SNRMPACDC: computational model focused on Siamese network and random matrix projection for anticancer synergistic drug combination prediction

Abstract Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics Vol. 24; no. 1
Main Authors: Li, Tian-Hao, Wang, Chun-Chun, Zhang, Li, Chen, Xing
Format: Journal Article
Language:English
Published: England Oxford University Press 19.01.2023
Oxford Publishing Limited (England)
Subjects:
ISSN:1467-5463, 1477-4054, 1477-4054
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.
AbstractList Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.
Abstract Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.
Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was utilized to screen synergistic drug combinations. However, the in vitro method is time-consuming and expensive. With the rapid growth of high-throughput data, computational methods are becoming efficient tools to predict potential synergistic drug combinations. Considering the limitations of the previous computational methods, we developed a new model named Siamese Network and Random Matrix Projection for AntiCancer Drug Combination prediction (SNRMPACDC). Firstly, the Siamese convolutional network and random matrix projection were used to process the features of the two drugs into drug combination features. Then, the features of the cancer cell line were processed through the convolutional network. Finally, the processed features were integrated and input into the multi-layer perceptron network to get the predicted score. Compared with the traditional method of splicing drug features into drug combination features, SNRMPACDC improved the interpretability of drug combination features to a certain extent. In addition, the introduction of convolutional networks can better extract the potential information in the features. SNRMPACDC achieved the root mean-squared error of 15.01 and the Pearson correlation coefficient of 0.75 in 5-fold cross-validation of regression prediction for response data. In addition, SNRMPACDC achieved the AUC of 0.91 ± 0.03 and the AUPR of 0.62 ± 0.05 in 5-fold cross-validation of classification prediction of synergistic or not. These results are almost better than all the previous models. SNRMPACDC would be an effective approach to infer potential anticancer synergistic drug combinations.
Author Li, Tian-Hao
Zhang, Li
Chen, Xing
Wang, Chun-Chun
Author_xml – sequence: 1
  givenname: Tian-Hao
  surname: Li
  fullname: Li, Tian-Hao
  email: tianhaoli@cumt.edu.cn
– sequence: 2
  givenname: Chun-Chun
  orcidid: 0000-0002-6795-4007
  surname: Wang
  fullname: Wang, Chun-Chun
  email: ts17060063a3@cumt.edu.cn
– sequence: 3
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  email: TB20060015B4@cumt.edu.cn
– sequence: 4
  givenname: Xing
  orcidid: 0000-0001-9028-5342
  surname: Chen
  fullname: Chen, Xing
  email: xingchen@amss.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36418927$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoO02A-98l4CghRkbLInM5nxrmzVFuoHVq9DPs6UrDPJmsyg_RH-52a725si3iQhPM85h_cckb0QAxLygrO3nHVwarw5NUbbmsETcsiFlJVgtdjbvBtZ1aKBA3KU84qxBZMtf0oOoBG87RbykPy9_vzt09ez5fnyHbVxXM-TnnwMeqBjdDjQPto5o6Mx0GuvR8xIA06_Y_pJdXA0lSOOdNRT8n_oOsUV2o1fvFSAyVsdLCaabwOmG5_LB3Vpvtn0Mj7c9yoaOn-vPSP7vR4yPt_dx-THh_fflxfV1ZePl8uzq8qCaKfKuBZk42reawDXMGk40-A61-resKbF2jrsYNGgMSi1MFZ0zEDfWS1kjQDH5GRbt0z8a8Y8qdFni8OgA8Y5q4WETgouu7agrx6hqzinElBWwDmIhkuoC_VyR81mRKfWyY863aqHoAvAt4BNMeeEvbJ-G_WUtB8UZ2qzTFWWqXbLLM6bR85D2X_Tr7d0nNf_Be8A1M6xPw
CitedBy_id crossref_primary_10_1038_s41598_025_93952_z
crossref_primary_10_1109_JBHI_2023_3335275
crossref_primary_10_1186_s12859_024_05705_w
crossref_primary_10_1002_ctd2_317
crossref_primary_10_1111_jcmm_70572
crossref_primary_10_1111_jcmm_18372
crossref_primary_10_1111_jcmm_18571
crossref_primary_10_1038_s41598_024_54409_x
crossref_primary_10_1016_j_compbiolchem_2024_108054
crossref_primary_10_1016_j_compbiolchem_2024_108175
crossref_primary_10_1021_acs_jcim_4c00003
crossref_primary_10_1093_bib_bbae481
crossref_primary_10_1093_bib_bbad097
crossref_primary_10_1093_bioinformatics_btaf326
crossref_primary_10_1109_JBHI_2023_3342280
crossref_primary_10_3389_fmicb_2023_1207209
crossref_primary_10_1093_bib_bbad328
crossref_primary_10_1109_JBHI_2024_3491318
crossref_primary_10_1016_j_sbi_2024_102827
crossref_primary_10_1038_s41598_024_52814_w
crossref_primary_10_1016_j_compbiomed_2025_110788
crossref_primary_10_1093_nar_gkae791
crossref_primary_10_1016_j_jbi_2025_104843
crossref_primary_10_1093_bib_bbad522
crossref_primary_10_1109_JBHI_2024_3434439
crossref_primary_10_1109_TAI_2023_3314405
crossref_primary_10_1109_TCBB_2024_3417715
crossref_primary_10_1109_JBHI_2024_3372527
crossref_primary_10_1021_acs_jcim_4c02276
crossref_primary_10_1093_bib_bbad120
crossref_primary_10_1109_JBHI_2024_3375025
crossref_primary_10_1109_TCBBIO_2024_3502507
crossref_primary_10_1049_syb2_70020
crossref_primary_10_1109_TCBB_2024_3385796
crossref_primary_10_1016_j_compbiomed_2023_107137
crossref_primary_10_1016_j_cmpb_2025_108933
crossref_primary_10_2174_1574893618666230227105703
crossref_primary_10_1109_JBHI_2023_3306768
Cites_doi 10.1016/j.cell.2017.05.038
10.1038/s41467-019-09186-x
10.1038/nbt.2391
10.1023/A:1010933404324
10.1056/NEJMra1510062
10.1038/nrd2424
10.1093/bib/bbab355
10.3389/fgene.2019.00600
10.1142/S0218001493000339
10.1371/journal.pcbi.1006752
10.1371/journal.pcbi.1005308
10.1038/s41576-019-0122-6
10.1016/j.drudis.2015.09.003
10.1371/journal.pcbi.1004975
10.1158/1535-7163.MCT-15-0843
10.1093/bioinformatics/btz411
10.1124/jpet.106.104117
10.1016/j.cell.2016.06.017
10.1038/nrd2683
10.1200/JCO.2008.19.8135
10.1016/j.csbj.2015.09.001
10.1158/0008-5472.CAN-06-4495
10.1023/A:1008342013224
10.1093/bioinformatics/bty573
10.1109/JBHI.2018.2852274
10.1093/bioinformatics/btl033
10.3892/or.2016.5315
10.1124/pr.58.3.10
10.1093/bioinformatics/btx806
10.1093/bioinformatics/btw230
10.1093/bib/bbw104
10.1016/j.pharmthera.2013.01.016
10.1056/NEJMoa1413513
10.1038/nbt.2284
10.1001/jama.285.16.2083
10.1007/s00204-015-1587-5
10.1093/bib/bbab534
10.1093/bioinformatics/btt105
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac503
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
Genetics Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 36418927
10_1093_bib_bbac503
10.1093/bib/bbac503
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11631014
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
ROX
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c348t-bd8376d51fa33d607b10a3d9d8afb068e5cde9326ebbe7a4bc490b3f9ca475e33
IEDL.DBID TOX
