEIVK2IUEkvaPB1oSprfQL9JZa17RKLh_oWt3U0MLiuCf06oF936Cdwurrivk2q8Q_ZvQDymlyLbwJHy_Gqu2U3q_NKB89rrrMEvqyaacEEL4iZ4HQRZchIFPQqCRy047y6eRHTo0n-4ZmHfoY3l-Mfw3o4GH3_CJuhn-12zBFszB8W-Ale28f5zezhOM7MJ_J-3m4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vision+Transformers+for+Single+Image+Dehazing&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Song%2C+Yuda&rft.au=He%2C+Zhuqing&rft.au=Qian%2C+Hui&rft.au=Du%2C+Xin&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1057-7149&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIP.2023.3256763&rft.externalDocID=10076399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon