An Efficient and Scalable Density-based Clustering Algorithm for Normalize Data
Data clustering is a method of putting same data object into group. A clustering rule does partitions of a data set into many groups supported the principle of maximizing the intra-class similarity and minimizing the inter-class similarity. Finding clusters in object, particularly high dimensional o...
Uložené v:
| Vydané v: | Procedia computer science Ročník 92; s. 136 - 141 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
2016
|
| Predmet: | |
| ISSN: | 1877-0509, 1877-0509 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Data clustering is a method of putting same data object into group. A clustering rule does partitions of a data set into many groups supported the principle of maximizing the intra-class similarity and minimizing the inter-class similarity. Finding clusters in object, particularly high dimensional object, is difficult when the clusters are different shapes, sizes, and densities, and when data contains noise and outliers. This paper provides a new clustering algorithm for normalized data set and proven that our new planned clustering approach work efficiently when dataset are normalized. |
|---|---|
| ISSN: | 1877-0509 1877-0509 |
| DOI: | 10.1016/j.procs.2016.07.336 |