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891995500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Thu Oct 02 07:44:12 EDT 2025
Fri Oct 03 04:00:39 EDT 2025
Wed Feb 19 02:25:03 EST 2025
Sat Nov 29 05:43:34 EST 2025
Tue Nov 18 21:43:05 EST 2025
Wed Apr 02 06:58:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Siamese network
synergistic drug combination
random matrix projection
cell line
drug
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-bd8376d51fa33d607b10a3d9d8afb068e5cde9326ebbe7a4bc490b3f9ca475e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6795-4007
0000-0001-9028-5342
PMID 36418927
PQID 3113461735
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2739741798
proquest_journals_3113461735
pubmed_primary_36418927
crossref_citationtrail_10_1093_bib_bbac503
crossref_primary_10_1093_bib_bbac503
oup_primary_10_1093_bib_bbac503
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Roth (2023011917142943900_ref15) 2017; 11
Jia (2023011917142943900_ref4) 2009; 8
Yadav (2023011917142943900_ref34) 2015; 13
Tan (2023011917142943900_ref35) 2012; 30
Wei (2023011917142943900_ref46) 2019
Ji (2023011917142943900_ref26) 2019; 10
Huang (2023011917142943900_ref6) 2017; 37
Swain (2023011917142943900_ref13) 2015; 372
Al-Lazikani (2023011917142943900_ref8) 2012; 30
Chou (2023011917142943900_ref5) 2006; 58
Madani Tonekaboni (2023011917142943900_ref18) 2018; 19
Bromley (2023011917142943900_ref44) 1993; 6
Eraslan (2023011917142943900_ref28) 2019; 20
Tallarida (2023011917142943900_ref12) 2006; 319
Csermely (2023011917142943900_ref3) 2013; 138
Hashemifar (2023011917142943900_ref50) 2018; 34
Hui (2023011917142943900_ref29) 2005
Mandelbrot (2023011917142943900_ref14) 2001; 285
Breiman (2023011917142943900_ref31) 2001; 45
Hinselmann (2023011917142943900_ref39) 2011
Gayvert (2023011917142943900_ref20) 2017; 13
Zagoruyko (2023011917142943900_ref45) 2015
Jeon (2023011917142943900_ref48) 2019; 35
O'Neil (2023011917142943900_ref33) 2016; 15
Su (2023011917142943900_ref49) 2022; 23
Chen (2023011917142943900_ref10) 2016; 12
Malyutina (2023011917142943900_ref21) 2019; 15
Klambauer (2023011917142943900_ref30) 2017
Loewe (2023011917142943900_ref37) 1953; 3
Preuer (2023011917142943900_ref23) 2017; 34
Cheng (2023011917142943900_ref24) 2019; 10
Hecht (2023011917142943900_ref11) 2009; 27
Bromley (2023011917142943900_ref47) 1993; 7
Celebi (2023011917142943900_ref19) 2019
Ding (2023011917142943900_ref25) 2019; 23
Tooker (2023011917142943900_ref7) 2007; 67
Bulusu (2023011917142943900_ref16) 2016; 21
Bliss (2023011917142943900_ref36) 1939
Zhang (2023011917142943900_ref27) 2019
Iorio (2023011917142943900_ref42) 2016; 166
Hochreiter (2023011917142943900_ref43) 2006; 22
Boyle (2023011917142943900_ref1) 2017; 169
Wu (2023011917142943900_ref17) 2022; 23
Amzallag (2023011917142943900_ref22) 2019
Di Veroli (2023011917142943900_ref38) 2016; 32
Singh (2023011917142943900_ref41) 2016; 90
JHJAoS (2023011917142943900_ref32) 2001
De Clercq (2023011917142943900_ref9) 2007; 6
Drazen (2023011917142943900_ref2) 2017; 377
Cao (2023011917142943900_ref40) 2013; 29
References_xml – volume: 3
  start-page: 285
  year: 1953
  ident: 2023011917142943900_ref37
  article-title: The problem of synergism and antagonism of combined drugs
  publication-title: Arzneimittelforschung
– start-page: 585
  volume-title: Ann. Appl. Biol.
  year: 1939
  ident: 2023011917142943900_ref36
  article-title: The toxicity of poisons applied jointly
– volume: 169
  start-page: 1177
  year: 2017
  ident: 2023011917142943900_ref1
  article-title: An expanded view of complex traits: from polygenic to omnigenic
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.038
– volume: 10
  start-page: 1197
  year: 2019
  ident: 2023011917142943900_ref24
  article-title: Network-based prediction of drug combinations
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09186-x
– start-page: 5764
  year: 2019
  ident: 2023011917142943900_ref46
  article-title: Inverse discriminative networks for handwritten signature verification
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 4353
  year: 2015
  ident: 2023011917142943900_ref45
  article-title: Learning to compare image patches via convolutional neural networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 30
  start-page: 1125
  year: 2012
  ident: 2023011917142943900_ref35
  article-title: Systematic identification of synergistic drug pairs targeting HIV
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2391
– volume: 45
  start-page: 5
  year: 2001
  ident: 2023011917142943900_ref31
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 6
  year: 1993
  ident: 2023011917142943900_ref44
  article-title: Signature verification using a "siamese" time delay neural network
  publication-title: Adv Neural Inf Process Syst
– start-page: 1
  volume-title: BMC Bioinform
  year: 2019
  ident: 2023011917142943900_ref22
  article-title: Statistical assessment and visualization of synergies for large-scale sparse drug combination datasets
– volume: 377
  start-page: 62
  year: 2017
  ident: 2023011917142943900_ref2
  article-title: Master protocols to study multiple therapies, multiple diseases, or both
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1510062
– start-page: S69
  volume-title: Front Environ Sci
  year: 2017
  ident: 2023011917142943900_ref30
  article-title: DeepTox: toxicity prediction using deep learning
– volume: 6
  start-page: 1001
  year: 2007
  ident: 2023011917142943900_ref9
  article-title: The design of drugs for HIV and HCV
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2424
– volume: 23
  start-page: bbab355
  year: 2022
  ident: 2023011917142943900_ref17
  article-title: Machine learning methods, databases and tools for drug combination prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab355
– volume: 10
  start-page: 600
  year: 2019
  ident: 2023011917142943900_ref26
  article-title: Five-feature model for developing the classifier for synergistic vs. antagonistic drug combinations built by XGBoost
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00600
– volume: 7
  start-page: 669
  year: 1993
  ident: 2023011917142943900_ref47
  article-title: Signature verification using a “siamese” time delay neural network
  publication-title: Int J Pattern Recogn Artif Intell
  doi: 10.1142/S0218001493000339
– volume: 15
  year: 2019
  ident: 2023011917142943900_ref21
  article-title: Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006752
– volume: 13
  year: 2017
  ident: 2023011917142943900_ref20
  article-title: A computational approach for identifying synergistic drug combinations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005308
– volume: 20
  start-page: 389
  year: 2019
  ident: 2023011917142943900_ref28
  article-title: Deep learning: new computational modelling techniques for genomics
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0122-6
– volume: 21
  start-page: 225
  year: 2016
  ident: 2023011917142943900_ref16
  article-title: Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2015.09.003
– start-page: 1189
  volume-title: Ann. Stat.
  year: 2001
  ident: 2023011917142943900_ref32
  article-title: Greedy function approximation: a gradient boosting machine
– volume: 12
  year: 2016
  ident: 2023011917142943900_ref10
  article-title: NLLSS: predicting synergistic drug combinations based on semi-supervised learning
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004975
– volume: 15
  start-page: 1155
  year: 2016
  ident: 2023011917142943900_ref33
  article-title: An unbiased oncology compound screen to identify novel combination strategies
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-15-0843
– volume: 35
  start-page: 5249
  year: 2019
  ident: 2023011917142943900_ref48
  article-title: ReSimNet: drug response similarity prediction using Siamese neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz411
– volume: 319
  start-page: 1
  year: 2006
  ident: 2023011917142943900_ref12
  article-title: An overview of drug combination analysis with isobolograms
  publication-title: J Pharmacol Exp Therap
  doi: 10.1124/jpet.106.104117
– volume: 166
  start-page: 740
  year: 2016
  ident: 2023011917142943900_ref42
  article-title: A landscape of pharmacogenomic interactions in cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.017
– volume: 8
  start-page: 111
  year: 2009
  ident: 2023011917142943900_ref4
  article-title: Mechanisms of drug combinations: interaction and network perspectives
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2683
– volume: 27
  start-page: 672
  year: 2009
  ident: 2023011917142943900_ref11
  article-title: A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.19.8135
– start-page: 1
  volume-title: Journal of cheminformatics
  year: 2011
  ident: 2023011917142943900_ref39
  article-title: jCompoundMapper: an open source Java library and command-line tool for chemical fingerprints
– volume: 13
  start-page: 504
  year: 2015
  ident: 2023011917142943900_ref34
  article-title: Searching for drug synergy in complex dose–response landscapes using an interaction potency model
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2015.09.001
– start-page: 67
  volume-title: Synth Syst Biotechnol
  year: 2019
  ident: 2023011917142943900_ref27
  article-title: Synergistic drug combinations prediction by integrating pharmacological data
– volume: 67
  start-page: 4425
  year: 2007
  ident: 2023011917142943900_ref7
  article-title: Bexarotene (LGD1069, Targretin), a selective retinoid X receptor agonist, prevents and reverses gemcitabine resistance in NSCLC cells by modulating gene amplification
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-4495
– volume: 11
  start-page: 301
  year: 2017
  ident: 2023011917142943900_ref15
  article-title: Docetaxel (Taxotere)-cisplatin (TC): an effective drug combination in gastric carcinoma
  publication-title: Ann Oncol
  doi: 10.1023/A:1008342013224
– volume: 34
  start-page: i802
  year: 2018
  ident: 2023011917142943900_ref50
  article-title: Predicting protein–protein interactions through sequence-based deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty573
– volume: 23
  start-page: 1336
  year: 2019
  ident: 2023011917142943900_ref25
  article-title: Ensemble prediction of synergistic drug combinations incorporating biological, chemical, pharmacological, and network knowledge
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2852274
– start-page: 1
  volume-title: Sci Rep
  year: 2019
  ident: 2023011917142943900_ref19
  article-title: In-silico prediction of synergistic anti-cancer drug combinations using multi-omics data
– volume: 22
  start-page: 943
  year: 2006
  ident: 2023011917142943900_ref43
  article-title: A new summarization method for Affymetrix probe level data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl033
– start-page: 768
  volume-title: J R Stat Soc Series B Stat Methodol J R STAT SOC B
  year: 2005
  ident: 2023011917142943900_ref29
  article-title: Regularization and variable selection via the elastic net
– volume: 37
  start-page: 705
  year: 2017
  ident: 2023011917142943900_ref6
  article-title: Fulvestrant reverses doxorubicin resistance in multidrug-resistant breast cell lines independent of estrogen receptor expression
  publication-title: Oncol Rep
  doi: 10.3892/or.2016.5315
– volume: 58
  start-page: 621
  year: 2006
  ident: 2023011917142943900_ref5
  article-title: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.58.3.10
– volume: 34
  start-page: 1538
  year: 2017
  ident: 2023011917142943900_ref23
  article-title: DeepSynergy: predicting anti-cancer drug synergy with Deep Learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx806
– volume: 32
  start-page: 2866
  year: 2016
  ident: 2023011917142943900_ref38
  article-title: Combenefit: an interactive platform for the analysis and visualization of drug combinations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw230
– volume: 19
  start-page: 263
  year: 2018
  ident: 2023011917142943900_ref18
  article-title: Predictive approaches for drug combination discovery in cancer
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw104
– volume: 138
  start-page: 333
  year: 2013
  ident: 2023011917142943900_ref3
  article-title: Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2013.01.016
– volume: 372
  start-page: 724
  year: 2015
  ident: 2023011917142943900_ref13
  article-title: Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1413513
– volume: 30
  start-page: 679
  year: 2012
  ident: 2023011917142943900_ref8
  article-title: Combinatorial drug therapy for cancer in the post-genomic era
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2284
– volume: 285
  start-page: 2083
  year: 2001
  ident: 2023011917142943900_ref14
  article-title: Lamivudine-zidovudine combination for prevention of maternal-infant transmission of HIV-1
  publication-title: JAMA
  doi: 10.1001/jama.285.16.2083
– volume: 90
  start-page: 1785
  year: 2016
  ident: 2023011917142943900_ref41
  article-title: Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-015-1587-5
– volume: 23
  start-page: bbab534
  year: 2022
  ident: 2023011917142943900_ref49
  article-title: SRDFM: Siamese Response Deep Factorization Machine to improve anti-cancer drug recommendation
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab534
– volume: 29
  start-page: 1092
  year: 2013
  ident: 2023011917142943900_ref40
  article-title: ChemoPy: freely available python package for computational biology and chemoinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt105
SSID ssj0020781
Score 2.5591056
Snippet Abstract Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach...
Synergistic drug combinations can improve the therapeutic effect and reduce the drug dosage to avoid toxicity. In previous years, an in vitro approach was...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Anticancer properties
Antineoplastic Combined Chemotherapy Protocols - pharmacology
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Antineoplastic drugs
Artificial neural networks
Cancer
Computational Biology - methods
Computer applications
Computer Simulation
Correlation coefficient
Correlation coefficients
Drug Combinations
Drug Synergism
In vitro methods and tests
Information processing
Multilayer perceptrons
Multilayers
Predictions
Software
Toxicity
Title SNRMPACDC: computational model focused on Siamese network and random matrix projection for anticancer synergistic drug combination prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/36418927
https://www.proquest.com/docview/3113461735
https://www.proquest.com/docview/2739741798
Volume 24
WOSCitedRecordID wos000891995500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB-0KPhi_axX27pCn4TQJJPNZvtWTosvnsVWuLewn-WgTSS5E_tH-D93NtkeVIv2LZAZJuzMZudj5zcA-yg994bzhP59mBTapIkiRyOx3kuVWu-MGIdNiNmsms_lSbwg299Rwpd4oBf6QGtl-ADqmfEqmPPZ1_k6rgp4NWMTkUgCuntsw_uD99bBc6uZ7S-fcjhbjjfv-1XP4Gn0HtnRqO7n8MA1L-DxOE_y6iX8Pp19-3JyNP04PWRmGNcQU31sGHjDfGtWvbOsbdjpIlyPdawZr4Ez1VhGx5ZtL9llQO3_xWKOhviJryOCkPUmE-lYfxUaBgeEZ2a71XmQRQH2IIvYQuknPL6C78efzqafkzhvITFYVMtEW4pWS8szrxBtmQqdpQqttJXyOi0rx411wd9zWjuhSLGFTDV6aVQhuEN8DRtN27g3wLzTBTqBGk1aaArpylxQpJhba_JcKzGBDzfKqE0EIw8zMS7qsSiONa1vHdd3Avtr4h8jBsfdZO9Iq_-m2LnReB23al9jlmFBfhzyCbxfv6ZNFionqnHtqq_Jx6O4K2C7TWBrtJS1HCyLrJK52P6v-LfwJAyrDwmcTO7AxrJbuV14ZH4uF323Bw_FvNobLPsar033xg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SNRMPACDC%3A+computational+model+focused+on+Siamese+network+and+random+matrix+projection+for+anticancer+synergistic+drug+combination+prediction&rft.jtitle=Briefings+in+bioinformatics&rft.au=Li%2C+Tian-Hao&rft.au=Wang%2C+Chun-Chun&rft.au=Zhang%2C+Li&rft.au=Chen%2C+Xing&rft.date=2023-01-19&rft.eissn=1477-4054&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbac503&rft_id=info%3Apmid%2F36418927&rft.externalDocID=36418927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon